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ABSTRACT

This study automates the design of machine learning models for economic forecast-
ing, with an application focus on Peru’s inflation. Such is achieved by employing
an Automated Machine Learning (AutoML) framework that selects the best model
configurations and data processing steps. This allows us to build models without
manually trying out different options, saving time and potentially improving ac-
curacy. The specific models explored are deep learning neural networks, which
are machine learning models often used for complex forecasting tasks. We use
two inflation forecasting schemes: one using a single model for headline inflation
and another using two models one for food and energy inflation and another for
inflation excluding food and energy, which are combined to predict inflation. By
establishing this automated approach, we pave the way for further research on
using machine learning to forecast economic data like inflation in Peru.

1 INTRODUCTION

Accurate inflation forecasting plays a vital role in guiding monetary policy decisions by central banks.
These forecasts serve as crucial tools for navigating the complexities of economic policy-making.
Traditionally, central banks have relied on various models to predict inflation, with a primary focus
on structural macroeconomic models. These models capture the intricate relationships between key
economic variables, such as economic activity, interest rates, and external factors like commodity
prices and capital flows.

However, structural models typically used for forecasting are not suited to deal with nonlinearities
that may arise during abnormal times. For example, after the post-COVID inflation surge, some
studies (see for example Benigno and Eggertsson 2023; Benigno and Eggertsson 2024) showed
evidence that Phillips curves had become slanted so that when there were labor shortages, the Phillips
curve would steepen. This feature amplifies the effects of aggregate demand and supply shocks on
inflation. Likewise, Bernanke and Blanchard forthcoming had shown that labor market overheating
induces shocks to have more persistent effects on inflation than during normal times.

Machine learning models are becoming increasingly important at this junction due to their potential
for unlocking highly nonlinear behavior in real-time. Nonetheless, just as typical macroeconomic
forecasting models need a set of inputs and assumptions besides the usual parameterizations, machine
learning models need the modeler to specify hyperparameters that define distinct forecasting models,
such as the number of layers in a Multilayer Perceptron (MLP) model or their corresponding number
of nodes.

To overcome the hassles stemming from hyperparameter selection, this work introduces a framework
that leverages Tree Parzen Estimators (TPE) for hyperparameter optimization, targeting the automated
holistic design of machine learning models (AutoML).

As shown in Figure 1, the proposed AutoML consists of an initialization stage in the outermost
section of the flowchart, where user-defined Knowledge is sent to the hyperparameter optimization
framework inside the boxed section, which finds the most optimized machine learning model and
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hyperparameters thereof. For the case of employing TPE as the framework, such Knowledge consists
of a search space, which is the chosen set of hyperparameters to change with their corresponding
exploration ranges, which imposes a constraint on the variable space to be explored by the machine.

Figure 1: Proposed Automated Machine Learning (AutoML) framework for model-agnostic hyper-
parameter optimization. The outermost section depicts the initialization stage, where user-defined
knowledge about the hyperparameter search space is provided to the optimization framework.

TPE employs Bayesian optimization to fit probability densities for hyperparameters within a defined
search space (Bergstra, Bardenet, et al. 2011), creating one distribution for hyperparameters resulting
in losses above a threshold and another for those below. This process allows for the iterative
improvement of model performance. TPE’s compatibility with tree-structured search spaces (Figure
2) enables a refined optimization process, where hyperparameters can be dependent on the values of
others, allowing for a nuanced and efficient search for the optimal models.

The TPE’s tree-structured approach facilitates a targeted search within the hyperparameter space
and significantly reduces the computational complexity compared to regular search spaces. Taking
S as the isolated search space of any individual hyperparameter, while an unfolded search space
has a search complexity of O(S|λ|) that scales exponentially with respect to the |λ| number of
hyperparameters, the search complexity on a tree-structured space is O(SD), and scales exponentially
with the D depth of the tree, often offering a more efficient optimization process as it is likely that D
is significantly smaller than |λ|. Leveraging a tree-structured search space within the TPE method
thus facilitates a more efficient selection of hyperparameters by exploiting contingent relationships
within hyperparameters.

Though our application of Tree Parzen Estimators (TPE) broadly encompasses hyperparameter tuning
for both machine learning and deep learning models, we also extend its use to neural architecture
search (NAS) problems. For these NAS problems, we have devised a unique tree-structured search
space that incorporates a comprehensive array of hyperparameters, which not only address learning
aspects but also the network topology, as shown in Figure 3. Thus for the NAS part of the work we
have developed tree structures for hyperparameters linked to the inclusion of architectural blocks, as
well as distinctive tree structures designed for the layer topologies of our base neural networks, in a
manner that simulates dynamic sampling of layers and internal hyperparameters thereof.

For the base network, we employ Multilayer Perceptron (MLP) blocks. Choosing an MLP-based
approach strikes a balance between simplicity and forecasting efficacy, as MLPs are fundamental
components of many modern neural network architectures, including N-BEATS and NHITS (Challu et
al. 2023; Oreshkin et al. 2019). Notably, simpler neural networks like MLPs have been demonstrated
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Figure: Hierarchical Tree Structure of Hyperparameters for Model Types A and B

Model Type
| Model A
| +-- Learning Rate
| +-- Optimizer
| | +-- Adam
| | | +-- Beta 1
| | | \-- Beta 2
| | \-- SGD
| | \-- Momentum
| | \-- Learning Rate Schedule
| | +-- Initial Learning Rate
| | \-- Decay Steps
| \-- Neural Network Architecture
| +-- Hidden Layers
| | +-- Activation Function
| | \-- Dropout
| \-- Attention Layer
| \-- Score Mode
\-- Model B

+-- Kernel Type
| +-- RBF
| | \-- Gamma
| \-- Linear
\-- Machine Learning Method

+-- Random Forest
\-- Gradient Boosting

Figure 2: A tree-structured search space for a hypothetical hyperparameter optimization routine.
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Figure 3: Template for dynamic assembly of custom neural networks. Optional blocks enclosed in
dashed boxes, such as Time2Vec Encoding and Non-Local Blocks, can be dynamically included
or excluded during the TPE search. Core features include input processing, modifiable dense layer
stacks, and an output layer, all designed for efficient experimentation in neural architecture searches.

to achieve comparable or even superior forecasting accuracy relative to more complex models
(Makridakis, Spiliotis, and Assimakopoulos 2020). The application of Tree Parzen Estimators (TPE)
in this study represents a notable advancement in the field of inflation forecasting. By employing TPE
and tree-structured search spaces for both hyperparameter optimization and neural architecture search,
we present a sound methodology to tune machine learning models and configure neural network
architectures dynamically.

In the next section, we delve into the related work that has shaped and informed our approach to
forecasting. This exploration is crucial not only to understand the current landscape of machine
learning applications in macroeconomic forecasting but also to highlight the innovative contributions
of our study in utilizing Tree Parzen Estimators (TPE) for both hyperparameter optimization and
dynamic neural architecture search.

