Robustifying Learnability

Robert Tetlow* Peter von zur Muehlen

*Division of Research and Statistics, Federal Reserve Board, Washington, D.C., 20051 USA

E-mail: rtetlow@frb.gov http://www.roberttetlow.com

Disclaimer!

 The views in this presentation are those of the authors only and are not necessarily shared by the members of the Board of Governors or the staff.

Motivation

- Model uncertainty is widely accepted.
- Agents may not to have RE but are rational and can learn.
- But: No assurance they use LS correctly or even use LS at all.

Objectives

- Introduce uncertainty in the models agents use.
- Devise procedures for maximizing prospect that an economy converges in expectations in the presence of model uncertainty...that is, robustify learnability

Methodology

- We take the *learnability* literature...
- ...and marry it to the robust control literature
- ...to come up with tools to choose policy rules that render a model's actual law of motion locally robust to misspecification

Contribution of this paper

- Policy makers can act to minimize consequences of these errors.
- Not knowing where mistakes arise, and to protect against worst cases, the authority uses methods of structured robust control.

Performance metrics

- Not concerned with loss function minimization
- Mostly concerned with ensuring convergence of learning by agents to REE: E-stability.

A few of the pertinent references

Learning & determinacy literature:

- Bullard and Mitra (2001) JME, (2003).
- Evans and Honkapohja (EH) Learning and Expectations in Macroeconomics (2001).

Control literature:

- Zames (1966), Zhou-Doyle-Glover (1996).
- Onatski and Stock (2002), Zhou and Doyle, Essentials of Robust Control (1998), Tetlow and vzM (2001).

Literature related to this paper:

Evans & McGough (2004), EH&Marimon (MD, 2001)

Determinacy and Learning

- Plausible policy rules can be unstable under learning. (Bullard & Mitra, JME 2002 and Evans&Honkapohja 2003).
- Determinacy and learnability are not the same.

A General Linear Framework

$$y_{t} = \alpha + ME_{t}^{*}y_{t+1} + Ny_{t-1} + Pv_{t} \quad with \quad v_{t} = \rho v_{t-1} + \varepsilon_{t}$$

$$\begin{pmatrix} E_{t}^{*}y_{t+1} \\ y_{t} \end{pmatrix} = \begin{pmatrix} \alpha M^{-1} \\ 0 \end{pmatrix} + \begin{pmatrix} M^{-1} & -NM^{-1} \\ I & 0 \end{pmatrix} \begin{pmatrix} y_{t} \\ y_{t-1} \end{pmatrix} - \begin{pmatrix} M^{-1} \\ 0 \end{pmatrix} Pv_{t} + \begin{pmatrix} 1 \\ 0 \end{pmatrix} \varepsilon_{t}$$

$$E_{t}^{*}Y_{t+1} = A + BY_{t} + Cv_{t} + D\varepsilon_{t}$$

 Unique REE if the Blanchard & Kahn conditions hold

Perceived Law of Motion

 Perceived law of motion (PLM): the model agents estimate using LS

$$Y_{t} = a_{t} + b_{t}Y_{t-1} + c_{t}v_{t}.$$

- Actual law of motion (ALM):
- Agents substitute expectations formed with PLM into the linear model.

Mapping from PLM to ALM

Resulting mapping

$$(a,b,c) = T(a,b,c)$$

 is unique if there is a fixed point for which b has all roots inside the unit circle.

E-stability

If eigenvalues of Jacobian of ODE

$$\frac{d}{d\tau}(a,b,c) = T(a,b,c) - (a,b,c)$$

 have real parts <1. See Evans and Honkapohja (2001).

Model Perturbation

• Begin with a PLM (omit intercept and let $X_t = [Y_t, v_t]$):

$$X_{t} = \begin{pmatrix} b & c \\ 0 & \rho \end{pmatrix} X_{t-1} + \varepsilon_{t}$$

$$\equiv \Pi \cdot X_{t-1} + \varepsilon_t$$

Now perturb this model:

$$X_{t} = [\Pi + \Delta_{W}] \cdot X_{t-1} + \varepsilon_{t}$$

Perturbation Operator

ullet where, with $W_{\!\scriptscriptstyle 1}$ and $W_{\!\scriptscriptstyle 2}$ as scaling matrices

$$\Delta_W = W_1 \Delta W_2$$

 Δ is a diagonal matrix with norm:

$$\|\Delta\|_{\infty} = \sqrt{\sup_{\omega} \max_{eig} \left[\Delta'(e^{-i\omega})\Delta(e^{i\omega})\right]} < r < \infty$$

