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Abstract

This paper examines the volatility of the daily returns of the main Latin American currencies against
the dollar (Brazil, Chile, Colombia, Mexico and Peru) over the last twenty years. Based on a simple
Bayesian Stochastic Volatility framework, it is possible to identify the global synchronization factor
of these currencies and distinguish it from the idiosyncratic component of each country. The global
factor captured is highly correlated with popular volatility indicators, such as the VIX or the EPU
of the US. We also find that the proportion of volatility explained by the global factor is significantly
higher than that of the idiosyncratic component. Likewise, idiosyncratic volatility is much lower in
the case of Peru compared to its peers in the region, with Brazil being the country with the most
volatile component. Naturally, the characteristics of each market, credibility and confidence in the
national currency, plus political uncertainty, and the exchange rate intervention of the central bank,
play an important role in determining such volatilities.

Resumen

En este trabajo se analiza la volatilidad de los rendimientos diarios de las principales monedas
latinoamericanas frente al délar (Brasil, Chile, Colombia, México y Pert1) durante los tltimos veinte
anios. En base a un marco simple de volatilidad estocastica bayesiana, es posible identificar el factor
de sincronizacién global de estas monedas y distinguirlo del componente idiosincrasico de cada pais.
El factor global capturado esta altamente correlacionado con indicadores de volatilidad populares,
como el VIX o el EPU de los EEUU. También encontramos que la proporcién de volatilidad explicada
por el factor global es significativamente mayor que la del componente idiosincratico. Asimismo,
la volatilidad idiosincratica es mucho menor en el caso de Perii en comparacién con sus pares de
la region, siendo Brasil el pais con el componente més volatil. Naturalmente, las caracteristicas de
cada mercado, la credibilidad y confianza en la moneda nacional, més la incertidumbre politica y la
intervencién cambiaria del banco central, juegan un papel importante en la determinacién de dichas
volatilidades.
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1 Introduction

Foreign Exchange markets are crucial in determining the price of the local currency, i.e. the
exchange rate against the US dollar or any other hard currency. In addition, the exchange rate
is a extremely relevant relative price for macroeconomic equilibrium, especially in the case of
small and open economies and emerging markets (Gadanecz and Mehrotra, 2013). Likewise, the
volatility of the exchange rate is also a highly relevant variable for determining financial stability,
which in many cases triggers Foreign Exchange Intervention (Bank for International Settlements,
2013), in particular when there is partial financial dollarization (Castillo and Medina, 2021),
and also with different links in the productive chains and with dollar invoicing beyond their

own foreign trade activity (Gopinath et al., 2020).

In Latin American countries where the Inflation Targeting scheme is implemented, although
they have a certain margin for independent fluctuations in the exchange rate based on macroe-
conomic fundamentals, we observe a partial co-movement in the daily returns of these currencies
(see e.g. Gamboa-Estrada and Romero (2021)). This not an unknown phenomenon in Emerg-
ing Markets. For instance, Chiappini and Lahet (2020) examines these co-movements across
different emerging markets in Asia using a dynamic latent factor model. Part of the explanation
for this synchronization is the strong influence of the dollar in these economies, both in inter-
national trade and in financial markets (e.g., forward contracts or hedging operations, etc.).
Thus, volatility clusters can be seen in certain common episodes, such as the 2008 International
Financial Crisis, the 2013 Taper Tantrum, and the latest episode associated with the Covid-19
pandemic (see e.g. Fratzscher (2009) and Coudert et al. (2011)). Likewise, in each country a
certain level of volatility can also be observed in episodes of greater uncertainty at the domestic
level (generally due to political factors), such as those associated with presidential elections. In
this context, although the vast majority portion of the literature focus the attention of finding
the main determinants of exchange rates given these co-movements and to study their long
run properties, our particular interest is to capture the common component of exchange rate
volatility for the currencies of the region, and determine the fraction of total volatility explained

by this factor. This will give us a clear idea of how much of the volatility of the exchange rate
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is due to global or domestic factors.