2 METHOD

In this work, we make use of different isolated tasks T = {D,L}Ni=1 to forecast inflation through a
neural architecture search based on hyperparameter optimization. Each of these tasks consists of a
dataset D = {(yi,Xi)}Ni=1 to develop and evaluate the performance of predictive models through the
use of loss functions L(D; θ, λ) which measure the prediction performance on the data D, given a
vector of parameters θ for a specific neural architecture, and a vector of hyperparameters λ which
design the architecture. In the above specification, N is the number of time series observations, yi is
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the output (horizon) series, and Xi is the autoregressive input series, as appreciated more graphically
in Figure 4. Taken from the notation by Staněk 2023, the loss function L is expressed in the same
way for all tasks:

Figure 4: Data partitioning for training and validation sets. Each sample consists of a series of
autoregressive inputs stored in an X vector and horizon outputs stored in a y vector.

L(D; θ, λ) =
1

N

N∑
i=1

γ(yi, fM(Xi; θ)) (1)

Where in our case, fM is the forecasting function for a given M model with λ hyperparameters,
and γ is a measure of error between the prediction made by fM(Xi; θ) and its corresponding yi
realization or ground truth.

A typical neural architecture search (NAS) takes the form of a nested optimization problem (C.
Zhang, Ren, and Urtasun 2020) where the inner loop finds the optimal parameters θ̂ for a given M
architecture model with λ hyperparameters that design it such that the training loss Ltrain is minimized,
while the outer loop searches the optimal architecture hyperparameters λ̂ with respect to a validation
loss Lval:

λ̂ = argmin
λ

Lval(D; θ̂, λ) (2)

s.t.: θ̂ = argmin
θ

Ltrain(D; θ, λ) (3)

With this in mind, the proposed neural architecture search uses Tree Parzen Estimators (TPE) to
optimize the expected improvement (EI) criterion for the best M neural model, and though this
optimization problem also generalizes to Equations 2 and 3, it may be specified to the below logic:

Mn+1 = argmaxEIn(Mn(θ̂, λ)) for n = 1, . . . , NM (4)

s.t.: θ̂(T ) = argmin
θ

Ltrain(D; θ, λ)|T , for T ∈ Range(NT ) (5)

Herein, the inner loop finds the optimal parameters θ̂(T ) ∈ RNp,T for every T task (Equation 5),
the collection of which makes an M model. Meanwhile, the outer loop (Equation 4) builds an
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open-ended M ∈ RNM pipeline of models as it searches for the optimal hyperparameters λ̂ ∈ RΣNhp

, where ΣNk :=
∑NT

T =1 Nk,T . As Equation 4 defines it, the outer loop is iterative in TPE, evaluating
a proposed Mn = Mn(θ̂, λ) model with the previous best in M to generate the next Mn+1 model
for every n iteration. As defined by Bergstra, Bardenet, et al. 2011, the expected improvement is
the expectation that our y loss metric will exceed negatively over a mutable loss threshold y∗ when
evaluated against a model with specific λ hyperparameters:

EIn(x) =

∫ y∗

−∞
(y∗ − y)p(y|x) dy (6)

y = Lval(Dn; θ̂n, λ) (7)

With the abovementioned optimization problem, two distinct optimization strategies are used for
automating the design of machine learning models and conducting neural architecture searches to
refine forecasting systems. These strategies are tailored to either model headline inflation from a
single vector output or model it from two vector outputs through a nuanced component-based inflation
optimization, leveraging the hyperparameter optimization framework to minimize validation loss
(Equation 2) while concurrently minimizing the corresponding training loss (Equation 3).

2.1 OPTIMIZATION STRATEGIES

Univariate headline inflation optimization

With this optimization strategy, our model architecture is streamlined to directly predict headline
Consumer Price Index (CPI) inflation with a univariate model, without considering an explicit
decomposition into its main two or more components and thus employing a single |T | = 1 task. In
this approach, the forecasting function fM from Equation 1 for the losses of both the outer and inner
loops (Equations 2 and 3) is expressed as

Πt = Πt(X; θ, λ) (8)

where Πt represents headline inflation prediction based on model parameters θ and hyperparameters
λ. To reiterate, this strategy focuses on optimizing the forecasting accuracy for headline inflation
Πt by exploring hyperparameter configurations λ ∈ RNhp which best minimize the error of the
validation set Lval obtained from a trained model with parameters θ̂ ∈ RNp which best minimize the
training set error Ltrain.

It is worth noting that in the hyperparameter optimization routine, the outer loop (Equation 4) first
sends a proposal for an M model with a specific hyperparameter configuration λ to the inner loop
(Equation 5) to train it. After the inner loop is run, the learned model with adjusted parameters θ̂ is
sent back to the outer loop to optimize from the M collection of models with different hyperparameter
configurations λ.

Component-based inflation optimization

In contrast to the former, the component-based inflation optimization strategy employs |T | = 2 tasks
and is thus designed to forecast headline inflation from the weighted sum of two primary inflation
components, the Πsae

t inflation component which excludes food and energy and its Πae
t counterpart,

which includes it. This objective is met by employing a single TPE hyperparameter search stream in
the inner loop, which forks into two model design streams that build the two separate models from
the chosen hyperparameter configuration list found in the initial search stream:

Πsae
t = Πsae

t (X(1); θ(1), λ(1)) (9)

Πae
t = Πae

t (X(2); θ(2), λ(2)) (10)
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After building the two models in the inner loop, the forecasting function fM of the aggregated
headline inflation Πt is obtained as the weighted sum of its components from Equations 9 and 10 to
be evaluated in the outer loop:

Π̂t(X; θ̂, λ) = WcΠ
sae
t + (1−Wc)Π

ae
t (11)

Where the weight Wc is known and the parameter and hyperparameter sets of both machine learning
systems are lumped as θ̂ ∈ RΣNp and λ ∈ RΣNhp , respectively. As it was for the former univariate
headline inflation optimization, it is worth noting that here the routine also begins by having the outer
loop send the inner loop a hyperparameter configuration λ proposal, where in this case λ contains
hyperparameters specific to each neural network, as well as global hyperparameters that may be
shared for both.

2.2 ECONOMIC INTERPRETATION WITH GRADIENTS

To enhance our understanding of the nonlinearities of trained machine learning models, we explored
the impact of variations in the last input on prediction through gradient analysis. This method
quantifies the sensitivity of the predicted inflation rate to changes in the most recent input data.
Namely, we calculate first-order autocorrelations, which are no longer constant values, as opposed to
linear models.

We define the gradient of the predicted value ypred with respect to the last input value xN from the
input vector X ∈ RN as follows:

∂ypred

∂xN
:=

ypred(X + εK)− ypred(X)

ε
(12)

K = δiNei = [0, 0, · · · , 0, 1] (13)

where K ∈ RN is a sparse vector expressed in Einstein notation, δij is the Kronecker delta.
The gradient measures the change in predicted inflation resulting from a small perturbation
ε ∈ [−2σ,−σ, σ, 2σ] in the latest input data, where σ is the standard deviation of the complete
time series.

In linear models, ∂ypred

∂xN
is a constant coefficient, irrespective of the value of xN . This exercise will

assess how the specified gradient changes under varying values of xN observed in time.

