Inflation Premium and Oil Price Uncertainty”*

Paul Castillof Carlos Montorot Vicente Tuestal

First version, October 2005
This version, October 2006

Abstract

This paper provides a fully micro-founded New Keynesian framework to study the
interaction among oil prices volatility, pricing behavior of firms and monetary policy. We
show that when oil has low substitutibility, firms find optimal to charge higher relative
prices as a premium in compensation for the risk that oil price volatility generates on
their marginal costs. Overall, in general equilibrium, the interaction of the aforementioned
mechanisms produces a positive and meaningful relationship between oil price volatility and
average inflation, which we denominate inflation premium. We characterize analytically
this relationship by using the perturbation method to solve, up to second order, the rational
expectations equilibrium of the model. This solution implies that the inflation premium
is higher in economies where: a) oil has low substitutibility and b) the Phillips Curve is
convex. Dispersion in prices is a key amplifier mechanism for the convexity of the Phillips
curve. We also show that the larger the endogenous response of the central bank to output
fluctuations, the greater the inflation premium. Finally, we also provide some quantitative
evidence that the calibrated model for the US with an estimated active Taylor rule produces
a sizable inflation premium, similar to level observed in the US during the 70 s.
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1 Introduction

In an influential paper, Clarida, Gali and Gertler (2000, from now on CGG), advanced the
idea that the high average levels of inflation observed in the US during the 70’s was explained
mainly by the failure of monetary policy to properly react to higher expected inflation. In
addition, they pointed out that oil price shocks played a minor role in generating those levels
of inflation. CGG based their conclusions on the estimations of monetary policy reaction
functions for two periods: pre and post Volcker!. Their estimations show that during the 70s
the FED, on average, let the real short term interest rate to decline as expected inflation rose,
whereas during the post Volcker period it became more active, by raising the real interest
rate in response to higher inflation expectations. Cogley and Sargent (2002) and Lubik and
Schorfhedie (2004) find similar evidence.

This evidence, however, is not conclusive. In a series of papers, Sims and Zha (2005),
Canova, Gambetti and Pappa (2005), Primiceri (2004), Gordon (2005) and Leeper and Zha
(2003) find weak evidence of a substantial change in the reaction function of monetary policy
after the Volcker period?. In particular, they find evidence that the fall on both the aggregate
volatility and the average inflation is related to a sizable reduction of the volatility of the

3. Moreover, they highlight that in order to estimate the

main business cycle driven forces
reaction function of the central bank it is necessary to consider changes in the variance of
structural shocks. Otherwise, these estimations may be bias towards finding significant shifts
in coefficients in the monetary policy rule.

Motivated by this recent evidence, in this paper we provide an analytical and tractable
framework that can be used to study the relationship between structural shocks volatility, in
particular oil price shocks, and the average level of inflation. In doing so, we use a standard
microfounded New Keynesian model with staggered Calvo pricing where the central bank
implements its policy following a Taylor rule. We modify this simple framework considering
oil as a production input for intermediate goods. A key assumption in our set up is that oil
is difficult to substitute in production, thus we use a constant elasticity of substitution (CES)
production function with an elasticity lower than one as a prime of our model. Under this

assumption oil price shocks generate an endogenous trade-off between stabilizing inflation and

Tt refers to the appointment of Paul Volcker as Chairman of the Federal Reserve System.

?Orphanides (2001) shows that when real time data are used to estimate policy reaction functions, the
evidence of a change in policy after 1980 is weak.

3The literature has also associated oil prices to periods of recession. Bernanke, Gertler and Watson (1997)
argue that monetary policy has played a larger role during the 70 “s in explaining the negative output dynamics.
On the other hand, Hamilton (2001) and Hamilton and Herrada (2004) find out that the previous authors results
rely on a particular identification scheme and on the contrary they find that a contractionary monetary policy
played only a minor role on the contractions in real output, being oil prices the main source of shock.



output gap, thus a policy of zero inflation can not be achieved at zero cost. This trade-off
emerges when we allow for a distorted steady-state along the CES production function®.

Then, we solve up to second order of accuracy the rational expectations equilibrium of this
model using the perturbation method developed by Schmitt-Grohé and Uribe (2004). The
second order solution has the advantage of incorporating the effects of shocks volatility on
the equilibrium, which are absent in the linear solution. We implement this method both
analytically and numerically °. The former allows us to disentangle the key determinants of
the relationship between volatility of oil price shocks and the average level of inflation, and the
latter allows us to quantify the importance of each mechanism.

Using a similar model, CGG concluded that oil prices are not capable of generate high
average levels of inflation, unless monetary policy is passive. Instead our results give an
important role to oil price volatility along an active monetary policy. In our setup, oil prices
play a central role on inflation determination and on the trade-off the central bank faces. The
key difference between CGG and our set up is that we use a second-order solution for the
rational expectations equilibrium, instead of a log-linear one.

The second order solution, by relaxing certainty equivalence, allows us to establish a link
between the volatility of oil price shocks and the average level of inflation, absent in a log-
linear model. We define this extra level of average inflation as the time varying level of inflation
premium®. Moreover, the analytical solution let us to identify and to disentangle the sources
of inflation premiwm in general equilibrium?.

There are many novel results to highlight. First, the solution up to second order shows
that oil price volatility produces an extra level of inflation by altering the way in which forward
looking firms set their prices. In particular, when oil has low substitutibility, marginal costs
are convex in oil prices, hence its price volatility increases the expected value of marginal costs.

Second, oil price volatility by generating inflation volatility, induces price setters to be
more cautious to future expected marginal costs, in particular, their relative price become
more sensitive to marginal costs, amplifying the previous channel.

Third, relative price dispersion, by increasing the amount of labor required to produce a

4Blanchard and Gali (2006) find that with a Cobb-Douglas production function oil price shocks do not
generate a trade-off between the stabilization of inflation and output gap. In order to generate the trade-off,
they rely on a reduced form of real rigidities in the labor market.

5 As part of our contribution, we use a novel strategy for the analytical solution. Different from other papers
in which the perturbation method is applied directly to the non-linear system of equations, we instead first
approximate the model up to second order and then we apply the perturbation method to this approximated
model.

5The extra level of inflation generated by volatility is similar to the effect of consumption volatility on the
level of average savings as in the literature of precautionary savings.

"We are not aware of any other paper in the literature that has obtained and developed the concept of
inflation premium in general equilibrium.



given level of output, increases average wages , thus amplifying the effect of expected marginal
costs over average inflation.

Fourth, we find that, in general equilibrium, the weight that the central bank puts over
output fluctuations is a key determinant for positive level of inflation premium. As a result,
we show that the larger the endogenous responses of a central bank to output fluctuations,
the greater the level of inflation premium. This finding is consistent with the fact that, in
the model, oil price shocks generate an endogenous trade-off between stabilizing inflation and
output gap. Hence benevolent central bank would choose to put a positive weight on output
gap stabilization and would generate inflation premium.

Finally, we also evaluate the implications of the model with numerical exercises calibrated
for the U.S. economy. For the calibration, we consider that oil price shocks have exhibited
a change in their volatility across the pre and post Volcker periods. Our results are broadly
consistent with predictions of the analytical solution. Remarkably, we are able to generate a
level of inflation premium similar to the one observed during the 70s in the US even when an
active monetary policy, as in CGG, is in place. Also, we show in our simulated exercise that
the convexity of the Phillips curve accounts for 59 percent of the inflation premium in the pre
Volcker period, whereas the effects of oil price volatility on marginal costs accounts for other
45 percent. Overall, we find that the model can track quantitatively fairly well the average
values of inflation. We check the robustness of our results with alternative estimated Taylor
rules, yet the qualitatively results do not change. Hence, our paper provides support to the
empirical findings of Sims and Zha (2005) that second moments of shocks might be important
to understand the change in macroeconomic behavior observed in the US economy without
relying in an accommodative monetary policy.

Closer to our work are the recent papers by Evans and Hnatkovska (2005) and Castillo and
Montoro (2005). The first authors evaluate the role of uncertainty in explaining differences
in asset holdings in a two-country model. The latter authors build up a model with non-
homothetic preferences and show how asymmetric responses of output and inflation emerges
from the interaction of a convex Phillips curve and a state dependent elasticity of substitution
in a standard New Keynesian model. Finally, Obstfeld and Rogoff (1998) develop an explicit
stochastic NOEM model relaxing the assumption of certainty equivalence. Based on simplified
assumptions, they obtain analytical solutions for the level exchange rate premium. Different
from Obstfeld and Rogoff (1998) and the aforementioned authors, in this paper we perform
both a quantitative and analytical evaluation of the second order approximation of the New
Keynesian benchmark economy in order to account for the level of inflation premium generated
by oil price shocks.

The plan of the paper is as follows. Section 2 presents some stylized facts for the US



economy on the relationship between oil price volatility and the level of inflation. Also, this
section presents an informal explanation of the link between oil price volatility and the inflation
mean. In section 3 we outline a benchmark New Keynesian model augmented with oil as a
non produced input and we discuss its implications for monetary policy. Section 4 explains the
mechanism at work in generating the level of inflation premium and we also find the analytical
solution of inflation premium. In section 5 we report the numerical results. In the last section

we conclude.