Regarding the empirical literature about financial markets co-movement and volatility, we first
find the work related with Synchronization of Currencies during Financial Crises (see e.g.
Fratzscher (2009), who examines the period of the financial crisis of 2008, where a negative
shock to the US economy strengthened the US dollar against different currencies, and Coudert
et al. (2011) who study the Spillovers from advanced financial markets to currencies in emerging
countries in terms of volatility using a regime-switching approach). There exists also empirical
work related with Co-jumps in volatility, see e.g. Bollerslev et al. (2008) and Clements and Lia
(2013); and Stochastic volatility and common drifting, see e.g. Qu and Perron (2013), Laurini
and Mauad (2015), Carriero et al. (2016), Lee et al. (2017). Moreover, regarding Stochastic
volatility and linear State Space Simulation, we can find the work of Jacquier et al. (1994) and
Kim et al. (1998)', which are based on Bayesian Simulation of Linear State-Space Systems us-
ing the Kalman Filter and Smoother as in Carter and Kohn (1994) and Durbin and Koopman
(2002). Other applications using FX Volatility data from Latin American Countries can be
found in Rodriguez (2017), Alanya and Rodriguez (2018), Alanya and Rodriguez (2019) who

follow Omori et al. (2007), Rodriguez et al. (2019), among others.

Our main findings point out that Exchange Rate returns volatility in LATAM is highly syn-
chronized, although there are domestic factors that also play a role. Moreover, the estimated
global factor is highly correlated with other global measures of uncertainty, such as the VIX?
and the Economic Policy Uncertainty (EPU) of the United States. Our estimated common
factor explains a higher portion of total volatility for each country under study with respect
to idiosyncratic volatility. This result is especially relevant during the Great Financial Crisis
of 2008, the Taper Tantrum of 2013, and the recent Covid-19 Pandemic episode. Nevertheless,
there exists some room for idiosyncratic factors to be relevant for FX volatility, and we find
that, in most of the cases, a higher idiosyncratic volatility can be related with pre-electoral

periods.

!See also the correction suggested by Del Negro and Primiceri (2015).
2The VIX is a real-time volatility index created by the Chicago Board Options Exchange (CBOE).



The document is organized as follows: section 2 describes the model, section 3 describes the

estimation procedure, section 4 discusses the main results, and section 5 concludes.

2 The model

Consider the following Stochastic Volatility model for the Exchange Rate daily returns 7;;.
Define 7;; = 100  (e;+ — €;4—1)/€i1—1 as the returns® for each country i = 1,..., N, with the

following dynamic representation:

bihe | hig
2 + 2

Tit = QG + exp ( > vig, Vi~ i.4.d.N(0,1) (1)

The common volatility factor h; has an a priori law of motion that is given by:
he = he—1 + 1, n ~ 1.0.d.N (0, O‘%) (2)

and the corresponding law of motion for the idiosyncratic volatility component h;; is given
by:
hi,t = h’l’,t*l + 6i,t7 Ei}t ~ ZT;dN (O, 0-621) (3)

In both cases we assume a random walk, since this is a more parsimonious representation relative
to an AR(1) (see e.g. Primiceri (2005)), and therefore we avoid the cost of estimating additional

4. Moreover, the element b; > 0 is a loading parameter that captures the relative

parameters
contribution of the common factor h; to the whole log-volatility, i.e. the term (% + %) at
each period t, and «; is an intercept coefficient that captures the average long term return of

the exchange rate.

3 Although it is often common in the literature to use instead r;; = 100 (In (e;,t) — In (eit—1)), this is a linear
approximation of the growth rate that might deliver different results for large daily variations, such as in the
crisis episodes, and thus could lead us to underestimate the actual volatility. In addition, different sources of
financial information, e.g. websites from Reuters, etc., usually report the daily percentage change, and this is
what markets observe in order to make decisions. As a result, the piece of information relevant in this context is
the % change.