2.3 HYPERPARAMETER SEARCH SPACE FOR NAS MODELS

The hyperparameter search space shown in Table 1 encompasses a comprehensive range of parameters
used to automate the whole neural network development process, from its construction through a TPE-
powered neural architecture search (NAS) to its out-of-sample (OOS) testing and deployment. These
hyperparameters thus include network design elements, learning algorithms, and data-processing
parameters.

For practical purposes, we have divided these hyperparameters into Global and Network-specific
sections, where global hyperparameters are applied to all neural networks in our model, while network-
specific hyperparameters are exclusive to each of the neural networks selected in the optimization
problem. For instance, in the component-based CPI strategy, since its outer-loop forecasting function
(Equation 1) is dependent on outputs from two different neural networks (Equation 11), two exclusive
sets of network-specific hyperparameters are defined per each initialization of the hyper-optimization
outer loop (Equation 4).

Within the Global section on Table 1 there are four sub-sections containing hyperparameter sets,
where all hyperparameters are separate in the selection process and do not bear any children hy-
perparameters. The first of these, the random seed, is a hyperparameter itself, and was tuned to
escape underperforming local minima, as was done in the hyperparameter tuning of other neural
network articles (Olivares et al. 2023; Challu et al. 2023). The second sub-classification is a set
containing three hyperparameters for the Adam optimizer, a Keras method for the Adam algorithm of
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Table 1: Considered hyperparameters for neural architecture design.

Hyperparameter Detail Configuration Space

Global

Random Seed for Initialization DiscreteRange(1,100)

Adam Optimizer
Learning Rate LogRange(-4, -2)
β1 Range(0.85, 0.95)
β2 Range(0.995, 0.999)

EarlyStopping Callback Patience DiscreteRange(20, 100, 5)
Restore Best Weights True

ReduceLROnPlateau Callback
Factor 0.5
Patience DiscreteRange(5, 20, 5)
Min LR 0.0001

Network-Specific

Batch Size DiscreteRange(1,10)
Input Size DiscreteRange(3,40)
Activation Function {None, ReLU, LeakyReLU, Swish}
L2 Layer Weight Regularization* {False, True}
Neural Network Topology* {τ1, τ2, τ3, τ4, τ5}
Non-Local Blocks, Pre-MLP* {False, True}
Non-Local Blocks, Post-MLP* {False, True}
Time Encoding* {False, True}
Scalers {False, True}

Note: Hyperparameters tagged with an asterisk (*) have children hyperparameters (shown in Table 2) efficiently
sampled with the TPE method due to its tree structure.
* Hyperparameters with an asterisk have additional hyperparameters, as detailed in subsequent tables.

gradient-based stochastic optimization (see Kingma and Ba 2017). Such hyperparameters are the
optimizer’s learning rate and its two exponential decay rates, which are critical in designing how the
neural network learns. The remaining two sub-sections from the Global section are Keras callbacks,
which are basically objects that can perform actions during the learning process itself, both of which
monitor the training at every single epoch. The first of these, the EarlyStopping callback, stops the
training after a certain threshold is met, while the second, the ReduceLROnPlateau, is a learning
rate scheduler that adjusts the Adam learning rate according to some pre-determined settings. Both
of these callback sub-sections have some hyperparameters listed in Table 1 as single values rather
than ranges and are thus fixed to those values. The only hyperparameters with ranges within these
callbacks are the Patience hyperparameters, which are both the number of epochs after which the
callback action described for both callbacks above will be enforced if there is no improvement in the
validation loss.

The Network-Specific section on Table 1 encompasses a more complex variety of hyperparameters.
In contrast to the hyperparameters found in the former section, some hyperparameters found here
have children hyperparameters. As we are dealing with tree-structured search spaces, here we use
terminology from tree data structures, specifically parent and child nodes. In this context, parent
hyperparameters are those whose selected values initiate the definition of children hyperparameters.
These dependent hyperparameters may be chosen from predefined search spaces or assigned fixed
values, to simplify the configuration process in our model. To clarify this relationship visually, we
have marked parent hyperparameters with single asterisks and their corresponding children directly
below them with double asterisks.

To enable the NAS algorithm to design more complex architectures, we have incorporated options for
non-local blocks and Time2Vec encoding into the hyperparameter search space, as detailed in Table
1. These options are briefly explained below.
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Non-local blocks (NLBs)

These neural components are considered because they capture long-range dependencies in data
similar to the self-attention mechanism used in machine translation Xiaolong Wang et al. 2018;
Vaswani et al. 2023, and are thus incorporated as a design option in our neural network architectures.
The inclusion of NLBs, either before or after the base MLP network, depends on their selection by
the TPE algorithm. If selected, the compression rate of the NLB is determined. As can be seen in
Figure 5, these custom NLBs use MaxPooling1D operations to reduce memory usage and potentially
enhance noise reduction and generalization capabilities. The pooling size, Lpool, is variable and
determined by the compression rate RNLB, calculated as Lpool = int(RNLB × Lin), where Lin is the
input length to the MaxPooling1D operation.

Figure 5: Custom Non-local Block architecture with MaxPooling1D pooling operations.

Time2Vec encoding

Time2Vec encoding (see Kazemi et al. 2019) is an innovative method for embedding temporal
information, which enhances the model’s ability to capture time-based patterns and dependencies.
The inclusion of Time2Vec as an option in our hyperparameter search space potentially allows the
NAS algorithm to explore architectures that leverage temporal dynamics more effectively, improving
forecasting accuracy for time-sensitive data. Figure 6 illustrates the conceptual design of the Time2Vec
encoding used in our models. The flexibility to select specific harmonics within the Time2Vec block
highlights the depth and adaptability of our optimization process.

Building on these foundational enhancements, we next delve into the specifics of network topology
hyperparameters.

MLP neural network topology

Table 2 consolidates the set of MLP hyperparameters from Table 1 under an MLP Features category.
This category includes an Activation Function hyperparameter, applied uniformly across all neural
layers of the chosen topology. It also includes an L2 Regularization option which, when selected,
imposes an L2 regularization penalty on all layers with a specific strength determined by sampling
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Figure 6: Data partitioning with Time2Vec encoding. Unlike conventional systems (Figure 4),
normalized time values are integrated with time series data into the neural network as a complete,
uninterrupted tensor, indirectly labeling each time series value with a notion of time. This tensor is
then processed into batches, and the Time2Vec block extracts trend and periodic component vectors
from the normalized time component.

its child hyperparameter. L2 regularization is employed due to its efficacy in preventing overfitting
and ensuring model stability, particularly in configurations with numerous kernels, thus enhancing
robustness and generalizability.

Lastly, there is the Neural Network Topology hyperparameter, which comprises of five distinct
network topology options per each evaluation. By looking closely at the loop in this particular setting
we can see that each τj neural network topology has one additional layer added to it. So, the number
of layers in each topology matches its position (j) and ergo, generating a T set of topologies as the
one shown in Figure 7 to be selected for every TPE evaluation.