2 Motivation

2.1 Average Inflation and Oil Price Volatility

Inspection of US inflation data seems to suggest that the average inflation rate and the volatility
of oil prices followed a similar pattern during the last 30 years. Figure 1 plot in the left hand
axis, with a solid line the annual inflation rate of the US, measured by the non-farm business
sector deflator (LXNFI), and in the right hand axis, with a dotted line, the real oil price in
log 8. As the figure shows, both the volatility of the real oil prices and the average quarterly
annualized inflation rate has increased during the first half of the sample, 1970.1-1987.2, and
has fallen in the second half, 1987.3-2005.2. In the first sub-sample, the standard deviation of
real oil prices reached 0.57 and the average level of inflation 5.5 percent, whereas during the
second sub-sample, the same statistics fall to 0.20 and 2.1 percent, respectively.

Interestingly, also the dynamics of inflation seems to closely mimics that of oil prices. Thus,
in the first sub-sample we observe a persistent initial increase in inflation vis-a-vis and increase
in oil prices following the oil price shock in 1974. Instead, from 1980 on we observe a steadily
decline in inflation accompanied by a persistent drop in oil prices. For the second sub-sample,
we observe also a close co-movement between inflation and oil prices; from early nineties until
1999 it is observed a downward trend in both oil prices and inflation, whereas from 2000 on
we observe a markedly upward trend in oil and a moderate increase in inflation.

In a nutshell, the data seems to suggest that the change in oil prices volatility has some
information on the behavior of the inflation mean from the 70’s on. This causal evidence
motivates the development of the model and the mechanism that we highlight in the coming

sections in order to generate a link between average inflation and oil price volatility.

8We obtain the data from the Haver USECON database (mnemonics are in parentheses).
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Figure 1: US inflation and Oil Prices.

2.2 The link between average inflation and oil price volatility

As mentioned in the introduction the goal of this paper is to study the link between the
volatility of oil price shocks and the average level of inflation in general equilibrium. Though,
before moving to a fully general equilibrium analysis, in this section we provide the intuition
of how the mechanism operates in a simple way. For that purpose, we use a simple two period
price setting partial equilibrium model.

Consider that some firms producing a differentiated good set prices one period in advance.
They face a downward sloping demand function of the type, Y;(z) = (%ﬁz))_a Y, where ¢
represents the elasticity of substitution across goods and Y aggregate output, which we assume
is fixed?. Under these assumptions, the optimal pricing decision of a particular firm z for time

t is given by mark-up over the expected next period marginal cost,

P (2)

P = MEt—l [\I/tMCt] (21)
t—1

9This assumption helps to highlight the channels by which supply shocks as oil prices affect inflation. In
section 4 we consider a fully general equilibrium model that deals with both sources of inflation fluctuations.



et , .
where p, MCy and ¥y = E'tjilnf denote the mark-up, firm “s marginal costs and a measure of

the responsiveness of the optimal price to future marginal costs, respectively. A second order

Taylor expansion of the expected responsiveness to marginal cost is:

1
By 1 [V] =Eq |7+ 3 (26 4+ 1) 72 (2.2)
FE, 1, is convex function on expected inflation, that means that inflation volatility increases
the weight that a firm put on expected marginal costs. Furthermore, let’s assume the following

marginal cost function:

MCy = ¢1qt + %qf (2.3)

where ¢; represents the real price of oil, ¢; > 0 measures the linear effect of oil over the
marginal cost and ¢, > 0 accounts for the impact of oil price volatility on marginal costs.
When ¢, > 0 marginal costs are convex in oil prices, thus expected marginal costs become an
increasing function of the volatility of oil prices.!".

Different forms of aggregation of sticky prices in the literature show that the inflation rate
is proportional to the optimal relative price of firms, given by equation (2.1). Hence, when
marginal cost are convex, both the optimal relative price and inflation are increasing in oil
price volatility. Interestingly, other channels amplify this effect. For instance, to the extent
that oil price volatility increases inflation volatility, price setters react by increasing the weight
they put on marginal costs, ¥;, when setting prices. As equation (2.2) shows, up to second
order, this weight depends not only on the level of expected inflation but also on its volatility.
Yet, are those second order effects important? Two special features of oil prices, its high
volatility and its low substitutibility with other production factors, make those second order
effects quantitative sizable. Hence, a linear approximation that omits the role of oil price and
inflation volatility would be very inaccurate in capturing the dynamics of inflation. We will
overcome this restriction by using the perturbation method, which allows to obtain the second
order solution of the rational expectations equilibrium of the model.

In the next section we formalize the previous informal link by obtaining a second order
rational expectations solution of a New Keynesian general equilibrium model with oil prices.
We use this model to show under which conditions both the marginal cost of firms become a
convex function of oil price shocks. We also show how relative price distortions and monetary

policy might amplify the effect of uncertainty, inducing a meaningful level of inflation premium.

10Tn section 4 we show that when the production function is a CES with an elasticity of substitution between
labor and oil lower than one, then the marginal cost are convex on oil prices, that is ¢, > 0.



3 A New Keynesian model with oil prices

The model economy corresponds to the standard New Keynesian Model in the line of CGG
(2000). In order to capture oil shocks we follow Blanchard and Gali (2005) by introducing a
non-produced input M, represented in this case by oil. () denotes the real price of oil which is

assumed to be exogenous.

3.1 Households

We assume the following period utility on consumption and labor

-0 1+v
_ G 7L

U,
1o 1+

(3.1)

where o and v represent the coefficient of risk aversion and the inverse of the elasticity of labor
supply, respectively. The optimizer consumer takes decisions subject to a standard budget
constraint which is given by

Wiy By 1B It T

-+ (3.2)

C
t P, P, rRP P P

where W; is the nominal wage, P; is the price of the consumption good, B; is the end of
period nominal bond holdings, R; is the nominal gross interest rate , I'; is the share of the
representative household on total nominal profits, and T} are transfers from the government!!.

The first order conditions for the optimizing consumer s problem are:

n(m) (%) 63

= CYLY = MRS, (3.4)

1 = BE;

Wi
2
Equation (3.3) is the standard Euler equation that determines the optimal path of consump-
tion. At the optimum the representative consumer is indifferent between consuming today or
tomorrow, whereas equation (3.4) describes the optimal labor supply decision. M RS; denotes
the marginal rate of substitution between labor and consumption. We assume that labor mar-

kets are competitive and also that individuals work in each sector z € [0,1]. Therefore, L

""Tn the model we assume that the government owns the oil s endowment. Oil is produced in the economy at
zero cost and sold to the firms at an exogenous price (). The government transfers all the revenues generated
by oil to consumers represented by 7



corresponds to the aggregate labor supply:

1
L:/O Li(z)dz (3.5)

3.2 Firms
3.2.1 Final Good Producers

There is a continuum of final good producers of mass one, indexed by f € [0, 1] that operate
in an environment of perfect competition. They use intermediate goods as inputs, indexed by

z € [0, 1] to produce final consumption goods using the following technology:

v/ = [ /0 1 mz)saldz} - (3.6)

where ¢ is the elasticity of substitution between intermediate goods. Then the demand function

of each type of differentiated good is obtained by aggregating the input demand of final good

Yi(z) = (PP”)Y (3.7)

producers

where the price level is equal to the marginal cost of the final good producers and is given by:

P = [ /O ' ()1 dz} = (3.9)

and Y; represents the aggregate level of output.

1
vi— [ vlar (3.9)
0

3.2.2 Intermediate Goods Producers

There is a continuum of intermediate good producers. All of them have the following CES

production function

-1 -1 %
Yi(2) = [(1- ) (Lu(2) "7 +a(M;(2) 7 |

(3.10)

where M is oil which enters as a non-produced input, ¥ represents the intratemporal elasticity
of substitution between labor-input and oil and « denotes the share of oil in the production

function. We use this generic production function in order to capture the fact that oil has



few substitutes'?, in general we assume that.t) is lower than one. The oil price shock, Q;, is

assumed to follow an AR(1) process in logs,

log Q = log @ + plog Qi—1 + &1 (3.11)

Where Q is the steady state level of oil price. From the cost minimization problem of the firm

we obtain an expression for the real marginal cost given by:

1
1=y

1—
M) = (- o (1) et @) (3.12)

where MC} (z) represents the real marginal cost, W; nominal wages and P; the consumer
price index. Note that since technology has constant returns to scale and factor markets are
competitive, marginal costs are the same for all intermediate firms, i.e. MCy(z) = MC;. On

the other hand, the individual firm “s labor demand is given by:

-9
e - (1) ) .13

Intermediate producers set prices following a staggered pricing mechanism a la Calvo. Each
firm faces an exogenous probability of changing prices given by (1 — 6). The optimal price that

solves the firm’s problem is given by

o
. PE Y 08¢, MCyynFsy Yir
(Pt (2)) — k=0 (314)
Pt - k e—1
Et ZQ Ct,t+kFt7t+kY;i+k
k=0

—0
where p = = is the price markup, ¢; ;. = ik (%,—t’“) is the stochastic discount factor,
P} (z) is the optimal price level chosen by the firm, Fy ;1 = PtTtk the cumulative level of

inflation and Y, is the aggregate level of output.

Since only a fraction (1 — 6) of firms changes prices every period and the remaining one

12Gince oil has few substitutes an appealing functional form to capture this feature is the CES production
function. This function offers flexibility in the calibration of the degree of substitution between oil and labor.
Some authors that have included oil in the analysis of RBC models and monetary policy, have omitted this
feature. For example, Kim and Loungani (1992) assume for the U.S. a Cobb-Douglas production function
between labor and a composite of capital and energy. Given that they calibrate their model considering that
oil has a small share on output, they found that the impact of oil in the U.S. business cycle is small . Notice
that when v = 1, the production function collapses to the standard Cobb-Douglas function as the one used by
Blanchard and Gali (2005). Y(2) = (L¢(2))" ™ M¢.