4In many papers related with stochastic volatility it is assumed an AR(1) law of motion. However, this
comes at the cost of imposing strong priors for stationarity, since the autorregressive parameter usually delivers
a posterior mode very close to 1, and with an intercept that is far from being statistically different from 0. See
e.g. Kim et al. (1998).



The specified model is conditionally linear and Gaussian, and thus we can exploit standard
Bayesian Markov Chain Monte Carlo (MCMC) techniques to simulate the posterior distribu-
tion of the objects of interest. Given the specified structure, the state-space system is highly
tractable for our purpose. A crucial point for the identification of the common factor h; and
the idiosyncratic ones h;; is the assumption of independence across innovations in the transi-
tion equations (2) and (3). Given the mentioned structure, we are then able to disentangle the
common component from the idiosyncratic ones in a simultaneous estimation procedure, i.e. we
estimate the model for the entire set of observables ¢ = 1,..., N in a unified way. The spec-
ified model is similar to other approaches that use Stochastic volatility and common drifting,
see e.g. Qu and Perron (2013), Laurini and Mauad (2015), Carriero et al. (2016), Lee et al.
(2017).

3 Bayesian Estimation

3.1 State Space Model specification

The model (1)-(2)-(3) can be re-written as a state-space system with time varying matrices®,
so that:

Yyt = Diay + e, e~ N (0, Hy) (4)

ar = A1 + Rene, e~ N (0,Q) (5)

Posterior simulation of vector «; is performed following Carter and Kohn (1994) and Durbin
and Koopman (2002) algorithms. Because of the presence of Stochastic Volatility, the mea-
surement equation is linearly approximated following Kim et al. (1998) and, in order to ensure
the convergence of the algorithm, we use the correction proposed by Del Negro and Primiceri
(2015). More specifically, taking squares and then logs in the measurement equation (1), and
considering an offset constant of ¢ = 0.001 to avoid numerical issues such as taking the log of
zero, we get:

In (riy — o 4 €)% = bihy + hiy + iy (6)

Psee e.g. Harvey (1989) and Kim and Nelson (1999), among others.
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Since u; ¢ = In (Uﬁt> ~ logx?, this element is approximated using a mixture of 7 normals:

7
fuig) =Y qifn (wig | mj — 1.2704,03) (7)
j=1
Denote ¢ = (@, aT) as the parameter set of the model, then the complete posterior distribution
is:

p(1y") =p (00" |y") x<p(©)p(ao) [[p (v | 1,0)p(0u | t-1,0) (8)
t=1

where oy = [ht, {hi7t}f\;1}/ and y; = [{ri7t}ij\;1]/, and where © contains the remaining structural

parameters of the model.

3.2 Data and estimation setup

For the empirical implementation, we use Exchange Rate daily returns for Brazil, Chile, Colom-
bia, Mexico and Peru, which is depicted in Figure 1. The sample of analysis covers the dates
between January 1, 2002 and October 31, 2021° and the source is Central Bank Websites as
well as Reuters. In this context, volatility clusters can be seen in certain common episodes,
such as the Great Financial Crisis (GFC) of 2008, the 2013 Taper Tantrum, and the latest
episode associated with the Covid-19 pandemic. In the same figure, in each country a certain
level of volatility can also be observed in episodes of greater uncertainty at the domestic level
(generally due to political factors), such as those associated with presidential elections. The
data seems to be stationary in mean, so that we will consider a constant intercept «; for each
country. Moreover, the support of the distribution of returns seems to be time varying for each
country under study, so that in this case a structure that considers a time varying volatility
is also appropriate. Then, with simple inspection of data and news of the day is impossible
to determine whether a change in volatility can be attributed to domestic or global factors,

although we can elicit some hypothesis based on experts judgment.

SFor the interested reader, Daily Exchange Rate Data in levels is depicted in Figure B.11.