Figure 7: Static generation of a T set of neural network topologies for non-LayerNAS methodology
Table 2

This clever static design was developed to simulate a dynamic TPE hyperparameter selection process
because TPE does not allow its hyperparameter space to be designed dynamically. Perhaps a downside
to this static design in the T set of neural network topologies would be an increase in memory, which
may need to be observed for the case of many layers and/or multiple children hyperparameters for
each parent Layer. Another challenge in our approach concerns the theoretical search complexity.
Despite the practical reductions achieved through the Tree Parzen Estimator (TPE), theoretically,
the complexity of the search space could still scale exponentially with the L number of layers, as
represented by O(SL).
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Table 2: Inner hyperparameters within the network-specific categories from Table 1.

Detail Configuration Space

MLP Layer Features

Activation Function {None, ReLU, LeakyReLU, Swish}
L2 Layer Weight Regularization* {False, True}
L2 Strength** LogRange(-5, -1)
Neural Network Topology* {τ1, τ2, τ3, τ4, τ5}

For each Layer i ∈ {1, . . . , j}, for each τj Neural Network Topology
Number of Nodes in Layer i** DiscreteRange(1, 50)

Non-Local Blocks

Non-Local Blocks, Pre-MLP* {False, True}
Compression Rate** Range(0, 1)
Non-Local Blocks, Post-MLP* {False, True}
Compression Rate** Range(0, 1)

Time Encoding with Time2Vec (t2v)

Time Encoding* {False, True}
Number of Trend Terms** 1
Number of Harmonics** DiscreteRange(4, 100, 2)

* Hyperparameters with an asterisk have additional hyperparameters.
** Hyperparameters or sets with double asterisks are the children of said hyperparameters or children sets thereof.

While TPE effectively reduces practical search complexity by focusing exploration on promising
regions of the search space, the theoretical complexity under an extensive search scenario may remain
comparably high. This discrepancy indicates that while TPE is efficient, it might cover a smaller
portion of the total search space compared to a more layer-conscious approach like LayerNAS,
recently developed by Fan et al. 2023. To address this potential limitation future work will explore the
integration of LayerNAS with TPE, potentially enhancing the breadth of the search space coverage
while maintaining the efficiency gains of TPE.

2.4 OPTIMIZATION AND OUT-OF-SAMPLE TESTING STAGES

The optimization of hyperparameters was fundamentally aimed at minimizing the validation loss,
Lval, as delineated by Equation 2. More specifically, within the TPE framework, this optimization
sought to maximize the expected improvement (EI) in validation loss (Equation 6). This approach
thus involved a comprehensive exploration of M model candidates built by various hyperparameter
configurations and was facilitated by a systematic selection process governed by Equations 4 to 7,
where the hyperparameter search space is optimized by progressively minimizing the Lval validation
loss of these candidates. For consistency, 300 model candidate trials with the same data sets for
Ltrain and Lval were run in the hyperparameter optimization step of these models.

For the hyperparameter optimization stage, as shown in Figure 8, we divided the data into training
and validation sets, while reserving a separate set for testing in the out-of-sample stage. Model
training involved establishing relationships within several sets of x-y samples, specifically training
the relationships between X autoregressive inputs and y horizon outputs, as depicted in Figure 4.
The validation of model performance, Lval, entailed comparing actual y inflation figures with the
ypred model forecasts derived from the validation dataset. This comparison was conducted using a
forecasting function, in accordance with the validation loss minimization strategy outlined in Equation
1.

For the testing stage, a pseudo-out-of-sample (POOS) “walk-forward" cross-validation technique was
used (Figure 8), designed to closely mimic a real-world scenario of making predictions with a limited
historical dataset. To counter concerns about potential overfitting, this method uses the information
held out during the hyperparameter optimization stage to test the optimized models in an unexplored
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space. In the POOS method, the time series data is partitioned in a way that simulates standing at a
specific point in the past, with all subsequent data considered unknown.

Figure 8: Data division in hyperparameter and pseudo-out-of-sample (POOS) testing stages across
different neural architecture search (NAS) protocols. The top panel shows non-shuffled samples,
while the bottom panel shows shuffled samples in the OOS testing stages. For all other machine
learning methods, including NHITS and N-BEATS, full uninterrupted training sets without held-out
samples are used in their OOS cross-validation stages.

For each segment, data preceding the cut-off year is used to train and test the model, which then
forecasts the value for the next month. This forecast is compared with the actual observed value for
that month. The process iterates by progressively incorporating an additional month into the training
set, thereby generating a sequence of forecasts that are compared against their actual counterparts.
This iterative procedure resulted in predictions for two out-of-sample forecasting windows: one
spanning January 2022 to December 2023 (24 months), and another from January 2019 to December
2023 (60 months). The Root Mean Square Error (RMSE), calculated over these two periods, served
as the primary metric for evaluating the forecasting performance.

Lastly, although these are conventional neural network models, we have specifically assessed the
effect of shuffling the train-validation sets in the out-of-sample testing stage (as shown in Figure 8).
The exploration of shuffling is innovative, as its impact is rarely examined in time series forecasting, a
field where machine learning applications are emerging and often limited by traditional assumptions.

While shuffling was explored during the testing stage, the hyperparameter optimization stage was
initially set to a train-validation split without shuffling to stress the optimization process, ensuring
it performs optimally in resource-scarce conditions. A not-shuffled setup maintains a longer divide
between the training data and the points to be forecasted. Although this investigation has focused
on such a setup as depicted in Figure 8, future work will also evaluate the use of K-folds during the
hyperparameter optimization stage. Recent findings suggest that K-fold cross-validation is the best
practice for hyperparameter optimization in machine learning algorithms applied to macroeconomic
forecasting (see Goulet Coulombe et al. 2022).
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3 RELATED WORK

It has been emphasized that for the neural architecture search (NAS) case, our approach incorporates
a hyperparameter optimization strategy that addresses parameters both internal and external to the
neural network’s topology. This broadens the scope of the optimization challenge, a facet that has
been seldom explored in existing literature. Consequently, we will start with the more specific
exploration of literature work on NAS as achieved through methods similar to the ones explored
herein.

In the survey by Elsken, Metzen, and Hutter 2019, the process of neural architecture search (NAS) is
categorized into three distinct dimensions: search space, search strategy, and performance estimation
strategy. Concerning the first category, our approach adopts a tree-structured search space, which is
typical of a Tree Parzen Estimator (TPE) method. Relevant to this kind of search space is the work
by Qian et al. 2022, who employs a tree-structured search space for NAS with a binary tree search
strategy. Similarly, graph data structures are used as search spaces for NAS in L. Wang et al. 2019
and Sasaki 2023, both of which implement Monte Carlo Tree search as their NAS search strategy.

Regarding the second category, the search strategy, the Tree-Parzen Estimator falls within the category
of Bayesian optimization algorithms. Direct applications of TPE for NAS, such as those by Bergstra,
Yamins, and Cox 2013, have led to state-of-the-art results in various computer vision problems.
Furthermore, in the broader realm of Bayesian optimization, significant advancements have been
reported by Domhan, Springenberg, and Hutter 2015 and Mendoza et al. 2016. These authors have
used it as a search strategy, achieving faster optimization of hyperparameters and being the first to
report winning competition datasets against human experts, respectively.

