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Disclaimer!

 The views In this presentation are those of
the authors only and are not necessarily
shared by the members of the Board of
Governors or the staff.



Motivation

 Model uncertainty I1s widely
accepted.

 Agents may not to have RE but
are rational and can learn.

e But: No assurance they use LS
correctly or even use LS at all.



Objectives

e Introduce uncertainty in the models
agents use.

 Devise procedures for maximizing
prospect that an economy converges in
expectations in the presence of model
uncertainty...that is, robustify
learnability



Methodology

 We take the learnability literature...

e ...and marry It to the robust control
literature

e ...to come up with tools to choose
policy rules that render a model’s
actual law of motion locally robust to
misspecification



Contribution of this paper

* Policy makers can act to minimize
conseqguences of these errors.

 Not knowing where mistakes
arise, and to protect against worst
cases, the authority uses
methods of structured robust
control.



Performance metrics

 Not concerned with loss function
minimization
* Mostly concerned with ensuring

convergence of learning by agents to
REE: E-stabillity.




A few of the pertinent references

Learning & determinacy literature:
 Bullard and Mitra (2001) JME, (2003).

 Evans and Honkapohja (EH) Learning and Expectations
In Macroeconomics (2001).

Control literature:
o Zames (1966), Zhou-Doyle-Glover (1996).

* Onatski and Stock (2002), Zhou and Doyle, Essentials of
Robust Control (1998), Tetlow and vzM (2001).

Literature related to this paper:
e Evans & McGough (2004),EH&Marimon (MD,2001)



Determinacy and Learning

* Plausible policy rules can be unstable
under learning. (Bullard & Mitra, JME
2002 and Evans&Honkapohja 2003).

 Determinacy and learnabillity are not
the same.



A General Linear Framework

Y=o+ ME[*yHl + Ny, +Pv, with v, = pv, +¢

R T T el

EY,.,=A+BY, +Cv, +Dg

 Unigue REE If the Blanchard & Kahn
conditions hold



Perceived Law of Motion

e Perceived law of motion (PLM): the
model agents estimate using LS

Y =&

QY. 4

CtVt.

 Actual law of motion (ALM):

e Agents substitute expectations formed
with PLM into the linear model.



Mapping from PLM to ALM

 Resulting mapping
(a,b,c)=T(a,b,c)

e IS unique if there is a fixed point for
which b has all roots inside the unit
circle.



E-stability

* If eilgenvalues of Jacobian of ODE
d
o (@h,c)=T(ab.c)—(ab.)

* have real parts <1. See Evans and
Honkapohja (2001).



Model Perturbation

 Begin with a PLM (omit intercept and
let Xt :[Yt’vt] ):

b ¢
Xt: 0 Xt—1+gt
Yo,

=11-X,,+¢
 Now perturb this model:

X, =[T+A,1- X, + 4



Perturbation Operator

» where, with W, and W, as scaling matrices
A, =WAW,

/\ is a diagonal matrix with norm:

| All= s, mex 1ae “)ae)y <F <00

 \We want r as large as possible



Augmented Feedback Loop

e \We can write the model as

BRI
P W, 0 ht
ht — Ap'[
 Transfer function from h to X and p:

e

G, = (IL*=T1)*W,;G, =W, (IL™* = T1) W,



Small Gain Theorem

IA|L <1/t iff |G,(s)| <

« i.e. stabilize G , and you stabilize the entire system

 The object is to find the largest singular value of
« suchthat |—-G,A isnotinvertible



Structured Singular Value

u(d, @) =min-

G[AE)]:AeD,,

S

det[l -G, (w)A(e")] =0

w(g’)=inf sup u(g, )

? e [0,27]

I ~

1/ u

N -1

r = radius of allowable perturbations

o = maximum singular value



Schematic representation of robust learnability
maximum perturbation space around the reference
PLM that keeps the model determinate and stable

Indeterminate or explosive

Stable & Determinate



The NKB model
X =Ex,-1o(t—r"-E7,,)
Ty = IBEt*ﬂ'Hl + KX

n o n
[ = Pl + &



..plus one of three policy rules

1. Lagged-data rule
=X, +@. 7T+ o1,
2. Contemporaneous-data rule

rt — ¢xxt T ¢7z72.t T ¢rrt—1

3. Forecast-based rule

n — ¢x Etxt+l T ¢7z Etﬂ-t+1 T ¢r n—l



Information Protocol

The central bank knows
01 K1 ,61 /0

Agents observe
n

ST BTN



The PLM

* \WWe assume that agents estimate
aVARIn X, 7, r,r

e |[n Most cases our PLMs are over-
parameterized.

e But these PLMs converge to the
MSYV solution in learning.



Scaling the perturbations

 We allow all 16 coefficients in the
VAR to be perturbed.

 Each perturbation is scaled by its
standard deviation in the VAR
estimated prior to the experiments.



No Sunspots!

e Learnability is made robust
conditional on establishment of a
unigue saddle-point equilibrium.



Bullard and Mitra (2003)

FIGURE 2. Forward Expectations
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Table 1 : Contemporaneous data rules

Rule coefficients

rule X T r radius loss
t

t -1

optimized | 0.053 0.995 1.12 1.06  3.63

robust 0.052 1.21 1.41 1.13 3.70




* Does high policy inertia necessarily imply
learnabllity under misspecification?

e The contour maps in the next slides
suggest: not exactly.

* Difference between
--- robust learnability
--- Size of learnable space.



Robustness contours
Contemporaneous data rules
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Table 2 : Forecast-based rules

Rule coefficients

radius loss

rule Xt 72-’[

— )

—1

optimized | 0.29 0.99 1.32 0.88 3.63

robust 0.04 2.80 0.10 2.32 4.43




Robustnhess contours
forecast-based rule
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Conclusions

Policy Is about more than minimizing a loss
function.

If agents form expectations by recursive
learning in mis-specified models, policy can
facilitate learning to achieve a REE.

We have identified and described tools to do
this using robust control theory.

A robustly learnable rule is not the same as
rule that has a wide learnable space in a
given model.