We want r as large as possible

Augmented Feedback Loop

We can write the model as

$$\begin{pmatrix} X_{t+1} \\ p_t \end{pmatrix} = \begin{pmatrix} \Pi & W_1 \\ W_2 & 0 \end{pmatrix} \begin{pmatrix} X_t \\ h_t \end{pmatrix}$$

$$h_t = \Delta p_t$$

Transfer function from h to X and p:

$$\begin{pmatrix} X_t \\ p_t \end{pmatrix} \equiv \begin{pmatrix} G_1 \\ G_2 \end{pmatrix} h_t$$

$$G_1 = (IL^{-1} - \Pi)^{-1}W_1; G_2 = W_2(IL^{-1} - \Pi)^{-1}W_1$$

Small Gain Theorem

$$\|\Delta\|_{\infty} < 1/r \text{ iff } \|G_2(s)\|_{\infty} < r$$

- ullet i.e. stabilize G_2 and you stabilize the entire system
- The object is to find the largest singular value of
- such that $I G_2 \Delta$ is not invertible

Structured Singular Value

$$\mu(\phi, \omega) = \min \begin{cases} \overline{\sigma}[\Delta(e^{i\omega})] : \Delta \in D_r, \\ \det[I - G_2(\omega)\Delta(e^{i\omega})] = 0 \end{cases}^{-1}$$

$$\overline{\mu}(\phi^*) = \inf_{\phi} \sup_{\omega \in [0, 2\pi]} \mu(\phi, \omega)$$

$$r \approx 1 / \overline{\mu}$$

r = radius of allowable perturbations σ = maximum singular value

Schematic representation of robust learnability maximum perturbation space around the reference PLM that keeps the model determinate and stable

The NKB model

$$x_{t} = E_{t}^{*} x_{t+1} - 1/\sigma(r_{t} - r_{t}^{n} - E_{t}^{*} \pi_{t+1})$$

$$\pi_{t} = \beta E_{t}^{*} \pi_{t+1} + \kappa x_{t}$$

$$r_{t}^{n} = \rho r_{t-1}^{n} + \varepsilon_{t}$$

...plus one of three policy rules

1. Lagged-data rule

$$r_{t} = \phi_{x} x_{t-1} + \phi_{\pi} \pi_{t-1} + \phi_{r} r_{t-1}$$

2. Contemporaneous-data rule

$$r_{t} = \phi_{x} x_{t} + \phi_{\pi} \pi_{t} + \phi_{r} r_{t-1}$$

3. Forecast-based rule

$$r_{t} = \phi_{x} E_{t} x_{t+1} + \phi_{\pi} E_{t} \pi_{t+1} + \phi_{r} r_{t-1}$$

Information Protocol

The central bank knows

$$\sigma, \kappa, \beta, \rho$$

Agents observe

$$X_{t-1}, \pi_{t-1}, r_{t-1}, r_{t-1}^n$$

The PLM

- We assume that agents estimate a VAR in x_t, π_t, r_t, r_t^n
- In most cases our PLMs are overparameterized.
- But these PLMs converge to the MSV solution in learning.

Scaling the perturbations

- We allow all 16 coefficients in the VAR to be perturbed.
- Each perturbation is scaled by its standard deviation in the VAR estimated prior to the experiments.

No Sunspots!

 Learnability is made robust conditional on establishment of a unique saddle-point equilibrium.

Bullard and Mitra (2003)

FIGURE 2. Forward Expectations

Table 1 : Contemporaneous data rules

Rule coefficients

rule	X_t	${\cal \Pi}_t$	r_{t-1}	radius	loss
optimized	0.053	0.995	1.12	1.06	3.63
robust	0.052	1.21	1.41	1.13	3.70

- Does high policy inertia necessarily imply learnability under misspecification?
- The contour maps in the next slides suggest: not exactly.
- Difference between
 - --- robust learnability
 - --- size of learnable space.

Robustness contours Contemporaneous data rules

Table 2: Forecast-based rules

Rule coefficients

rule	X_t	π_{t}	r_{t-1}	radius	loss
optimized	0.29	0.99	1.32	0.88	3.63
robust	0.04	2.80	0.10	2.32	4.43

Robustness contours forecast-based rule

Conclusions

- Policy is about more than minimizing a loss function.
- If agents form expectations by recursive learning in mis-specified models, policy can facilitate learning to achieve a REE.
- We have identified and described tools to do this using robust control theory.
- A robustly learnable rule is not the same as rule that has a wide learnable space in a given model.