Lastly, for the third category, performance estimation, we employ a walk-forward, pseudo-out-of-
sample (POOS) testing set held out during the optimization process. This method is extensively
detailed in Section 2 and is a common practice in economic and financial forecasting. On that note, we
now shift our focus to related work on the forecasting side of our study. This includes an exploration
into two main areas within the forecasting literature: the application of Tree Parzen Estimators (TPE)
in general forecasting models, and the specific use of neural network models for inflation forecasting,
highlighting how our work integrates and builds upon these existing methodologies.

The application of TPE for hyperparameter optimization in forecasting is a recent development.
Several studies have demonstrated its effectiveness in various domains. For instance, Massaoudi
et al. 2021 employed TPE to probabilistically approximate the search space and identify optimal
hyperparameters for short-term solar cell power generation forecasts. Similarly, Nguyen, Liu, and Zio
2020 utilized TPE for automatic hyperparameter optimization in an LSTM-based multi-step prediction
model for Prognostics and Health Management (PHM). TPE’s versatility is further highlighted in J.
Zhang et al. 2021 where it optimized hyperparameters within a hybrid deep learning model for sugar
price forecasting. Xu et al. 2021 leveraged TPE to optimize an attention-based LSTM network for
forecasting Heating, Ventilation, and Air Conditioning (HVAC) energy demand. Finally, Shen et al.
2022 applied TPE to optimize a water runoff prediction model based on natural gradient boosting.

So far, to our best knowledge, TPE has been applied for hyperparameter optimization of machine
learning models in macroeconomic times series forecasting only in Moreira, Rodrigues Moreira, and
Oliveira Silva 2024 in the context of forecasting the Brazilian policy interest rate with a deep neural
network. However, this paper does not perform a neural architecture search but only uses TPE to
optimize a handful of hyperparameters.

The use of machine learning models to forecast macroeconomic variables like GDP or inflation is
growing fast (see for example Richardson, Florenstein Mulder, and Vehbi 2021; Tenorio and Perez
2024). Our brief review here concentrates on inflation forecasting.

Earlier applications of neural networks showed some promise. Moshiri and Cameron 2000 which
demonstrated that simple back-propagation networks could achieve performance comparable to
traditional ARIMA and VAR models for Canadian inflation. However, hyperparameter selection
relied on manual exploration, limiting replicability of the results. Similarly, Nakamura 2005 trained a
feed-forward network for US CPI inflation, focusing on preventing overfitting. This study concluded
that neural networks performed competitively with AR models.
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Recent studies have further emphasized the potential of machine learning for economic forecasting.
Medeiros et al. 2021 demonstrated that machine learning models, particularly Random Forests with
a large number of covariates, can outperform traditional benchmarks in forecasting US inflation.
However, their study did not address the question of optimal hyperparameter tuning, relying solely
on expert judgment. In contrast, Goulet Coulombe et al. 2022 investigated the advantages of machine
learning over standard macroeconometric methods. Their work highlights the ability of machine
learning models to capture nonlinearities, a feature particularly relevant to our research.

In the context of long-term inflation forecasting, Paranhos 2023 investigated the suitability of LSTM
neural networks for predicting US inflation. The study revealed the effectiveness of LSTM models
in capturing long-term inflation trends, demonstrating reduced sensitivity to short-term fluctuations.
However, it found no significant improvement in overall forecasting performance compared to
Random Forest models. Almosova and Andresen 2023 further explored LSTM models for US CPI
inflation forecasting, comparing them to feed-forward networks and standard linear benchmarks.
Their findings concurred with the effectiveness of LSTMs for long-term horizons and emphasized the
importance of network architecture in achieving optimal results.

On the other hand, Barkan et al. 2023 demonstrated the effectiveness of a hierarchical recurrent
neural network for forecasting headline US CPI inflation by leveraging the disaggregation of CPI
data into its lower-level components. This finding aligns with our own research, where even a simple
disaggregation into two main CPI components improves forecast accuracy across all model types.

Two studies hold particular relevance. Xuanzheng Wang et al. 2022 demonstrates improved accuracy
using state-of-the-art deep learning models like N-BEATS for forecasting Chinese economic indica-
tors. In contrast, our study applies N-BEATS and NHITS models specifically to Peruvian inflation
forecasting. Additionally, Moreira, Rodrigues Moreira, and Oliveira Silva 2024 utilized the TPE
algorithm to optimize hyperparameters for deep neural networks forecasting Brazilian interest rates.
However, their work did not explore higher-level neural architecture search.

4 RESULTS AND DISCUSSION

Herein, the discussion is organized into three sub-sections. In the first, the optimal models found by
the AutoML are presented. In the second, a comparative analysis of forecast precision among the
top-performing models is provided. Finally, in the third sub-section, the gradients of the estimated
optimal models are explored, offering insights into their performance dynamics.

4.1 OPTIMAL MODELS

This study evaluated forecasting models under two paradigms: univariate and component-based, as
explained in subsection 2.1. Within each paradigm, the following three prominent model approaches
have been explored: neural networks, machine learning regressions, and the NeuralForecast suite of
models. For future reference all optimal models found through this AutoML process have been listed
in Tables 6 to 11.

NAS neural networks

In Table 6 in Appendix C, we show the hyperparameters for the optimal univariate neural network
model obtained through Neural Architecture Search (NAS-UV) and its corresponding topology in
Appendix A.1. In addition, the component-based model (NAS-CB), being a function of two separate
univariate neural network models each predicting an inflation component, was solved as two isolated
tasks, the hyperparameters thereof which are shown in Table 7 in Appendix C, while the topologies
for the two networks are shown in Appendix A.2. For simplicity, neural architecture blocks or
algorithms not selected by the TPE optimizer were not put in these tables. From this information, we
can see that no L2 kernel regularizers were chosen to be advantageous on any of the models. This
could be because all neural models explored in this preliminary work were in fact univariate and at
such level, L2 regularization might not give a significant improvement on generalization. It can also
be found that time encoding was only necessary for the univariate, single-task model (Table 6) and
not for the component-based model (Table 7), suggesting the inflation decomposition on the NAS-CB
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model works as a good substitute for the decomposition into several frequencies that the time2vec
does for the NAS-UV model.

Machine learning regressors

As it was for the former case, our examination of machine learning models for inflation forecasting
(Table 8 in Appendix C) begins with the optimal univariate model of headline inflation, which was
found to be a Gradient Boosting regressor with an impressive ensemble of 910 tree estimators. The
substantial number of trees employed suggests the considerable complexity involved in autoregressing
headline inflation, which integrates a diverse array of both stable and volatile elements within a
single variable. Shifting focus to the component-based inflation models, which analyze inflation
in segmented categories, we find a divergence in the optimal models for AE inflation (including
food and energy) and SAE inflation (excluding food and energy). For AE inflation, where the data
exhibits greater variability due to the inclusion of volatile items like food and energy, the Random
Forest model proved most effective, requiring more than twice the number of trees compared to
its counterpart used in SAE inflation (see Table 9 in Appendix C). This stark contrast highlights
the need for a robust model capable of managing broader data fluctuations. In contrast, the SAE
model, which excludes these volatile components, optimally utilizes the Gradient Boosting model
but with significantly fewer trees, reflecting the reduced complexity and greater predictability of
the data. The use of Gradient Boosting in both the univariate headline inflation and the more stable
SAE inflation scenarios, albeit with different configurations, underlines the model’s adaptability
and effectiveness across varying levels of data complexity. The marked increase in tree count for
the univariate model highlights the complex challenge of integrating a full spectrum of inflationary
influences. This contrasts with the more targeted approach required for SAE inflation, and the detailed
yet comprehensive handling necessary for AE inflation, demonstrates the critical importance of model
selection tailored to the specific characteristics of each inflation measure and therefore, the significant
practicality of a well-structured AutoML methodology.