Figure 1: Exchange Rate Daily Returns - LATAM (2002-2021)

Units expressed in %
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3.3 Pr

We set the prior distribution for different parameter blocks in Table 1. In first place, since we

have assumed that the a priori law of motion of the factors h; and h;; follows a random walk,

this is the case of a diffuse filter, i.e. we cannot solve for a steady state distribution in equations

=0 with a

= hig

(2) and (3), and therefore we set the initial point for the Kalman Filter as hy

10. Then, the prior distribution for the variance parameters

large variance, so that we set V},

is a conjugated Inverse-Gamma with a mean of 2 = 0.1 and with degrees of freedom

2
€4

2
oy and o?

10 (see.e.g. Carriero et al. (2016)). The prior for the intercept parameter «; is a conjugated

do =

10, meaning that this is also a

normal distribution, with zero mean and a large variance V,

diffuse prior. Finally, the prior for the loading coefficient b; is normal centered in 0.5 and setting

a standard deviation to ensure that it takes only positive values’.

"We can alternatively use a Beta distribution instead, but we do not want to discard the possibility of b; > 1.



Parameter | Distribution Hyper-parameters
hio Normal N (0,V4)

ho Normal N (0, V)

0'% Inverse-Gamma | IG (do X g2, do)
0622_ Inverse-Gamma | IG (do X a2, do)
a; Normal N (a,V,)

b; Normal N (b,V3)

Table 1: Prior Distribution for the parameter set

3.4 Gibbs Sampling

The simulation algorithm for the posterior distribution of the parameter set 1 in (8) is as

follows. We set k = 1 and consider K as the total number of draws and 7 as the full data set,

then given the initial conditions for each block 1y simulate:

1. Simulate siT from p (si | riT, 1/),51,) for each ¢ = 1,..., N: Discrete Distribution

2. Simulate {hZT} from p (hZT | r?,w_hr) for each i = 1,..., N: SS-Volatility

3. Simulate {hT} from p (hT | rT,Q/),hT): SS-Volatility

4. Simulate 0727 from p (a% [T, 1/1_0%>: Inverse-Gamma

5. Simulate 2, from p (USL_ | T, ¢—o§_> for each i =1,..., N: Inverse-Gamma
6. Simulate «; from p (ai | rZ-T, qj)_ai) for each i =1,..., N: Conditional Linear Regression

7. Simulate b; from p (bi ] riT, w,bi) for each i = 1,..., N: Metropolis-Hastings step

8. If k < K, set k =k + 1 and back to step 1.

See details for each block in Appendix A. We run the Gibbs sampler for K = 500,000 and
discard the first 250,000 draws in order to minimize the effect of initial values. In order to

reduce the serial correlation across draws, we set a thinning factor of 100. As a result, we have



5,000 draws for conducting inference. The acceptance rate of the metropolis-step associated
with b; is around 30% for each 7 = 1,..., N. After simulation and convergence, we are ready to

present the results of the empirical exercise in the next section.

4 Results

4.1 Main Results

Given the proposed simulation algorithm, and using daily returns data for Brazil, Chile, Colom-
bia, Mexico and Peru for the episode January 2002 to October 2021, the volatility of the ex-
change rate is obtained for each of the countries under analysis. The estimated volatility can
take negative values because it is on a logarithmic scale. Estimated volatilities are depicted in
Figure 2. Important peaks can be seen, as in the case of 2008 and 2020, a phenomena that
will be explained below. Likewise, in Peru, the increase in volatility during the last episode of
political uncertainty stands out, reaching levels similar to those of the Great Financial Crisis of
2008.