10



keeps its price fixed, the aggregate price level, the price of the final good that minimize the

cost of the final goods producers, is given by the following equation:
P = 0PI + (1-0) (P (2)F (3.15)

Following Benigno and Woodford (2005), equations (3.14) and (3.15) can be written recursively

introducing the auxiliary variables N; and D; (see appendix B for details on the derivation):

9@@51:1—(L—m(gﬂ16 (3.16)
Dﬁ:n«1r°+wﬂzﬁnwgﬁlpﬁd (3.17)
Nt = /J,Y% (Ct)_a MC’t + QIBEt [(Ht+1)6 Nt+1] (318)

Equation (3.16) comes from the aggregation of individual firms prices. The ratio N;/D; repre-
sents the optimal relative price P} (z) /P;. Equations (3.16), (3.17) and (3.18) summarize the
recursive representation of the non- linear Phillips curve. Writing the optimal price setting
in a recursive way is necessary in order to implement both numerically and algebraically the

perturbation method.

3.3 Monetary Policy

The central bank conducts monetary policy by targeting the nominal interest rate in the

_ [ ETI o )
R(5)(F)
II Y

where, ¢, > 1 and ¢, > 0 measure the response of the nominal interest rate to expected future

following way
1—¢,

R =R, (3.19)

inflation and output, respectively. Also, the degree of interest rate smoothing is measured by
0 < ¢, < 1. The steady state values are expressed without time subscript and with and upper

bar.

3.4 Market Clearing

In equilibrium labor, intermediate and final goods markets clear. Since there is neither capital

accumulation nor government sector, the economywide resource constraint is given by

Y, = C (3.20)

11



The labor market clearing condition is given by:
L =L¢ (3.21)

Where the demand for labor comes from the aggregation of individual intermediate producers

in the same way as the labor supply:

1 1 IV/P - 1
4 — e — ¢/t /Y .22
/0 ¢ (z)dz (1—aMCt ; 1(2)dz (3.22)
1 Wy/P\ Y
d _ t/ Py
L= (1—aMCt> il

where Ay = fol (ng(:))i6 dz is a measure of price dispersion. Since relative prices differ across
firms due to staggered price setting, input usage will differ as well, implying that it is not
possible to use the usual representative firm assumption, therefore, the price dispersion factor,
A, appears in the aggregate labor demand equation. Also, from (3.22) we can see that higher

price dispersion increases the labor amount necessary to produce a given level of output.

3.5 The Log Linear Economy

To illustrate the effects of o0il in the dynamic equilibrium of the economy, we take a log linear
approximation of equations (3.3), (3.4),(3.12), (3.16), (3.17), (3.18), (3.19 ) and (3.22) around
the deterministic steady-state!3. We denote variables in steady state with over bars (i.e. X)
and their log deviations around the steady state with lower case letters (i.e. z = log(3)).
After, imposing the goods and labor market clearing conditions to eliminate real wages and

labor from the system, the dynamics of the economy is determined by the following equations,

me=X (V4 0)yi+ (1 — x) @ (3.23)

T = BEymi1 + kmey (3.24)

Y= Etyt+1—§ (re — Eymeg) (3.25)
re=¢ri-1 4 (1= ¢,) (dnEymi1 + dy1) (3.26)
Q= pg;_1+N0 e (3.27)

3See appendix A for the derivation of the steady-state of the economy.

12



where, x = %, ol = a¥ (%) Y , k= %ﬂ (1-0pB) ; and Q, and MC, represent the
steady-state value of oil prices and of marginal costs, respectively.

Interestingly, the effects of oil prices on marginal costs, equation (3.23), depends crucially
on both the share of oil in the production function, «, and the elasticity of substitution between
oil and labor,). Thus, when « is large, x is small making marginal costs more responsive to oil
prices. Also, the smaller the v, the greater the impact of oil on marginal costs. It is important
to note that even though the share of oil in the production function, «, can be small, its impact

F

on marginal cost, ", can be magnified when oil has few substitutes (that is when 1 is low)

14 This share would be even higher if we consider a high steady state value of the oil price,Q.
Note also that a permanent increase in oil prices, i.e. an increase in @, makes marginal cost
of firms more sensitive to oil price shocks given its effect over a". Finally, when o = 0, the
model collapses to a standard close economy New Keynesian model without oil.

The model also has a key implication for monetary policy. Notably, it delivers an en-
dogenous trade-off for the central bank when stabilizing inflation and output gap. We denote
output gap by x; and it is defined as the difference between the sticky price level of output
and its corresponding efficient level, z; = y; — yF , where y denotes the log deviations of the
efficient level of output. In this economy, the efficient allocation is achieved when MC = 1,
since this equilibrium corresponds to one where intermediate firms are perfectly competitive.
Therefore, when the equilibrium is efficient we have that of # of, where, a¥ = a¥ (@)l_w.
Using the previous definition of output gap, the economy can be represented by two equations

in terms of the efficient output gap, x; and inflation, m; ( see appendix C for details),

I
Ty = Etl‘t+1 — ; (Zt — Et77t+1 — ’I“tE) (328)
T = BEm + Ky + (3.29)

where u, = :—Z (ﬁ) (af —a¥) g , kg = (1 —x) and Ky = x (v + o). In our model the
endogenous trade off emerges from the combination of a distorted steady state and a CES
production function'®. When the elasticity of substitution between oil and labor is equal to

one, the Cobb-Douglas case as in Blanchard and Gali, the trade off disappears. Hence, in that

Y“For example, considering an oil share in the order of 2%. and an elasticity of substitution of 0.56, and
assuming @ = W/P = MC, gives o = (0.02)%°% = 11%. This share would be even higher if we consider a high
steady state value of the oil price,Q.

15Benigno and Woodford (2005) in a similar model but without oil price shocks have found an endogenous
trade-off by combining a distorted steady state with a government expenditure shock. In their framework, is the
combination of a distorted steady state along with a non-linear aggregate budget constraint due to government
expenditure crucial for the existence of this endogenous trade-off. Analogous, in our paper, is the combination
of the distorted steady state and the non-linearity of the CES production function what delivers the endogenous
trade-off.

13



case, the flexible and efficient level of output only differ by a constant term, which in turn
implies that o = of. In addition, when monopolistic competition distortion is eliminated,
using a proportional subsidy tax, as in Woodford (2003), the trade-off is inhibited, since again
af = af. The existence of this endogenous trade off implies that is optimal for the central
bank to allow higher levels of inflation in response to supply shocks.

The special features of oil, such as high price volatility and low substitutibility in produc-
tion, induce the volatility of oil prices to have non trivial second order effects that the log-linear
representation described by equations (3.23) to (3.26) does not takes into account!®. These
second order effects are crucial elements in establishing the link between oil price volatility and
inflation premium. The next section provides a log-quadratic approximation of the economy

around its steady-state to study the link between oil price volatility and inflation.

4 Inflation Premium in General Equilibrium

4.1 The second order representation of the model

In this sub-section we present a log quadratic (second-order Taylor-series) approximation of the
fundamental equations of the model around the steady state. A detailed derivation is provided
in Appendix B. The second-order Taylor-series expansion serves to compute the equilibrium
fluctuations of the endogenous variables of the model up to a residual of order O <||Qt, aqH2>,
where [|g, 04| is a bound on the deviation and volatility of the oil price generating process

around its steady state!”. Up to second order, equations (3.23) - (3.26) are replaced by the

16Tn a log-linear representation certainty equivalence holds, thus uncertainty does not play any role.

17Since we want to make explicit the effects of changes in the volatility of oil prices in the equilibrium of the
endogenous variables, we solve the policy functions as in Schmitt-Grohe and Uribe (2004) in terms of ¢ and
oq. This is different to the approach taken by other authors, for example Woodford (2003), who consider the
policy function in terms of the shocks (e;).

14



following set of log-quadratic equations:

AGGREGATE SUPPLY

Marginal Costs
me= kyyitreqts (1 —x) x> ll_*adjp (v+0)y —q)? +xvAy 4+ O (Hqt, aqH?’) Eq.4.1

Price dispersion

A= Qﬁt_1+%8%ﬂ'%+0 (Hqt,aq||3) Eq.4.2
Phillips Curve
vy= kmetgrme; (2 (1 — )y + mey) +3emi+BE v 41+0 <||qt, O'qH3> Eq.4.3
where we have defined the auxiliary variables:
= 7rt+% (% + 5) W%—i—% (1 —008) mz Eq.4.4
2=2(1— o) y+me+0BE, (%ﬂ'prl + zt+1> +0 (Hqt,aq||2) Eq.4.5

AGGREGATE DEMAND

2
yi= Ewyri1—= (1o — Eyms1) =50 By (g — yeg1) — 2 (re — meg1)]” + (||Qt, 0'q||3) Eq.4.6

Equation (4.1) is obtained taking a second-order Taylor-series expansion of the real marginal
cost equation, and using the labor market equilibrium condition to eliminate real wages. ﬁt
is the log-deviation of the price dispersion measure A;, which is a second order function of
inflation (see appendix B3 for details) and its dynamics is represented by equation (4.2).
Importantly, the second order approximation adds two new ingredients in the determination
of marginal costs. The first one is related to the convexity of marginal costs respect to oil
prices and in equation (4.1) corresponds to the first second order term. From this expression,
when, ¥ < 1, marginal costs become a convex function of oil prices, hence, the volatility of oil
prices increases expected marginal costs. This is an important channel through which oil price
volatility generates higher inflation rates. Notice, however that when the production function
is a Cobb-Douglas, 1) = 1, this second order effect disappears, and the marginal cost equation
does not depends directly on the volatility of oil prices, but only indirectly through its effects

on A;. In this particular case, marginal costs are given by,
mey = Kyt + ket + XVA:

the second new ingredient is associated to the indirect effect of oil price volatility through A;.
From equation (3.22 ), it is clear that as prices dispersion increases, the required number of
hours to produce a given level of output also rises. Thus, this higher labor demand increases

real wages, and consequently marginal costs. This effect is higher when the elasticity of labor
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supply, % is lower and when the participation of oil in production is higher.