NeuralForecast

From this suite of models, it was notably observed that the N-BEATS model emerged as the optimal
choice in all cases, both as a univariate model to forecast headline inflation (Table 10 in Appendix
C), as well as the component models for the component-based paradigm in Table 11 in Appendix
C. From an economist’s perspective, N-BEATS’s use of polynomial basis functions to model trend
components, alongside harmonic basis functions for seasonality, provides a comprehensive framework
for forecasting inflation. The polynomial functions are particularly effective in capturing both linear
and non-linear economic trends–such as fiscal policies, economic shocks, and gradual market shifts–
which are critical for accurate long-term inflation predictions. The addition of harmonic functions
allows N-BEATS to also effectively model the cyclical nature of economic variables, such as seasonal
price fluctuations. This dual capability makes N-BEATS well-suited to handling the complex
dynamics of inflation forecasting, where both trend and periodicity significantly influence overall
accuracy. In contrast, NHITS focuses primarily on harmonic signals, potentially underestimating
non-periodic, trend-driven changes that are crucial in economic forecasting. Nonetheless, we have
also analyzed the optimal NHITS model from this approach (Table 10), which ranks seventh in
performance among the NeuralForecast models. Comparison between the optimal N-BEATS and
NHITS models reveals that both have almost identical input sizes and the same number of maximum
steps. This similarity suggests that a comparable approach to data treatment and training is applied
to both models, aiming to achieve optimal performance. In the component-based inflation models,
N-BEATS continues to demonstrate its adaptability, being the preferred model for both SAE and AE
inflation categories (Table 11). However, in contrast to the earlier point made, the hyperparameters
for the N-BEATS models of SAE and AE inflation component models differ significantly, indicating
that specialized approaches are required to address the distinct forecasting challenges posed by each
component variable. The larger input size of 165 in the SAE model compared to 91 in the AE
model suggests a more complex data handling requirement, potentially due to the inclusion of a
broader range of economic indicators when food and energy are excluded. Both models employ four
polynomials, emphasizing their capacity to accurately model the underlying trends in inflation across
different components. Additionally, the variation in the number of harmonic functions–two for AE
and one for SAE–may reflect the increased variability and cyclical patterns introduced by including
food and energy in the AE model.
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4.2 FORECAST PRECISION COMPARISON

This optimization project yielded models evaluated through the aforementioned pseudo-out-of-sample
(POOS) testing method, simulating two forecasting out-of-sample windows, the results of which
are shown in Table 3. As can be seen, the first window was 24 months in length, covering the
span between January 2022 and December 2023, while the second window considered January 2019
to December 2023, with 60 months in length. The Expected Values from first and second-order
autoregression (AR) models as well as those from the random walk hypothesis are used as benchmarks
for the machine learning models that have been optimized herein.

Table 3: Comparison of Hyperparameter-Tuned Models for One-Step-Ahead Inflation Forecasting

ML Methods Total CPI
Annual Var

Out-of-Sample RMSE

Dec-23 Jan-22 to
Dec-23

Jan-19 to
Dec-23

Univariate Models - Πt

N-BEATS 2.999615 0.394971 0.371733
Gradient Boosting Regression 2.915297 0.439374 0.395667
NAS-UV (shuffled sets) 3.126959 0.450079 0.390514
NAS-UV (not shuffled) 3.187929 0.482760 0.399762

Component-Based Models - Πsae
t and Πae

t

NeuralForecast 2.922576 0.380683 0.377425
ML Regressors 2.980602 0.442415 0.378559
NAS-CB (shuffled sets) 3.025956 0.401964 0.393179
NAS-CB (not shuffled) 3.096297 0.467090 0.381727

Expected Value (Benchmark)

Ground-Truth 3.237383 - -
AR(2) 3.404827 0.482822 0.450001
AR(1) 3.638480 0.559239 0.469780
Random Walk 3.638228 0.559123 0.463400

NAS = “neural architecture search”, UV = “univariate model”, CB = “component-based model”.

It is found that both the Univariate (UV) models, which predict the CPI as a non-linear autoregressive
exercise, as well as the Component-Based (CB) models, predicting it from its main two components,
outperform all Expected Value benchmarks in both forecasting windows.

As shown in Table 3, root mean forecast errors (RMSE) are consistently lower for the 2019-2023
window compared to the 2022-2023 window. This observation holds true for all forecasts evaluated
in this study. This finding corroborates the notion that inflation forecasting has become particularly
challenging in the post-COVID period (2022-2023).

In Table 3, we compare the out-of-sample performance of our models, as described in the Methods
section, against three well-established benchmarks: the random walk hypothesis and first- and second-
order autoregression (AR) models. It is evident that the NAS models outperform all established
benchmarks. Notably, the component-based models demonstrate superior performance compared
to the univariate models, suggesting that decomposing the data enhances effectiveness even at the
deep-learning level.

Interestingly, shuffling the sets during out-of-sample testing appears to improve forecasting perfor-
mance, implying that with an optimized architecture, a shuffled set can enhance the estimation of
future values. While this might be misconstrued as a fallacy, we argue otherwise for two reasons:

1. The neural networks are designed to identify non-linear correlations between X autoregres-
sive inputs and y horizon output pairs, where each X − y pair is independent. Although it
is often argued that shuffling “breaks the sequential nature of time series,” the integrity of
each X sequence within its pair is preserved. Thus, even without shuffling, the training aims
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to correlate X values to predict the subsequent y, and a conceptual ‘break’ exists between
different X − y samples. This means ‘not-shuffled’ sets might actually be disadvantageous
as they distance the training from the test values, potentially affecting learning accuracy (as
shown in Figure 8 where the comparison between shuffled and non-shuffled strategies is
depicted).

2. The performance evaluations, as presented in Table 3, use a reserved set that the neural
networks have not previously encountered. If this were not the case, concerns about
overfitting might be valid. However, since this is fresh data, the observed improvements in
performance are not due to overfitting but are likely a result of a more effective structure of
these neural models for making forecasts.

In contrast to conventional MLP and CNN topologies that utilize traditional training and validation
setups, other models like N-BEATS Olivares et al. 2023 and NHITS Challu et al. 2023 feature built-in
sequential linkages in their architectures, which fundamentally alter how they utilize data sets.

The results show how effective our preliminary NAS models are in handling complex time series
data, especially when it comes to out-of-sample testing. The component-based approach, coupled
with strategic data shuffling, has been shown to enhance predictive accuracy, effectively countering
traditional concerns about sequence disruption in time series analysis. This not only validates our
methodological innovations but also demonstrates their practical utility in overcoming the inherent
challenges of using machine learning methods in macroeconomic forecasting. The success of these
techniques highlights the potential for further innovations in neural network architectures, suggesting
a promising direction for future research in economic data analysis.