Figure 2: Estimated FX Volatility
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Given the specified model, these volatilities can be decomposed into a common factor and an
idiosyncratic one. The common factor is depicted in Figure 5. In each of the shaded global
episodes a significant and persistent increase in this factor can be seen, which translates into
greater synchronization in the returns of the region’s currencies. In general, this is channeled
through news or signals received by the market, and this results in the determination of a new
equilibrium market price based on the supply and demand, both on the side of spot operations
and derivative instruments. It is worth highlighting the fact that this factor reached its historical
peak during the 2008 Financial Crisis, not being surpassed by subsequent events, although the
Covid-19 pandemic event almost reached it. It is also worth noting that the estimated global
factor is highly correlated with other global measures of uncertainty, such as the VIX or the US

EPU, as it is shown in Figure 4.
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Figure 3: Log-Common Factor Volatility (h;)
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Figure 4: Log-Common Factor Volatility and Volatility Indexes

(a) VIX (b) EPU-US

3,0 1000

2,0 —ht —EPU (right)

NN ANANNNNNNNNNNNNNNNNN NANANNNNNNNNNNNNNNNNNN
2595895958 95985898956 9929099292999 9290990
B I I I I I D I I A B s I I I I I B e ) e e e e e e e e e e e e
S00555500555505555055 S05555555550555555585
ANOSETDONDDOANMITENHD OO O ANOITOUONOIOANMNMTOHOONOODO -
OO0 O00O0O0O0OO0dddddddddd NN CO0OO0OO0O0O0CO0O0O ddddededededed NN
OO0 O0OO00DO00O0O0DO0O0O0O0O0O0O0O0O0O0O0O OCO0OO0OO0O0O0O0O0O0O0DO0DO0O0O0O0O0O0O0O0O0O
ANANANNNNNNNNNNNNNNNNNN ANANNNNNNNNNNNNNNNNNNN

Although it has been shown that exchange rate volatility in the region is highly synchronized, it
is important to note that there are domestic factors that also influence it. Thus, for each of the
countries under analysis, the idiosyncratic volatility component is depicted in Figure 5, also on
a logarithmic scale. Consequently, in most cases an increase in idiosyncratic volatility related
to these electoral periods is observed, which is quite noticeable, especially in the Peruvian case,
followed by the case of Brazil, Mexico, Colombia and Chile. Another important point that can be
seen from this result is that jumps in idiosyncratic volatility are also observed in some cases after
global events. Although the effect associated with the synchronization factor has been isolated,
the latter is due to a contagion effect derived from global uncertainty, which is amplified by
the deterioration of domestic conditions. A clear example of this are the aforementioned global
crises, as well as the recent pandemic episode. On the other hand, it is worth highlighting
the lower magnitude of idiosyncratic volatility in the Peruvian case with respect to its peers in
the region, which would be associated with the greater credibility of the Peruvian Sol (PEN)
acquired in recent years, and also the fact that participating agents internalize that the Central

Bank could intervene in the market to mitigate this volatility.
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Figure 5: Log-Idiosyncratic Volatility
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4.2 An Indicator of Relative Contribution

Finally, in order to quantify which factor is the one that predominates in the aggregate volatility,
an indicator is constructed for each ¢ = 1,..., N from the results of the estimation of the

model.

exp (—bi’;ht)
Ii=—2) (9)
exp <#>

It is important to note that in the construction of this indicator the coefficient (b; > 0) plays a
crucial role, since it represents the direct impact that global volatility has on that of each country,
and said estimated coefficients range between 0.5 and 1.0 for these economies under analysis.
Moreover, given the constructed indicator, it is possible to test the hypothesis Hy : I; ; > 1 for
each country, which would mean that the contribution of the global factor is significantly higher

than the local one.