Equations (4.3 ), (4.4) and (4.5) in turn represent the second order version of the Phillips
curve, and equation (4.6) is the quadratic representation of the aggregate demand which in-
cludes the negative effect of the real interest rate on consumption and the precautionary savings
effect. Different from the linear specification of the aggregate demand, equation (3.25), its sec-
ond order representation, equation (4.6), considers also how the volatility of the growth rate of
consumption affects savings. Indeed, when the volatility of consumption increases, consump-
tion falls, since households increase their savings for precautionary reasons. Next we further
simplify the model economy by witting it as a second order two equation system of output
and inflation. This canonical second order representation of the economy with oil allows us

to discuss in a simple way the determinants of the inflation premium.

4.2 Determinants of Inflation Premium

Since the second order terms of the equations 4.1 - 4.6 depend on the first order solution of the
model, we can use the latter to express the second order terms as quadratic functions of the
oil process as in Sutherland (2002). Then, we replace equations 4.1, 4.2, 4.4 and 4.5 in 4.3, and

the policy rule of the central bank in equation 4.6, to write the model as second order system

of two equations on inflation, output and the oil price'®:
1 2, 1 2 3
Ty = KyYt + Kqqr + BEm41 + SWu0y + 3 (e + Qe + Q) g7 + O <||qt, aqll ) (4.7)
1 1
v = Bilyn) = — (6, = 1) Bme + dyu) + 50502 + O (lla, o) (48)

where k, and x, were defined in the previous section. We represent the second order terms
as function of Ug, ¢ and the "omega" coefficients {Qme, Qr, Qu, Wy, wy} , which defined in
appendix B.3. Each of these coefficients represent the second order term in the equations for
the marginal costs (subscript mc), the Phillips Curve (subscript 7) , the auxiliary variable v,
(subscript v) and the aggregate demand (subscript y). They are defined in appendix B. Given
{q:} , the rational expectations equilibrium for {m;} and {y;} is obtained from, equations (4.7)
and (4.8).

The "omega” coefficients are the sources of inflation premium in general equilibrium and
capture the interaction between the nonlinearities of the model and the volatility of oil price

shocks. Coefficients denoted by capital omega (£2) represent the time variant components of

18T make the analysis analytically tractable , we have eliminated state variables such us the lagged nominal
interest rate by setting the smoothing parameter in the Taylor rule equal to zero. Similarly, we assume an
small initial price dispersion, that is A;,_1 &~ 0 up to second order. However, in the next section, the numerical
exercises consider the more general specification of the model.
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the inflation premium, whereas coefficients denoted by small omega (w) are time invariant and
depend on the unconditional variance of oil prices. Note that if the aforementioned coefficients
were equal to zero the model would collapse to a standard version of a New Keynesian model
in log linear form. In what follows we provide economic interpretation to the determinants of
the inflation premium.

The coefficient 2,,., as mentioned in the previous section, captures the direct effect of
oil price volatility on marginal costs and its indirect effect through the labor market. Let’s
consider first its direct effect. When oil has few substitutes, 1 < 1, marginal costs are convex
in oil prices, hence expected marginal costs become an increasing function of oil price volatility.
To compensate the increase in expected marginal costs generated by oil price volatility, forward
looking firms react by optimally charging higher prices. This response of firms, in turn, leads
to higher aggregate inflation when prices are sticky '°. Interestingly, the increase on marginal
costs and inflation in response to oil price volatility is larger when the elasticity of substitution
between oil and labor is small.

Additionally, oil price volatility affects marginal cost indirectly, through its effects on the
labor market. Since oil price volatility generates inflation volatility, which is costly because it
increases relative price distortions, efficiency in production falls as the volatility of oil prices
increases. In particular, firms require, at the aggregate level, more hours of work to produce
the same amount of output. Hence, the demand for labor rises, making labor more expensive
and increasing marginal cost even further. Then, the increase in marginal costs through both
effects, the direct and indirect, lead to an increases on aggregate inflation.

We illustrate these mechanisms in Figure 2a and 2b. In figure 2a we plot the relation
between 2, and the parameter ¢». We see that ),,. increases exponentially as 1 decreases.
Also, the steady state oil price affects the impact of oil prices in marginal costs: the higher
the oil price in steady-state, ceteris paribus, also the higher the effect of oil price volatility
on marginal costs. According to this, in economies where oil is more difficult to substitute
in production, or when the oil price level is relatively high, oil price volatility would be more
important in the determination of the dynamics of inflation. Similarly, in figure 2b we plot the
relation between ,,. and the elasticity of labor supply (1/v). We see that a more elastic labor
supply increase the effects of oil price volatility. This latter effect works through the indirect
impact of oil price volatility on the labor market.

On the other hand, the coefficient (), accounts for the effects of oil price volatility on
the way price setters weight future marginal costs. When prices are sticky and firms face a

positive probability of not being able to change prices, as in the Calvo price-setting model, the

Y9 This mechanism can be understood by observing equation (4.1), where, "’;’;g” =(1-x) X2 11__;/}. When
t
¥ <1 > 1), 22 < 0(>0)
t
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weight that firms assign to future marginal cost depends on both future expected inflation and
future expected inflation’s volatility. Oil price volatility by raising inflation volatility induces
prices setters to put a higher weight on future marginal costs. Hence, oil price volatility not
only increases expected marginal costs but also make relative price of firms more responsive
to those future marginal costs.

Figure 2¢ shows that when the elasticity of substitution of goods ¢ increases, it increases
the effect of inflation volatility on the price of individual firms and €2, increases. Similarly,
figure 2d shows that lower price stickiness 6 makes the Phillips curve stepper and also more
convex, then the effects of inflation volatility on €2, increases.

The coefficients (2, and w, accounts for the time variant and constant effects of inflation
volatility on the composite of inflation v;. This mechanism is similar to that of ., however
both coefficients are quantitatively small. Finally, the coefficient w, is negative and accounts
for the standard precautionary savings effect, by which the uncertainty that oil price volatility
generates induces households to increase savings to buffer future states of the nature where

income can be low.
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Figure 2: Inflation Premium Components. Uses benchmark calibration presented in section 5.

(a) effects of elasticity of substitution (1)) on e, (b) effects of labor supply elasticity (1/v) on Qpe,

(c) effects of elasticity of substitution of goods (€) on 2, (d) effects of price stickiness (6) on {2
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4.3 The analytical solution for inflation premium

We use the perturbation method, implemented by Schmitt-Grohe and Uribe (2004)%, to obtain
the second order rational expectations solution of the model. The second order solution makes
explicitly the potential effects of oil price s volatility and the dynamics of endogenous variables.
As we mentioned before, we define inflation premium as the extra level of inflation that arises
in equilibrium once the second order solution is considered®!'. Also, different from other papers
which apply perturbation methods directly to the non-linear system of equations, we first
approximate the model up to second order and then apply the perturbation method??. Our
proposed approach has the advantage that makes easier to obtain clear analytical results for
the sources of the level of inflation premium.

The rational expectations second order solution of output and inflation, in log-deviations
from the steady state, can be written as quadratic polynomials in both the level and the

standard deviation of oil prices:

1 1

Y = iaoaﬁ +aig + 5as (@)*+ 0 (H%, aqH3> (4.9)
1 1

mo= Shool+big+ Sba (ar) + O <Hqt, UqH3> (4.10)

where the a’s and bs are the unknown coefficients that we need to solve for and O <HQt, O’qH3>
denotes terms on ¢ and o, of order equal or higher than 323, Notice that the linear terms (a1q;
and b1q;) correspond to the policy functions that we would obtain using any standard method
for linear models (i.e. undetermined coefficients), whereas the additional elements account for
the effects of uncertainty (premium) on the equilibrium variables.

The quadratic terms in the policy function of inflation have two components: %boog, which

is constant and %bg (qt)Z, which is time varying. The analytical solution obtained with the

20 The perturbation method was originally develop by Judd (1998) and Collard and Julliard (2001). The fixed
point algorithm proposed by Collard and Julliard (2001) introduces a dependence of the coefficients of the linear
and quadratic terms of the solution with the volatility of the shocks. In contrast, the advantage of the algorithm
proposed by Schmitt-Grohe and Uribe is that the coefficients of the policy are invariant to the volatility of the
shocks and the corresponding ones to the linear part of the solution are the same as those obtained solving a
log linear approximated model, which makes both techniques comparable.

21Tt is important to remark that this extra level of average inflation is part of the dynamic rational expectations
equilibrium up to second order, and it can not be interpreted as a part of the steady state equilibrium. This
second order effect on the level inflation is similar to the effect of the volatility of consumption on savings that
is known in the literature as precautionary savings.

22Gince a second order Taylor expansion is an exact approximation up to second order of any non-linear
equation, having the system expressed in that way would give the same solution as the system in its non-linear
form.

