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Disclaimer!

• The views in this presentation are those of 
the authors only and are not necessarily 
shared by the members of the Board of 
Governors or the staff. 



Motivation

• Model uncertainty is widely 
accepted.

• Agents may not to have RE but 
are rational and can learn.

• But: No assurance they use LS 
correctly or even use LS at all.



Objectives

• Introduce uncertainty in the models 
agents use.

• Devise procedures for maximizing 
prospect that an economy converges in 
expectations in the presence of model 
uncertainty…that is, robustify 
learnability



Methodology

• We take the learnability literature…
• …and marry it to the robust control

literature
• …to come up with tools to choose 

policy rules that render a model’s 
actual law of motion locally robust to 
misspecification



Contribution of this paper
• Policy makers can act to minimize 

consequences of these errors.
• Not knowing where mistakes 

arise, and to protect against worst 
cases, the authority uses 
methods of structured robust 
control.



Performance metrics

• Not concerned with loss function 
minimization

• Mostly concerned with ensuring 
convergence of learning by agents to 
REE: E-stability.



A few of the pertinent references

Learning & determinacy literature:
• Bullard and Mitra (2001) JME, (2003).
• Evans and Honkapohja (EH) Learning and Expectations 

in Macroeconomics (2001). 
Control literature:
• Zames (1966), Zhou-Doyle-Glover (1996).
• Onatski and Stock (2002), Zhou and Doyle, Essentials of 

Robust Control (1998), Tetlow and vzM (2001).
Literature related to this paper:
• Evans & McGough (2004),EH&Marimon (MD,2001)



Determinacy and Learning

• Plausible policy rules can be unstable 
under learning. (Bullard & Mitra, JME 
2002 and Evans&Honkapohja 2003).

• Determinacy and learnability are not 
the same. 



A General Linear Framework
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• Unique REE if the Blanchard & Kahn 
conditions hold 



Perceived Law of Motion

• Perceived law of motion (PLM): the 
model agents estimate using LS

• Actual law of motion (ALM):
• Agents substitute expectations formed 

with PLM into the linear model.

1 .tt t t t tY a bY c v−= + +



Mapping from PLM to ALM

• Resulting mapping

• is unique if there is a fixed point for 
which b has all roots inside the unit 
circle.

( , , ) ( , , )a b c T a b c=



E-stability

• If eigenvalues of Jacobian of ODE

• have real parts <1. See Evans and 
Honkapohja (2001).

( , , ) ( , , ) ( , , )d a b c T a b c a b c
dτ

= −



Model Perturbation

• Begin with a PLM  (omit intercept and 
let                     ):

• Now perturb this model:

1[ ]t W t tX X ε−= Π + ∆ ⋅ +
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Perturbation Operator

• where, with      and       as scaling matrices

is a diagonal matrix with norm:

• We want r as large as possible
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Augmented Feedback Loop
• We can write the model as

• Transfer function from h to X and p:
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Small Gain Theorem

• i.e. stabilize         and you stabilize the entire system

• The object is to find the largest singular value of  
• such that                    is not invertible
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Structured Singular Value

maximum singular valueσ =

radius of allowable perturbationsr =

1
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Schematic representation of robust learnability
maximum perturbation space around the reference 
PLM that keeps the model determinate and stable

Π
r

*
∆Π

Stable & Determinate

Indeterminate or explosive



The NKB model

* *
1 11/ ( )n

t t t t t t tx E x r r Eσ π+ += − − −
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…plus one of three policy rules

1. Lagged-data rule

2. Contemporaneous-data rule

3. Forecast-based rule

1t x t t r tr x rπφ φ π φ −= + +

1 1 1t x t t r tr x rπφ φ π φ− − −= + +

1 1 1t x t t t t r tr E x E rπφ φ π φ+ + −= + +



Information Protocol

The central bank knows

Agents observe

, , ,σ κ β ρ

1 1 1 1, , , n
t t t tx r rπ− − − −



The PLM

• We assume that agents estimate 
a VAR in

• In most cases our PLMs are over-
parameterized. 

• But these PLMs converge to the 
MSV solution in learning.

, , , n
t t t tx r rπ



Scaling the perturbations

• We allow all 16 coefficients in the 
VAR to be perturbed.

• Each perturbation is scaled by its 
standard deviation in the VAR 
estimated prior to the experiments.



No Sunspots!

• Learnability is made robust 
conditional on establishment of a 
unique saddle-point equilibrium.



Bullard and Mitra (2003)



Table 1 : Contemporaneous data rules

3.701.131.411.210.052robust

3.631.061.120.9950.053optimized

lossradiusrule

Rule coefficients

tx tπ 1tr−



• Does high policy inertia necessarily imply 
learnability under misspecification?

• The contour maps in the next slides 
suggest: not exactly.

• Difference between 
--- robust learnability
--- size of learnable space.



Robustness contours
Contemporaneous data rules
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Table 2 : Forecast-based rules

4.432.320.102.800.04robust

3.630.881.320.990.29optimized

lossradiusrule

Rule coefficients

tx tπ 1tr−



Robustness contours
forecast-based rule
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Conclusions

• Policy is about  more than minimizing a loss 
function.

• If agents form expectations by recursive 
learning in mis-specified models, policy can 
facilitate learning to achieve a REE.

• We have identified and described tools to do 
this using robust control theory. 

• A robustly learnable rule is not the same as 
rule that has a wide learnable space in a 
given model.