Figure 6 shows the resulting indicator for each country, and the green line I;; = 1 is drawn
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to carry out the hypothesis contrast. These results show that, with the exception of Brazil,
followed by Mexico, in most cases and for almost the entire sample it is observed that the
global factor is the predominant factor in exchange rate volatility. For reference, the gray areas
associated with the global events mentioned above have also been added here. It can thus be
clearly seen that this relative contribution intensifies during these marked events, making it
clear that this effect is not constant over time. Likewise, in terms of magnitude, the case of
Peru stands out, where this indicator is substantially higher than in other countries (although
it has been decreasing in recent months), which is also the result of the lower idiosyncratic

volatility mentioned above.
Figure 6: Relative Contribution Indicator
(a) Brazil (b) Chile (c) Colombia
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5 Concluding Remarks

The exchange rate volatility of Brazil, Chile, Colombia, Mexico and Peru has been estimated
using bayesian methods, and both the common and idiosyncratic component have been identi-
fied. The estimated common factor shows a high correlation with global events, such as different

13



crisis episodes, and this is consistent with other popular uncertainty measures in the market
(VIX and EPU of the US). Likewise, the contribution of the global factor is generally relatively
greater than the domestic one, with the exception of the case of Brazil, where the greater con-
tribution in the case of Peru stands out. Finally, idiosyncratic or domestic volatility is usually

highly correlated with pre-electoral periods.

Part of our research agenda is to dig more on the differences both in the weight of the global
factor and in idiosyncratic volatility. A first idea is related to the specific characteristics of
each market, capital flows, as well as to the exchange intervention carried out by each central
bank. Another interesting theme is to compare our estimated idiosyncratic volatility with local
political uncertainty indexes for each country under study. Finally, our estimated common
volatility factor could also be compared with other global measures, such as the estimated
volatility of the DXY. The interested reader could also apply this methodology to other financial

assets or variables, such as commodity prices, stock market indexes, etc.
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Gibbs Sampling details

1. Block 1: Simulate s;fp from p (s;f | r;-f,w,si) for each 4 = 1,..., N: Discrete Distribution
(Kim et al., 1998) Conditional on the values of the other parameters, the terms vﬁt in
equation (1) are observable, so that we can sample the states, i.e. the elements of s

independently from the following a discrete distribution:
P (si,t =7 vzt, hit, ht) x fn (ln (vzt + 0.001) | bihe + hiy +mj — 1.2704,1)]2-) (A1)

where j € {1,...,7} is the index for the state of the mixture of normals, fy (a; | 1, 02) is
referred to the normal density function with mean yu, variance o and evaluated at point
x. The values for means, variances and weights for the mixture of normals can be found
in the following table.

s | P(s=yj) | my UJQ-

11 0.00730 —10.12999 | 5.79596
2 | 0.10556 —3.97281 | 2.61369

w

0.00002 —8.56686 | 5.17950

S

0.04395 2.77786 0.16735
0.34001 0.61942 0.64009
6 | 0.24566 1.79518 0.34023
71 0.25750 —1.08819 | 1.26261

Table A.2: logx? Distribution Approximation (Kim et al., 1998)

2. Block 2: Simulate {hi,t}tT:1 from p (hi,t |l w,hi’t) for each i = 1,..., N: SS-Volatility

In order to sample volatilities h;; we proceed for each ¢ = 1,..., N as follows: Given the
parameter values of the model and the measurement equation (1), compute the innovations

fi,t =in(riy—o; + 9)2 — b;h; and specify the following measurement equation

Cit = hig + uiyg (A.2)
15



where u; s ~ log (XQ) is approximated through a mixture of 7 normal distributions:
7
f (um) ~ qufN (u@t ’ mj — 1.2704,1)]2-) (A3)
j=1

In addition, we have the transition equation (3)
_ - 2
hi,t = hz’,t—l + € t, €it ~ 1.9.d.N (0, Uei)

As a result, equations (A.2) — (3) form a state-space system, so that we can simulate h!
following Kim et al. (1998), i.e. using the algorithm of Carter and Kohn (1994) conditional

on the discrete variable s! and given the prior in Table 1.
. Block 3: Simulate {ht}thl from p (ht | rT,Q/)_ht): SS-Volatility