23Schmitt-Grohe and Uribe (2004) show that the quadratic solution does not depend neither on o, nor on
qtoq - That is, they show that the coefficients in the solution for those terms are zero.
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perturbation method implies the following expression for the overall expected level of inflation
premium

E () == (bo+ b2) o)

N

which can be expressed as:

E(m) = [0 Qe + Qe + Q) (L+ T) + dywy + ohywy| o2 (4.11)

1
Ao

DN |

for Ao = (¢ — 1) ky+(1 — B) ¢, > 0 and ¥ > 0 defined in the appendix B.4. According to this
closed form, the inflation premium is proportional to the oil price volatility and depends on a
linear combination of the "omega’s” coefficients. Moreover, these sources of inflation premium
interact with monetary policy to determine the sign and size of the premium. Under a Taylor
rule, inflation premium will be positive if monetary policy reacts also to fluctuations in output

due to oil shocks. From equation (4.11), the inflation premium will be positive when :
by > —wyoky/ Wy + (Qne + Lz +Qy) (1+¥)] >0 (4.12)

since wy is negative, the right hand side is positive. When the coefficient of output fluctuations
in the Taylor rule, ¢,, is positive and above this threshold, then the inflation premium is
always positive. The higher ¢, the higher the inflation premium. Therefore, when the central
bank reacts also to output fluctuations it also generates, in equilibrium, an inflation premium.
Yet, if the central bank cares only about inflation and doesn not react to output fluctuations,
that is ¢, = 0, then the inflation premium would be negative and small. Although oil price
volatility is an important determinant of inflation, the previous result shows that in general
equilibrium, the reaction of the central bank turns out to be crucial. A central bank that reacts
only to inflation can fully eliminate the effects of oil price volatility on inflation raising output
volatility. However, this type of reaction would come at a considerable cost, since output
fluctuations are inefficient when they are generated by oil price shocks.

In figure 3, we depict the relation between the level of inflation premium an the parameter
¢,- There is a small positive threshold for ¢, such that the premium becomes positive. Also, the
higher the reaction to output fluctuations, the higher the premium. Remarkably, the existence
of the inflation premium depends crucially on the existence of a trade-off between inflation
and output. When the central bank does not face this trade-off, it is always possible to find
a policy rule where the inflation premium is zero. The previous implication steams from the

fact that the second order solution depends upon the log-linear one?*. Therefore, in order to

2In a log-linear solution, when the central bank does not face a meaningful trade-off between stabilizing
inflation and output, the optimal policy implies both zero inflation and output gap.
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observe a positive inflation premium a necessary condition is the existence of an endogenous
trade-off for the central bank. Moreover, as shown in the previous section, such trade-off exists

when the elasticity of substitution between oil and labor is lower than one.

025

0.1

Figure 3: The inflation premium and the output

parameter (gby) in the Policy rule

5 Some Numerical Experiments

In this section we explore the ability of the model to explain high average levels of inflation
in periods of high volatility of oil prices. To obtain the numerical results we use the method
developed by Schmitt-Grohe and Uribe (2004), which provides second order numerical solutions

to non-linear rational expectations models .

5.1 Calibration

To calibrate the model we choose standard parameter values in the literature. We set a
quarterly discount factor, 3, equal to 0.99 which implies an annualized rate of interest of 4%.
For the coefficient of risk aversion parameter, o, we choose a value of 1 and the inverse of
the elasticity of labor supply, v, is calibrated to be equal to 0.5, similar to those used in the
RBC literature and consistent with the micro evidence. We choose a degree of monopolistic
competition, €, equal to 11, which implies a firm mark-up of 10% over the marginal cost. The
steady state level of oil price, Q is set equal to the inverse of the mark-up in order to isolate

the effect of the share of oil in the production function. The elasticity of substitution between
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oil and labor, 1, is set equal to 0.6 as suggested by Kim and Loungani (1992) and we use
modest value for a = 0.01, so that the share of oil prices in the marginal cost is around 6%%.
The probability of the Calvo lottery is set equal to 0.66 which implies that firms adjust prices,
on average, every three quarters. Finally, the log of real oil price follows an AR(1) stochastic
process with p, = 0.95 and standard deviation, o = 0.14 for the first sample and p, = 0.82 and
standard deviation, o. = 0.13 for the second one. These processes imply standard deviations
for real oil prices of 0.46 and 0.22 in each sample, respectively. Our benchmark monetary policy
rule is the estimated by CGG for the post-Volcker period.. We also perform robustness exercises
by comparing the results of this benchmark rule with those obtained with the estimated rules
by Orphanides (2001) and Judd and Rudebush (1998)25. The coefficients of the alternative

policy rules analyzed are presented in the following table:

Table 1: Alternative Policy Rule Coefficients
CGG Taylor Orphanides Judd-Rudebush

o, 0.79 0.00 0.79 0.72
o, 2.15 1.53 1.80 1.54
¢, 0.93 0.77 0.27 0.99

5.2 Explaining the U.S. Level of Inflation Premium with Oil Price Shocks

In this section we evaluate how the model does at capturing the conditional mean of the
key macro variables, in particular of inflation. In Table 2 we report the means of inflation,
output gap and nominal interest rates compared with the values observed in the data based
on our benchmark parameterization®’. Notice that by comparing the sub-samples we observe
an important change in means and volatilities in inflation, GDP gap, and interest rates across
sub-samples (columns 3 and 5 of table 2). Thus, quarterly inflation standard deviation has
decreased from 0.8% to 0.3% and the mean has moved from 1.4% to 0.5%, between the pre-
Volcker and post-Volcker periods, respectively. Similarly, the three-month T-bill has decreased

25We consider a conservative calibration for the share of oil in production. Other authors have considered a
larger share of oil in production or costs. For example, Atkenson and Kehoe (1999) use a share of energy in
production of 0.043 and Rotemberg and Woodford (1996) a share of energy equal to 5.5% of the labor costs..

20 Importantly, we have used the same Taylor type rule for the overall sample. Values ¢r > 1and ¢, >0 are
consistent with recent estimation using bayesian methods by Rabanal and Rubio-Ramirez (2005). Although the
previous authors find that from 1982 on, both parameters are estimated to be higher with respect to the overall
sample.

*"We use the data from the Haver USECON database (mnemonics are in parentheses). Our measure of the
price level is the non-farm business sector deflator (LXNFI), the measure of GDP corresponds to the non-farm
business sector output (LXNFO), we use the quarterly average daily of the 3-month T-bill (FTB3) as the
nominal interest rate, and our measure of oil prices is the Spot Oil Prices West Texas Intermediate (PZTEXP).
We express output in percapita terms by dividing LXNFO by a measure of civilian non-institutional population
aged above 16 (LNN) and oil prices are deflated by the non-farm business sector deflator.
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in both means and volatilities. Finally, GDP gap has decreased in volatility (from a standard
deviation of 2.8% to 1.3%) and has experimented and increase in its mean (from -0.20% to
0.26%).

To clarify, the simulations that follow are a first step at exploring whether the mechanisms
we have just have emphasized have potential for explaining the inflation-premium. In the
model, we interpret oil price shocks as the main driven force of the inflation premium, although
we are aware that in order to closely match the moments of other macro variables, additional
shocks might be necessary. Thus, by performing these numerical exercises we intend to confront
the data to the mechanism previously described. We do so by generating the unconditional
mean of inflation, output and interest rates implied by the calibrated model for the pre and
post Volcker periods. The only difference in the calibration between these two periods is the
assumption on the data generating process of oil prices. We fit an AR (1) process for oil prices
in each period and find that both the persistence and the variance of oil price shocks have

fallen from the first to the second period.

Table 2: Unconditional Moments Generated by the Benchmark Model

Pre-Volcker Post-Volcker
Simulated Observed Simulated Observed
Mean Inflation 1.09 1.38 0.19 0.53
Mean Output Gap (HP) -1.35 -0.20 -0.23 0.26
Mean Nominal Interest Rate 1.08 7.65 0.18 5.36
Standard Deviation Inflation 191 0.80 0.75 0.29
Standard Deviation Output Gap (HP) 2.02 2.79 0.56 1.33
Standar Deviation Nominal Interest Rate 1.64 2.84 0.45 1.44
Standard Deviation Real Oil Price 0.46 0.57 0.22 0.21

Al variables are quarterly, except the nominal interest rate which is annualized.

The key result to highlight from table 2 is that we are able to generate a positive level
of inflation premium that allows the model to mimic the average inflation level in the US in
the pre-Volcker and post Volcker periods without relying on different monetary policy regimes
across periods. Remarkably, the model can match very closely the mean of inflation for the two
sub-periods. Thus, inflation mean during the first period is 1.38% while the model delivers a
value of 1.09%. Similarly, for the second period we observe a mean inflation of 0.53% and the
model predicts a value of 0.19%. The model is much less successful at matching the moments
of the nominal interest rate and to a less extent those of output. Yet, the model does a fairly

good job at matching qualitatively changes in average levels of inflation, output and interest
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rates across sub-samples.

5.3 Decomposition of the Determinants of Inflation Premium

As described in the previous section, in general equilibrium, the determinants of inflation
premium can be de-composed in four components: those coming from the non-linearity (con-
vexity) of the Phillips curve (£2,), the non-linearity of the marginal costs (2;), the auxiliary
variable v; (w, and €,) and the precautionary savings effect (w,). We show in table 3 the
decomposition of inflation premium across samples by these determinants. Worth noting is
that the convexity of the Phillips curve with respect to oil prices, accounts for roughly 59 and
55 percent of the inflation premium in the pre and post Volcker periods, respectively. The
second determinant in importance is the convexity of the marginal cost with respect to oil
that accounts for 45 and 48 percent, respectively. For instance, out of this effect, the level of
inflation premium attributed to price distortions represents about 50 percent in each sample.