Our evaluation confirms the superiority of NeuralForecast models in achieving lower forecasting
errors. The N-BEATS model emerged as the most effective univariate model from the suite, exhibiting
consistently lower RMSE values compared to those of other models (refer to Table 10). Notably, the
best-performing NHITS model ranked significantly lower, at seventh place. While the variation in
RMSE values across the top models was minimal, the N-BEATS model still achieved a slight edge,
suggesting a potential performance advantage in this optimal region.

Unlike the sample division done within training and validation sets of NAS and ML Regressor models
(Figure 4), NeuralForecast models, due to their peculiar model mechanics, predict the entire 60-month
horizon as a single validation set in one shot. Due to this fact, the Input Size was not chosen as a
tuned hyperparameter for the NeuralForecast models but was rather controlled by an Input-to-Output
Size hyperparameter during the hyperparameter optimization stage (Table 5). As the horizon (i.e.
the output) becomes h = 1 during the POOS testing, the Input Size obtained from the optimization
stage must be the same as the one used for POOS testing because the information in the horizon is a
response rather than a variable. This reasoning was likely a highly influential factor for the notable
out-of-sample performance of this model.

For the univariate case, it was also found that the best-performing machine learning regression was
a Gradient Boosting model, outperforming the univariate NAS-UV model with shuffled sets in the
shorter-range POOS testing 24-month timeframe while keeping a comparable performance with the
NAS-UV in the longer range, 60-month timeframe.

In contrast, for the component-based case, it was found the NAS-CB model with shuffled sets (Table
7) outperformed the ML regression model (Table 9) notably in the shorter-range POOS timeframe
while losing some predictive power in the longer-range timeframe. This may be attributed to the
increased sensitivity of the SAE component model of the NAS-CB explained by its gradient (Figure
9) within the shorter-range timeframe, starting in January 2022, while for that of the SAE component
of the ML Regressors model (Figure 10) such sensitivity is actually significantly decreased within
such time period. The consistent confirmation of predictive power with these gradient observations
should not be overlooked, as it applies to all models, including the NeuralForecast CB models, which
have SAE gradients of the highest magnitude relative to the other models across its whole 60-month
timeframe, and outperform the other CB models in lowest RMSE in both forecasting POOS windows
(Table 3).
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(a) Gradients for CPI without food and energy (SAE) (b) Gradients for CPI with food and energy (AE)

Figure 9: Gradient comparison for NAS neural networks: the left image shows the gradient magni-
tudes and directions for the optimal model excluding food and energy (SAE), and the right image
for the optimal model including food and energy (AE). Year-on-year inflation series are shown for
clarity.

4.3 ECONOMIC INTERPRETATION WITH GRADIENTS

Figures 9 to 10 visualize the autoregressive gradients obtained during training with the optimal
models. Notably, in linear models, these gradients would remain constant regardless of the input size
or sign. However, due to the non-linear nature of neural networks, gradients can exhibit variability.
Our observations based on these figures are as follows:

(a) Gradients for CPI without food and energy (SAE) (b) Gradients for CPI with food and energy (AE)

Figure 10: Gradient comparison for ML regressors: the left image displays the gradient magnitudes
and directions for the optimal model excluding food and energy (SAE), and the right image for the
optimal model including food and energy (AE). Year-on-year inflation series are shown for clarity.
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First, as opposed to the constancy of gradients in linear models, neural network gradients exhibit
fluctuations throughout training for all optimized models. These fluctuations, while irregular in their
raw calculations, reveal interpretable patterns when smoothed.

Second, across all models, the autoregressive coefficients for models with AE inflation tend to be
lower than those for inflation models excluding food and energy. This result may indicate that food
and energy inflation has more complex dynamics than SAE inflation.

Third, the autoregressive gradient of SAE model for the N-BEATS component-based case (the best
forecasting performer) exceeds unity. This suggests the presence of negative gradients at higher-order
lags within the SAE dynamics. Interestingly, the gradient exhibits a U-shaped pattern across the
sample period. The gradient initially decreased throughout 2019 and 2020, followed by an increase
starting in mid-2021. Notably, this coincides with a rise in inflation. This behavior suggests that
SAE inflation might gain momentum as headline inflation reaches historically high levels, potentially
reflecting a structural change beyond the scope of this paper. Importantly, this heightened sensitivity
to recent inflation is observed in the neural network model as well, but not in the machine learning
regression model.

Fourth, our analysis of gradient variations due to input sign and scale revealed an interesting asymme-
try in the N-BEATS model (Figure 11). While scale variations had minimal impact, sign variations
exhibited a strong effect. Specifically, the autoregressive gradient associated with inflation was con-
sistently higher when inflation was negative compared to positive values. This observation suggests
a stronger influence of negative inflation on the model’s learning process, potentially indicating an
underlying asymmetry in the dynamics of both the SAE and AE components.

(a) Gradients for CPI without food and energy (SAE) (b) Gradients for CPI with food and energy (AE)

Figure 11: Gradient comparison for N-BEATS models: the left image shows the gradient magnitudes
and directions for the optimal model excluding food and energy (SAE), and the right image for the
optimal model including food and energy (AE). Year-on-year inflation series are shown for clarity.

5 CONCLUSIONS

This study addresses the complex challenge of refining Consumer Price Index (CPI) inflation forecasts,
which are crucial for the policy-making processes of central banks. By employing an automated
machine learning (AutoML) approach utilizing Tree Parzen Estimators (TPE) for rigorous hyperpa-
rameter optimization, we have developed and assessed a variety of machine learning and novel neural
network architectures. This approach has not only streamlined model design but also significantly
enhanced the predictive accuracy of these models.

Our findings demonstrate that all models optimized through TPE surpassed traditional forecasting
benchmarks, underscoring the method’s effectiveness across various model types. Notably, the
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component-based models provided superior performance compared to traditional univariate models,
highlighting the benefits of decomposing macroeconomic data for more precise predictions. Ad-
ditionally, the exploration of data shuffling in out-of-sample testing has challenged conventional
approaches to time series analysis, suggesting that such techniques may substantially improve
forecasting accuracy.

The N-BEATS model, optimized via AutoML, emerged as a standout performer in both univariate
and component-based paradigms. Its integration of polynomial basis functions for trend analysis,
coupled with harmonic functions for capturing seasonality, enables it to adeptly navigate the complex
dynamics of inflation data. This dual functionality allows N-BEATS to address both the cyclical
patterns and unexpected shifts that are typical in economic data influenced by broader policy and
market conditions.

Furthermore, the study confirms that machine learning models faced increased forecasting errors in
the post-COVID period, indicating that recent economic instability has made inflation more difficult to
predict globally. The component-based approach to forecasting, which predicts headline inflation by
first forecasting its individual components, has markedly improved model performance by capturing
the unique dynamics of each segment.