In order to sample volatilities h; we proceed as follows: Given the parameter values of the
model and the measurement equation (1), compute the innovations 0;; = In (¢ — oy + 2)2—

h; and specify the following measurement equation

ﬁl,t b1 U1t
Vot ba Ut

- he + (A.4)
UNt by UN ¢

where each u; ; ~ log (X2) is approximated through a mixture of 7 normal distributions:

7
f (’LLM) ~ qufN (’LLM ’ mj — 1.2704,1}]2) (A5)
j=1
In addition, we have the transition equation (2)
ht = ht,1 + Mt ne ~ 1.0.d.N (0, 0'727)

As a result, equations (A.4) — (2) form a state-space system, so that we can simulate A7
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following Kim et al. (1998), i.e. using the algorithm of Carter and Kohn (1994) conditional

on the discrete variables s’ and given the prior in Table 1.
4. Block 4: Simulate 03] from p (a% ] T'T,”l/}_o.%>2 Inverse-Gamma Distribution

Recall the transition equation (2)

he = hi—1 + 1y, n ~ 1.0.d.N (0, JZ)

2

Variance parameter o

is simulated using an Inverse-Gamma distribution. Given the
prior 072] ~ IG (do X g2,d0) and the remaining model parameters w,U%, the posterior

distribution is:

T
p (o277, 0_p3) = 1G (do X02+Zugvdo+T—1> (A.6)

t=2
where Ut = ht — ht—l-

5. Block 5: Simulate o2, from p <U€2i ]r?,w_aez_) for each ¢+ = 1,..., N: Inverse-Gamma

Distribution

Recall the transition equation (3)

hi; = hi,t—l + €t €t ~ i.0.d.N (O, 0'621)

)

2

Variance parameters o, are simulated using an Inverse-Gamma distribution. Given the

2

prior o7 ~ IG (do X gz,do) and the remaining model parameters 1)_,2 , the posterior

distribution for each ¢ =1,..., N is:

T
p (o2 |7l v g2 ) = IG (do x o2+ > ud, do+ T~ 1) (A7)
t=2

where u; ¢ = h;p — hi—1.

6. Block 6: Simulate «; from p (ai ] r?,w,ai) for each ¢ = 1,..., N: Conditional Linear
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Regression

Recall the measurement equation (1).

5 T

Vit

)

b;h h;
rw—ai—i—exp( s Z’t>

Given the prior in Table 1, i.e. a; ~N(a,V,). then the posterior distribution of «; is

Normal:

p (ai ’ riva—ozi) =N (aivvi) (AS)

with

Vi=|Vv! SHRN A9
=V +ZH2- (A.9)
) (A.10)

. Block 7: Simulate b; from p (bi | ’I”Z-T,?,/)_bi) for each ¢ = 1,..., N: Metropolis-Hastings

and where H;; = exp (bihy + hiy).

step

Recall the measurement equation (1).

b;h h;
Tt = Q; + exp ( Z2 Ly ;t) Vit

Because v;; ~ i.i.d.N (0,1), then we can evaluate the log-likelihood function for the
parameter b;. For this purpose, we have to take into account that for each t = 1,...,T

we have the density:

p(rit | bi,¥_p,) = N (o, exp (bihe + hiy)) (A.11)
so that
T
p(r] | bi,vs,) = Hp(T‘z',t | bi, ;) (A.12)
=1
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Given the prior in Table 1, i.e. p(b;) = N (b, V), then the posterior distribution of b; is

p(bi | v_s,) ocp (r] | biyvb_s,) p(bi) (A.13)

In order to sample from this posterior distribution, we specify the proposal density to
draw candidates b}

b ~ N (bgld70b> (A.14)

where bgld is the current draw of b; and ¢, > 0 is a constant fixed with the aim of getting

an acceptance rate between 0.2 and 0.4. Then, the following kernel is evaluated

p (05 [ rf )
P <b§’ld | riT, 1/1_qu¢>

ap; = min |1, (A.15)

so that b} is accepted as a draw from p (bi | riT, w—bi) with probability ap;.

Additional Figures
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