Finally, the precautionary savings effect is negative and almost negligible.

Table 3: Inflation Premium - Effects Decomposition

CGG
Pre-Volcker  Post-Volcker

Convexity Phillips curve (£2) 58.9 55.4
Marginal costs () 45.2 48.2

Indirect effect: price dispersion 274 24.8

Direct effect: convexity respect to oil prices 17.9 23.4
Auxiliary variable vy (w, and €,) -3.9 -2.9
Precautionary Savings (wy) -0.3 -0.6
Total 100.0 100.0

5.4 Comparing Different Monetary Policy Rules

We now evaluate how monetary policy can affect the level of inflation premium. We do so by
comparing the benchmark specification (CGG) with the estimated taylor rules suggested by
Orphanides (2001) and Judd and Rudebush (1998). Table 4 shows that Orphanides s generate
a smaller average inflation in both sub-samples. This finding is explained by the smaller weight
assigned on output in the Orphanides’s rule with respect to the CGG ’s rule. This result is
consistent with threshold for the parameter ¢, from our analytical results, equation (4.12)
Notice also, that the smaller average level of inflation is consistent with a smaller mean level

of the nominal interest rate. Hence, the aggressiveness of the central bank towards inflation
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determines how the premium is distributed between inflation and output means. The more
aggressive at fighting inflation the central bank is, the smaller the level of inflation premium
and the larger the reduction of average output. Note also that Rudebush’s rule delivers an
excessive inflation premium during the pre-Volcker period (6.38%). This result is basically

explained by the higher weight over output fluctuations that this rule implies.

Table 4: Alternative Policy Rules

CGG Orphanides Judd-Rudebush
Pre-Volcker  Post-Volcker  Pre-Volcker Post-Volcker Pre-Volcker  Post-Volcker
Mean Inflation 1.09 0.19 0.19 0.05 6.38 0.64
Mean Output Gap (HP) -1.35 -0.23 -0.57 -0.15 -3.49 -0.35
Mean Nominal Interest Rate 1.08 0.18 0.19 0.05 6.37 0.63
S.D Deviation Inflation 1.91 0.75 1.01 0.54 3.34 1.00
S.D Output Gap (HP) 2.02 0.56 2.22 0.68 1.73 0.43
S.D Nominal Interest Rate 1.64 0.45 0.82 0.28 2.91 0.62
S.D Real Oil Price 0.46 0.22 0.46 0.22 0.46 0.22

6 Conclusions

Traditionally New Keynesian log-linear models have been used to match second order moments.
However, they have the limitation that their solution implies certainty equivalence neglecting
any role of uncertainty and volatility over the level of inflation. To the extent that uncertainty
is important in real economies, a second order solution of the New Keynesian model is required
to improve their fit to the data. In particular, this type of solution provides a link between
volatility of shocks and the average values of endogenous variables offering a non-conventional
way to analyze business cycles. In this paper we have taken this approach and we show how
the interaction between volatility and the convexity of both the marginal costs and the Phillips
curve improves the ability of a standard New Keynesian model to explain the history of inflation
in the USA.

The second order solution allows us to provide an additional element to the explanation
suggested by CGG for the high inflation episode during the 70s. Our hypothesis puts at the
center of the discussion the volatility of supply shocks, in particular oil price shocks. Contrary
to what a linear solution implies, a second order solution establishes the link between volatility
of oil prices and expected inflation, what we called inflation premium. In this paper we show
that a calibrated version of our model can match very closely the inflation behavior observed in

the USA during both the pre-Volcker and post-Volcker periods. In particular we show that the
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high volatility of oil price shocks during the 70s implied an endogenous high level of inflation
premium that can account for the high average inflation levels observed in US during that
period. The analytical solution obtained by implementing the perturbation method shows
that the existence of the inflation premium depends crucially on, first, the convexity of both
the marginal costs and the Phillips curve and second, the response of the monetary authority.
In particular, the reaction of the central bank determines in equilibrium how higher volatility
generated by oil price shocks is distributed between a higher average inflation and lower growth
rate. Moreover, in order to observe a positive inflation premium it is required that the central
bank partially reacts to supply shocks.

In addition, a standard result of the New Keynesian models is that they can not generate
an endogenous trade-off for monetary policy. Therefore, in those models zero inflation and zero
output gap is the optimal response of the Central Bank, consequently zero inflation premium
becomes optimal. In this paper, we show that this result, denominated by Blanchard and Gali
as the "Divine Coincidence" holds only under rather special assumptions: when the steady
state coincides with the efficient one (i.e. when there is no distorted steady state) or when
the production function has an elasticity of substitution equal to 1. Instead, we show that
for the general case, allowing for a distorted along with a CES production function, oil price
shocks are able to generate an endogenous cost push shock making the central bank problem
a meaningful one.

This endogenous cost push shock generates a trade-off in means for the central bank. In this
case the central bank can not reduce the average level of inflation without sacrificing output
growth. We show that the optimal policy implies to partially accommodate oil price shocks
and to let, on average, a higher level of inflation. Furthermore, this trade-off depends crucially
on: the share of oil in the production function, the elasticity of substitution between oil and
labor and the average oil prices. Thus our results imply that the inflation behavior in the U.S.
during the 70s not only might reflect a perfectly consistent monetary policy but an optimal
one.

Our results can be extended in many directions. First, it will be worth to explore the
effect of openness in inflation premium. Second, the analytical perturbation method strategy
proposed in the paper can be used to capture the effects of change in a monetary policy regime
over inflation. Third, it will be worth also to explore the implications of other source of shocks
in the determination in the level of inflation premium. Finally, the estimation of a non-linear
Phillips curve considering the effects of oil price volatility on inflation is an issue we want to

explore.
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A Equations of the Model

A.1 The system of equations

Using the the market clearing conditions that close the model, the dynamic equilibrium of the

model described in section 3 is given by the following set of 10 equations:

Table Al: Equations of the Model

AGGREGATE SUPPLY
Marginal Costs

1

MG, = [(1- ) (Wi/P)'" ™ +a¥ (@) ] ™ BaAl

Labor market

Wi =YL , Eq.A2
L= (5 YA Fq.A3

Price dispersion

Ay =(1-6) (1—951}9)671

Phillips Curve

/(1) )
) Y OA (IL)°  Eq.Ad

1—

o) =1-(1-0) (%) : Eq.A5

Ny = pY," " MGy + 0BE; [(Hi41)° Nisa Eq.A6

Dy = Yél_a + 0BE; [(Ht.ﬂ)g_l Dt—&-l} Eq.A7
AGGREGATE DEMAND

_ Yiz1) ° R

1= 6Et \‘( gl) Ht-r—lJ EQ-A8

MONETARY POLICY
— (E,II Or Y ¢y

R,=R (7tﬁf+1> (?f) Eq.A9
OIL PRICES

Qr = QQY 1 exp (noger) Eq.A10

The first block represents the aggregate supply, which consists on the marginal costs, the
labor market equilibrium and the Phillips curve, which has been written recursively using the
auxiliary variables N; and D;. The aggregate demand block is represented with the Euler
equation and Monetary Policy block is given by the Taylor rule. The last equation describes
the dynamics of oil prices. We use this set of ten non-linear equations to obtain numerically

the second order solution of the model.
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A.2 The deterministic steady state

The non-stochastic steady state of the endogenous variables is given by:

Table A2: The steady State

Inflation I=1
Auxiliary variables N =D =Y/ (1-6p3)
Interest rate R=p"
Marginal costs MC =1/
Real wages W/P = Tyi (1-af)™o
Output Y =1 (l) v (1 _ aF) ljffﬁ
Y\np
T 1) 7+ F\ ot
Labor L = T <ﬁ> (1 —a ) otv 1-9

where
Q"™ —\1-
o=t (1) —a )

af’ is the share of oil in the marginal costs, 7, and 7; are constants®®. Notice that the steady
state values of real wages, output and labor depend on the steady state ratio of oil prices with
respect to the marginal cost. This implies that permanent changes in oil prices would generate
changes in the steady state of this variables. Also, as the standard New-Keynesian models, the
marginal cost in steady state is equal to the inverse of the mark-up (MC = 1/p = (¢ — 1) /e).
Since monopolistic competition affects the steady state of the model, output in steady state is

below the efficient level. We call to this feature a distorted steady state.

A.3 The flexible price equilibrium

The flexible price equilibrium of the endogenous variables is consistent with zero inflation in

every period (i.e. .II" = 1). In this case marginal costs are constant, equal to its steady state

P 14w

28 More precisely: 7, = (#) T and 7, = (L

P 1—0o
1—v¢ o+v
i et et )
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value, and the other variables are affected by the oil shock.

Table A3: Flexible Price Equilibrium
Inflation Il =1

o 1=\ —T7
Interest rate 1/Rf = E; <1 “ <Qt+liQ1)_w )
1-aF(Q:/Q)

Marginal costs MCE =1/p

1

Real wages WE/PF = Tyi (1 _aF (Qt/@)lﬂp g

1 Lbgr 1
Output YF =1, (i) o+ (1 _oF (Qt/@)l—«p) ot 17
Labor Lf =T <i> 4 (1 _oF (Qt/@)l—w> %ﬁ

Notice that the flexible price equilibrium is not efficient, since there are distortions from mo-

nopolistic competition in the intermediate goods market (i.e. MCE > 1).