Our analysis also reveals insights into the adaptability of machine learning models to dynamic
economic conditions, crucial for maintaining forecast accuracy. We observed significant changes
in the behavior of inflation excluding food and energy, suggesting potential structural shifts in the
underlying economic relationships as headline inflation rates climb to historically high levels.

Despite these advances, the study acknowledges the inherent complexities and ever-evolving nature
of economic forecasting, which pose continuous challenges in data availability and model applicabil-
ity. Future research should consider incorporating additional economic indicators, applying other
advanced machine learning techniques, and examining model performance across diverse economic
cycles.

In conclusion, this study significantly advances economic forecasting by applying sophisticated
machine learning techniques to CPI forecasting, as well as explaining them. As economic relationships
and computational methods continue to evolve, ongoing innovation remains essential. Future efforts
should focus on evaluating the scalability of these models in different economic contexts and their
practical efficacy in shaping real-world economic policies.
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A NEURAL NETWORK ARCHITECTURES

A.1 TOPOLOGY FOR NAS-UV MODEL

Figure 12: Computational graph of the optimal Univariate Neural Network model. This neural
network, designed for univariate forecasting of the total inflation time series, was built automatically
via Neural Architecture Search.
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A.2 TOPOLOGIES FOR NAS-CB MODELS

Figure 13: Computational graph of the optimal Component-Based CPI Neural Network models. These
models, built automatically via Neural Architecture Search, include two distinct neural networks: the
left model (SAE) forecasts the CPI component excluding food and energy, and the right model (AE)
forecasts the CPI component including food and energy. The outputs are combined to calculate the
aggregated inflation index. Both models operate on a univariate basis.
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B HYPERPARAMETER OPTIMIZATION HISTORY

Figure 14: Hyperparameter optimization history for neural architecture search across models. The
top image shows the optimization process for the univariate neural network model, and the bottom
image depicts the optimization for the component-based CPI neural networks. These visualizations
highlight the exploration of hyperparameter spaces and the iterative refinement of model architectures
to enhance performance.
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C HYPERPARAMETER SEARCH SPACES AND OPTIMAL MODELS

In this appendix, we provide detailed tables of the hyperparameters considered for the various
models and the optimal configurations found through the Tree Parzen Estimator (TPE) optimization
process. These tables are referenced throughout the results section to support the discussion on model
performance and selection.

C.1 HYPERPARAMETER SEARCH SPACES

Table 4: Considered hyperparameters for machine learning regression models.

Hyperparameter Configuration Space

Input Size DiscreteRange (3, 108, 3)
Model* {Random Forest, Gradient Boosting, Lasso}

Random Forest**

Number of Estimators DiscreteRange (10, 1000, 10)
Max Depth {None, 10, 20, 30, 40, 50}
Min Samples Split DiscreteRange (2, 20, 1)
Min Samples Leaf DiscreteRange (1, 10, 1)
Max Features {None, sqrt, log2}
Bootstrap {True, False}

Gradient Boosting**

Number of Estimators DiscreteRange (10, 1000, 10)
Learning Rate LogRange (-5, 0)
Max Depth {None, 3, 5, 7, 9}
Min Samples Split DiscreteRange (2, 10, 1)
Min Samples Leaf DiscreteRange (1, 5, 1)
Subsample Range (0.5, 1.0)

Lasso**

Alpha LogRange (-7, 2)

Note: The global parameters are chosen at the highest level in the Tree Parzen, while specific parameters are
exclusive to each model type that may be chosen by the TPE.
* Hyperparameters with an asterisk have additional hyperparameters, while hyperparameters or sets with double
asterisks are the children of said hyperparameters or children sets thereof.

Table 5: Considered hyperparameters for NeuralForecast models.

Hyperparameter Configuration Space

Input-to-Output Size Range (1.0, 3.5)
Input Size (Input-to-Output Size)† DiscreteRange (60, 210)
Max Steps DiscreteRange (50, 200, 10)
Model* {NHITS, N-BEATS}

N-BEATS**

Number of Polynomials {2, 3, 4}
Number of Harmonics {1, 2}

† Input Size is a function of the Input-to-Output Size hyperparameter chosen by the TPE.
* Hyperparameters with an asterisk have additional hyperparameters, while hyperparameters or sets with double
asterisks are the children of said hyperparameters or children sets thereof.
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C.2 OPTIMAL MODELS

Table 6: Optimal Univariate Neural Architecture Search (NAS-UV) model

Hyperparameter Optimal Values

Adam Learning Rate 0.00048
Adam β1 0.94886
Adam β2 0.99675
ES Patience 90
LR Patience 5
Batch Size 3
Input Size 19
Number of Dense Layers 4
Number of Layer Nodes [43,43,7,36]
Activation Function ReLU
Post-MLP NLB Compression Lpool 11
Scalers, Use True
Number of Harmonics (t2v) 42

Performance

Lval(D; Θ,Λ) 0.14574

Table 7: Optimal Component-Based Neural Architecture Search (NAS-CB) model

Hyperparameter Optimal Values

Adam Learning Rate 0.00057
Adam β1 0.92726
Adam β2 0.99603
ES Patience 25
LR Patience 20
Batch Size 7 8
Input Size 15 15
Number of Dense Layers 5 5
Number of Layer Nodes [29,27,7,23,47] [38,36,16,27,39]
Activation Function LeakyReLU LeakyReLU
Post-MLP NLB Compression Lpool - 21
Scalers, Use False False

Performance

Lval(D; Θ,Λ) 0.24349
Lval,sae(D(1); Θ(1),Λ(1)) 0.15677
Lval,ae(D(2); Θ(2),Λ(2)) 0.47038
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Table 8: Optimal Univariate Machine Learning Regressor

Hyperparameter Optimal Values

Model Type Gradient Boosting
Input Size 99
Max Depth None
Number of Estimators 910
Minimum Samples Split 4
Minimum Samples Leaf 3
Learning Rate 0.04270
Subsample 0.90294

Performance

Lval(D; Θ,Λ) 0.12030

Table 9: Optimal Component-Based Machine Learning Regression model

Hyperparameter Optimal Values

Model Type Gradient Boosting RandomForest
Input Size 54 63
Max Depth None 10
Number of Estimators 380 870
Minimum Samples Split 2 10
Minimum Samples Leaf 3 4
Learning Rate 0.06719 -
Subsample 0.84175 -
Bootstrap - True
Max Features - None

Performance

Lval(D; Θ,Λ) 0.25319

Table 10: Optimal Univariate NeuralForecast model (N-BEATS) and optimal Univariate NHITS
model (7th best from NeuralForecast models)

Hyperparameter Optimal Values

N-BEATS NHITS

Model Rank 1 7
Input Size 76 75
Max Steps 160 160
Number of Polynomials 2 -
Number of Harmonics 2 -

Performance

Lval(D; Θ,Λ) 0.26190 0.27325
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Table 11: Optimal Component-Based NeuralForecast model

Hyperparameter Optimal Values

SAE Model AE Model

Model Type N-BEATS N-BEATS
Input Size 165 91
Max Steps 160 100
Number of Polynomials 4 4
Number of Harmonics 1 2

Performance

Lval(D; Θ,Λ) 0.26633
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