B The second order solution of the model

B.1 The recursive AS equation
We divide the equation for the aggregate price level (3.15) by Ptl_e and make P,/P,_1 =11,
P* 1—¢
1=0(11,)"%9 4 (1-0) <}Sz)) (B.1)
t

Aggregate inflation is function of the optimal price level of firm z. Also, from equation (3.14)

the optimal price of a typical firm can be written as:

Pi(z) _ N
P D,

where, after using the definition for the stochastic discount factor: (;;., = BC. 5 /C; 7, we
define N; and D; as follows:

o0

Ny = > b Ff Yk GG MG (B.2)
k=0
oo

Dy = ZG tt+k:Yt+k ik (B.3)
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N; and Dy can be expanded as:

Nt = ,UJYtC;UMCt—FEt

[e.e]
H§+1 Z MekFte—i-l,t-&-l—I—kn-&-l-l—kCt+l+kMCt+1+k] (B.4)

k=0
Dy = Y,C;° + By | Z HkFt€+11t+1+k Crli i Y1k (B.5)
where we have used the definition for F} ,,, = Prx/ B
The Phillips curve with oil prices is given by the following three equations:
P 1—e
O(I) " =1—(1-9) <f(z)> (B.6)
Py
Ny = puY, O MCy 4+ 0BE; (Ty41)° Niyq (B.7)
Dt - Y;l_a + H,BEt (Ht+1)6—1 Dt+1 (BS)

where we have reordered equation (B.1) and we have used equations (B.2) and (B.3) eval-
uated one period forward to replace N;y1 and D;y in equations (B.4) and (B.5).
B.2 The second order approximation of the system
B.2.1 The second order approximation of the Phillips Curve

The second order expansion for equations (B.6), (B.7) and (B.8) are:

1-0 l(e—1
mo=C2D a2 E2 D w2+ 0 (I ol?) (.9
= (1 — 05) (at + ;at> + Oﬁ <Etbt+1 + ;Etbt+1> — %n? + 0] (Hqt,aqu) (BlO)

(B.11)

N—

1
582+ 0 (llae, ol

1
dy = (1-0p8) (Ct + 2Ct> + 05 <Et€t+1 + Et€t+1> 3

Where we have defined the auxiliary variables a;,biy1,c; and eg41 as:

ar = (1 — o)y +mey bit1 = empy1 + nyp1
Ct = (]‘ - J) Yt €t41 = (5 - ]-)7Tt+1 + dt+1
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Subtract equations (B.10) and (B.11), and using the fact that X? — Y2 = (X —Y)(X +Y),
for any two variables X and Y :
1
ng — dt = (1 — 96) (at — Ct) + 5 (1 — 95) (at — Ct) (CLt + Ct) (B12)
1
HOBE; (b1 — ert1) + 5OBE: (br+1 — er41) (D41 + er41)

1

— (= di) (e + o) + O (a0

Plugging in the values of ay, byy1, ¢; and €47 into equation (B.12), we obtain (B.13)

1
n—dy = (1—-608)me+ 3 (1—=68)me, (2(1 — o) ye +mey) (B.13)
1
+OBE; (i1 + N1 — deg1) + §0ﬁEt (M1 + M1 — dig1) (26 — 1) T + nyg1 + digr)

1
— (e = di) (g 4 ) + O ([l )

Taking forward one period equation (B.9), we can solve for n;y1 — dy41:

0 1 0 (-1
e = dep1 = 75 Tern + 21_0(1_0) (me41)* + O <||qt70qH3) (B.14)

replace equation (B.14) in (B.13) and make use of the auxiliary variable z; = (n; + d;) / (1 — 60)

1
ng—dy = (1—96)mct—|—5(1—96)mct(2(1—a)yt+m0t) (B.15)
0 e—1 )
+mﬁ Et7Tt+1+ eré‘ Etﬂt+1+(1705)Et7rt+lzt+l
1 46

- v _ 3
—57=5 (1= 08 mze+ O (llan o)

Notice that we use only the linear part of equation (B.14) when we replace ns41 — dy41 in the
quadratic terms because we are interested in capture terms only up to second order of accuracy.
Similarly, we make use of the linear part of equation (B.9) to replace (n; — d;) = 13;07'(} in the
right hand side of equation (B.15).

Replace equation (B.15) in (B.9):

1
T = Kmc + fmet (2(1—0)yt + mey) (B.16)
e—1
+5 |:Et7rt+1 + <1_0 + 6) EtW?H +(1-65) Et7rt+1zt+1:|
1 1(e—1)
—5 (= 08) mz — 52 (1) + O (Jlaw, o)
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for
(1-6)

— (1-65)

R =

where z; has the following linear expansion:

2e -1
2t = 2 (1 - U) Yt + mcy + QBEt (1_%7Tt+1 + Zt+]_> + O <||qt, O'qH2) (B]_?)

Define the following auxiliary variable:

1/e—-1 1
'Ut:ﬂ-t—i_i <1—6+€> 7T?+§(1—96)7Tt2’t (B18>

Using the definition for v;, equation (B.16) can be expressed as:

1 1
v = Kmey + §/<omct 2(1—=0)yt +me) + §€7r? + BEwiiq + O <Hqt, aqHQ) (B.19)

which is equation (4.3) in the main text.

Moreover, the linear part of equation (B.19) is:

my = kmey + BEy (1) + O (H%a Uq”Q)

which is the standard New Keynesian Phillips curve, inflation depends linearly on the real
marginal costs and expected inflation.

B.2.2 The MC equation and the labor market equilibrium

The real marginal cost (3.12) and the labor market equations (3.4 and 3.22) have the following

second order expansion:

mey = (1 — aF) wy +af'q + %aF (1 - aF) (1 =) (w — qt)2 + 0 (Hqt,0q||3) (B.20)

wy = vl + oy, (B.21)
=y — 1 (wy —mey) + A (B.22)

Where w; and ﬁt are, respectively, the log of the deviation of the real wage and the price
dispersion measure from their respective steady state. Notice that equations (B.21)and (B.22)

are not approximations, but exact expressions.
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Solving equations (B.21) and (B.22) for the equilibrium real wage:

1
14+ vy

[(l/ + o)y + vipmeg + Uﬁt} (B.23)

wy =
Plugging the real wage in equation (B.20) and simplifying:

mer = x(o+v)y+ (1= x)(q) + xvA, (B.24)

1 1—1/1 2 2 3
+§mx (1—X) [(U+U)yt_qt] —|—O<||Qt,0'q” )

where x = (1 — aF) / (1 + vwaF) .This is the equation (4.1) in the main text. This expression
is the second order expansion of the real marginal cost as a function of output and the oil
prices.

B.2.3 The price dispersion measure

The price dispersion measure is given by

At:/ol(Pt]ﬁ?)Edz

Since a proportion 1 — 6 of intermediate firms set prices optimally, whereas the other 6 set the

price last period, this price dispersion measure can be written as:

P P, -
At—(l—e)(t ) 9/(“ ) dz
Dividing and multiplying by (P;_1)”° the last term of the RHS:
P (2 )>_6 /1 (Ptl(z))_€ <Pt1>_6
Ar=(1-0 +6 dz
== < P, o \ Pioi P,
Since Py (z) /P, = N/ Dy and P;/P,_; = II;, using equation (3.8) in the text and the definition

for the dispersion measure lagged on period, this can be expressed as

/e-1)
A= (1-0) (W) +0A, 1 () (B.25)

which is a recursive representation of A; as a function of A; 1 and II;.
Benigno and Woodford (2005) show that a second order approximation of the price disper-

sion depends solely on second order terms on inflation. Then, the second order approximation
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of equation (B.25) is:
1 0
At = QAt 1+ 261 0

which is equation (4.2) in the main text. Moreover, we can use equation (B.26) to write the

™ + 0 (||QtaUqH3> (B.26)

infinite sum:

Zﬁtitoﬁt _ GZIBt tOAt 1+ 6 Z/Bt to7rt <”qt70'qH3> (B27)

t=to t=to
_ t—to A, _ t— to
(1 ﬁe)tzt Bt A, = 0A, 1+ 251 — Z gt 4 0 (Hqt,aqH )

Dividing by (1 — 86) and using the definition of & :

N it 0 le e
> BT A = g B 5 > 8 4 0 Ja o) (B.28)

t=to t=to

The discounted infinite sum of ﬁt is equal to the sum of two terms, on the initial price dispersion
and the discounted infinite sum of 7%.
B.2.4 The IS

Similarly, the second order expansion of the IS is:

1

1 1
Y = By — pn (re — Eymg1) — §0Et [(yt — Y1) —

(- ml)} "t (lanoal?) (520

Replacing the linear solution of y; inside the quadratic part of equation (B.29):

1 1 1 1 2
Yyt = Eyyer1 — p (re — Eymn) — §0Et [yt—i-l + UL E; (yt+1 + O_7Tt+1>] + (H(Jt,Uqu)
(B.30)
h Lo — 1 ? is the vari f 1
where E; [yt+1 + ST+ E; (yt+1 + U7T,5+1)] is the variance o (yt+1 + O,7Tt+1).
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B.3 The system in two equations

Since the quadratic terms of the second order Taylor expansions of the equations depend on

the linear solution, we can use the latter to solve for the formers. Let’s assume the linear

solution for output, inflation and the auxiliary variable z;2°

w = g+ 0 (la o)
mo= b+ 0 (llaol?)
z = aq+0 <HQt70'qH2>
Additionally, we have the transition process for the oil price:
qt = PGt—1 + Moget
2

where e7iid (0,1) and n = /1 — p?.

B.3.1 The AS

Replacing the equation for the price dispersion in the equation for the marginal costs, the

latter can be expressed as:

~ 1~
mer =X (w+ )y + (1= ) @+ x0Be + 50med? + 0 (Jlars o) (B.31)

where Qe = (1 — ) X\222% (v + o) a1 — 1) + 6% (b1)?.

1—af

Similarly, the Phillips curve equation can be expressed as:
1
vy = kmeq + BEvisa + 5%a? + 0 (law o) (B.32)

where Q; = e (b1)? + k[x (W +0)ar + (1 =) 21 —0)y: + x (v+0) a1 + (1 — x)]. We have
used the linear solution of output and inflation to express €2, in terms of a; and by.
Replace the equation for the marginal costs in the second order expansion of the Phillips

Curve and iterate forward, the Phillips curve can be expressed as the discounted infinite sum:

o0

) -1~ 1
v = Z pite {/@yyt + Kqqt + KXVA: + §/£chq,52 + Qqutz} + (qu;, UqH3> (B.33)
t—t,

*’From the linear expansion of the definition of 2z we can solve for ¢, where ¢ =
1%0&{[2(170)+X(0+v)}a1+(17X)+9/Bf:épbl}
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where ky = kx (0 +v) and kg = k(1 —x). Make use of equation (B.28), the discounted

infinite sum of A, v; becomes:

o0

_ 1 1 ~ 1
v = Z Bt to {Hyyt + Kqqt + 56)(’071’% + iQOcth + 2Q7rqt2} (B.34)
t=to

Kxvl ~ 3
T ﬂgAtﬂ + <||Qt,0’q|| )

Assuming that we depart from an initial state where the price dispersion is small, that is

ﬁt_l ~ 0 up to second order, then equation (B.34) can be expressed recursively as®’:
1 ol o1 2 3
vt = RyYs + Rade + 58085 + 5RQmed; + 5Qnai + BEivei + (Hqt, oy ) (B.35)
Let “s consider the total second order terms coming from the marginal costs:
ch@lt2 = EXWT? + Hﬁmcth (B.36)
then, Q. = exv (bl)2 + K me-
The auxiliary variable vy is also affected by second order terms:
ls o
vy =Tt + §qut (B.37)
where €, = [(% + 5) b2+ (1—0p) blcl} .Eyvi11 becomes:
1 2
Et’Ut+1 = Etﬂ't + iwﬂ-tht_Fl (B38)

1~
= Eimq + 591; (P2Qt2 + 772UZ)

Replacing equations (B.36), (B.37) and (B.38) in (B.35), we obtain the equation (4.7) in the

text:

1 1 1
T = Kyye + Rt + BB + 5 <Qm + 0+ 2%) @ + 50002+ (laool®)  (B.39)

where €, = —ﬁv (1 — ﬂpz) and w, = Z)vﬁnz. Qne, O,y and w, are respectively the second

order terms coming from the marginal costs, the Phillips Curve and the auxiliary variable v;.

30We make the assumption that the initial price dispersion is small to make the analysis analytically tractable.
However, in the numerical exercise we work with the general case and the results are quantitatively similar.
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B.3.2 The aggregate demand

Replace the policy rule (3.26) in the second order expansion of the IS (B.30), assuming there

is not interest rate smoothing (that is ¢, = 0) :

1
v = By [(br = 1) Bymera + o] + (B.40)

1 1 1 2
_§UEt Yt+1 + UL E; (yt+1 + U7Tt+1>] +0 <HQt,0qH3>

This can be expressed as:

1 1
v = Br (o) = (6 = 1) Brmer + o] + 50,07 + 0 (Jlaws o) (B.41)

where:

1 1 2
wyag =—coFE, [&1Qt+1 + gletJrl — F; <a1Qt+1 + Jbl(]t+1>:| (B.42)

Similar to the previous sub-section, the IS risk premium can be written as a function of the

linear solution of inflation and output:

1 \2
Wy = —0 (al + 0b1> <0 (B.43)

Note that the risk premium component of the IS is negative, capturing precautionary savings

due to output and inflation volatility.

B.4 The perturbation method

The policy functions of the second order solution for output and inflation can be written in

the following form:

1 1

Yt = 50@03 +a1q + §a2 (%)2 + 0 (H(JtﬂTqu) (B.44)
1 1

mo= 5hod 4 b+ 5t (@) + Ol o)

where the a’s and bs are the unknown coefficients that we need to solve for and O (Hqt, orq||3>
denotes terms on ¢ and o, of order equal or higher than 3. We express the dynamics of the oil
price as:

gt = pqi—1 + N0qet (B.45)
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where the oil shock has been normalized to have mean zero and standard deviation of one, i.e.

e”iid (0,1) .Also, we set 7 = \/1 — p? in order to express V (¢;) = 0.
In order to solve for the 6 unknown coefficients, we use the following algorithm that consist
in solving recursively for three systems of two equations. This allow us to obtain algebraic

solutions for the unknown coefficients. We follow the following steps:

1. We replace the closed forms of the policy functions (B.44) and the transition equation
for the shock (B.45) in the equations for the AS (B.39) and the AD (B.41).

2. Solve for a; and by: we take the partial derivatives with respect to ¢; to the two
equations of step 1, then we proceed to evaluate them in the non-stochastic steady state
(i.e. when ¢ = 0 and o, = 0). Then, the only unknowns left are a; and b; for two
equations. We proceed to solve for a; and b; as function of the deep parameters of the

model.

1
ar = —[(¢x —1)plrgy—<0
1
by = [0(1—p)+9,] oo
1 - g - p gby ’{q Al
3. Solve for ay and by: similar to step 2, we take successive partial derivatives with respect

to ¢; and ¢; to the two equations of step 1 and we evaluate them at the non-stochastic

steady state. Then, we solve for the unknowns as and bs.

as = —[(¢r—1) %] (Qr + Une) A12< 0
by = [o(1—p")+d,] (Qr+ Qme) A12> 0

4. Solve for ag and by: similar to steps 2 and 3, we take successive partial derivatives
with respect to o, and o, to the two equations of step 1 and we evaluate them at the
non-stochastic steady state. Then, we solve for the unknowns ag and by. The solution

for the coefficients is given by:

1
G = = (0n =) [(bar? + ) —0 (1= 5) an® +,)] 5=
bo = —ba’+ ¢, (ban® + wr) +oky (aan® + wy)] Alo
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where we have defined the following auxiliary variables:

Ao= (¢7r - 1) K1+ (1 - 5) ¢y
A= (¢, — 1) priy+ (1= Bp) [0 (1 = p) + ¢,,]
o= (6 = 1) PPyt (1= B%) [0 (1= ) + 6,

where Ag, A1, and Ag are all positive.

B.4.1 The Inflation premium

The inflation premium is given by:

E () == (bo+ b2) o7

N =

replace the solution for b,:

o, (ban? + wr) + oky (a2n® + wy)

bo+1)2:bzp2+ A
0

(B.46)

Replace the solution of as and the definition of 7, and collect for b :

1 6 —1
bo +ba = — b2 [p?A, — Oky—— s | (1 — p? ﬂ B.47
o Ao{ Z[p +<¢y m{ya(l—p2)+¢y>( p)]+¢yw +aﬁywy} ( )
After some algebra, it can be expressed as:
1 b2
bo+by=—{— Y Ay +2(1—Bp*) o (1—p)? . B.4
o Ao{a(l—p2)+¢y[ 2+2(1-6p%) o ( p)]+¢yw +‘7"3ywy} (B.48)
Replace the definition for b, :
1
by + by = ™ {gf)y (Qr + Qe + Q) (1+ V) + dywy + O'Iiywy} (B.49)
0

where ¥ = 2 (1 — BpQ) o(l— p)2 /As. W is positive and very small for p close to 1
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C Endogenous Trade-off

From equation (B.24), we can derive linearly the marginal cost as function of output and oil

price shocks, as follows:

(1—alf) (o0 +0) r (L+o)
1+ vypal bt 1+ vypal

me, = 0+ O (llars o) (C1)
This equation can be also written in terms of parameters x, and r,, defined previously in the

main text, as follows:
K K
mey = "Ly + “gy + 0 (llaw, o)) (C.2)

Under flexible prices, mc; = 0. Condition that defines the natural level of output in terms of

the oil price shock :
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Notice that in this economy the flexible price level of output does not coincide with the efficient
one since the steady state is distorted by monopolistic competition The efficient level of output
is defined as the level of output with flexible prices under perfect competition, we use equation
(C.2) to calculate this efficient level of output under the condition that u = 1 as follows:
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Where of = ¥ (Q) % This parameter can be also expressed in terms of the participation

of oil under flexible prices as follows:

Notice that when there is no monopolistic distortion or when 1 = 1 we have that o = af’

and yf = yf’.
Using the definition of efficient level of output, we can write the marginal costs equation

in terms an efficient output gap, x;. Where z; = (yt —yF ) in the following way
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Using equations (C.5) and (3.24), the Phillips curve can be written as follows:
m = BB+ kywe + 1y + O (llaes o) (C.6)

This equation corresponds to equation (3.28) in the main text. We can further write y, in

terms of the oil price shocks using the definition of the efficient level of output:
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The dynamic IS equation can also be written in terms of the efficient output gap.
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where r¥ is the natural interest rate, the real interest rate consistent with y7:
2
rF =0 (- p)yf + 0 (llas o)

which in turn can be written as follows:
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Notice that when there is no monopolistic distortion or when ¥ = 1 we have that o = of,

which implies that there is no an endogenous trade off.
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