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Abstract

The measurement of the Trend or long-term GDP is of vital importance for the characterization of
macroeconomic scenarios. However, the usual filters are in some cases unstable when adding new
data points and quite rigid in terms of their specification, which makes it difficult to calculate. This
is especially relevant in contexts of greater uncertainty, where different shocks of varying magnitude
can affect the aggregate economy. These filters are quite popular, although they could be unstable
in very long series and with potential structural breaks. In this work a so-called ’flexible filter’ is
proposed, which is of the Cycle-Trend type, but which considers shocks with varying variances over
time (Stochastic Volatility). The aforementioned filter is applied to quarterly data from the United
States, Canada and Peru. In general, the consideration of a stochastic volatility component is a safe
strategy against structural changes. Finally, the methodology also makes it possible to quantify the
uncertainty associated with these estimates.

Resumen

La medición del PBI Tendencial o de largo plazo es de vital importancia para la caracterización de
escenarios macroeconómicos. Sin embargo, los filtros usuales suelen ser en algunos casos inestables
y bastante ŕıgidos en cuanto a su especificación, lo cual dificulta el cálculo del mismo. Esto es en
especial relevante en contextos de mayor incertidumbre, donde diferentes choques y de magnitud va-
riable pueden afectar a la economı́a agregada. Dichos filtros son bastante populares, aunque podŕıan
ser inestables en series muy largas y con potenciales quiebres estructurales. En este trabajo se pro-
pone un denominado ’filtro flexible’, el cual es del tipo Ciclo-Tendencia, pero que considera choques
con varianzas cambiantes en el tiempo (Volatilidad Estocástica). El filtro mencionado es aplicado
a datos trimestrales de Estados Unidos, Canadá y Perú. En general, la consideración de un compo-
nente de volatilidad estocástica es una estrategia segura ante cambios estructurales. Finalmente, la
metodoloǵıa permite también cuantificar la incertidumbre asociada a dichas estimaciones.
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1 Introduction

The Trend-Cycle decomposition for time series has been widely used in the past for the charac-

terization of macroeconomic facts with different patterns and properties (see e.g. Beveridge and

Nelson (1981), Nelson and Plosser (1982), Harvey (1985), Clark (1987), Hodrick and Prescott

(1997), Baxter and King (1999), Christiano and Fitzgerald (2003), among others). In addi-

tion, de-trending procedures used for time series transformation into stationary processes are

necessary for the estimation of typical dynamic macroeconometric models such as Vector Autor-

regressions (VAR) through classical methods (in line with the typical Time Series textbooks, e.g.

(Hamilton, 1994; Lütkepohl, 2005), among others) and Dynamic Stochastic General Equilibrium

Models (DSGE) through bayesian methods (see e.g. Canova (2007), Herbst and Schorfheide

(2016), among others.).

In this context, popular filters are typically used for this purpose such as the Hodrick-Prescott

filter (Hodrick and Prescott, 1997) and the Band-Pass filter (Baxter and King, 1999; Christiano

and Fitzgerald, 2003). In this family also enter the filters in the form of a dynamic state space

system, i.e. as in Harvey (1985), Clark (1987) and extensions1. Canova (1998) puts discipline in

this context performing a comparison of the cyclical components of macroeconomic time series

using different de-trending methods, and states that the solely use of the Hodrick-Prescott

filter might be problematic, since there exists a large variety of results across filters in terms

of amplitude and duration of cycles2. In general, although they are extremely popular, these

filters are subject to strong criticisms, since they could deliver unstable and distorted results in

very long series and with potential structural breaks and outliers, a feature that complicates the

task of time series de-trending. We mean with stability the fact that results can turn to be very

different when adding few additional data points, sometimes changing dramatically the story

of the previous estimates of unobserved components. This is especially relevant in contexts of

high uncertainty, where different structural shocks with potentially time varying magnitudes

1See e.g. Harvey (1989) and Harvey and Trimbur (2003). In addition, Morley et al. (2003) demonstrates
the equivalence between the Beveridge and Nelson (1981) decomposition and the Unobserved Component (UC)
approach (Harvey, 1985).

2See also Cogley and Nason (1995) and more recently Hamilton (2018) and Hodrick (2020). See also the
recent work of Canova (2020), who design a filter which reduces the biases of existing filters.
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can affect the aggregate economy, as it was the case in the Covid-19 pandemic.

Regarding the issue of structural breaks, we have the seminal work of Hamilton (1989), and the

extensions developed through bayesian methods by Kim and Nelson (1999). Furthermore, we

have the papers of Perron and Yabu (2009), Luo and Startz (2014), Enders and Li (2015), Perron

and Wada (2016), who find evidence of one or even multiple structural changes in macroeconomic

time series. All these previous works consider a finite number of structural changes, which

might be restrictive considering the multiple possibilities and the different nature of changes

across time. For example, a regime change related with the Covid-19 pandemic should not be

considered as similar as the Great Financial Crisis or even the Great Moderation.

For the reasons explained above, in this paper we propose a so-called ’flexible filter’, which

is based on the Trend-Cycle state-space specification, but also considers heteroskedasticity in

the form of Stochastic Volatility3. In general terms, the consideration of a stochastic volatility

component is a safe and flexible strategy against multiple structural changes (see Jacquier et al.

(1994), Kim et al. (1998), Carriero et al. (2016), among others), and the contribution of this

paper is to consider this extension, as a flexible specification, in order to correctly identify

the time series components and the time varying measurement error. Simulation with Kalman

filtering and smoothing techniques for these type of state space systems are usually related with

the work of Carter and Kohn (1994) and Durbin and Koopman (2002), using the transformation

of Kim et al. (1998) for considering stochastic volatility. We use the proposed filter for quarterly

GDP of the United States, Canada and Peru.

Our results show that the gains of allowing for stochastic volatility are overwhelming. In first

place, estimated trend, cycle components, as well as seasonal factors exhibit evidence of being

smooth and well identified. In the particular case of the United States data, identified trend

and cycle components are in line with the dates of the NBER recessions. In addition, we find

evidence of significant time varying variances for each of the time series components, even for the

seasonal factors both in raw data (non seasonally adjusted) and also seasonally adjusted ones.

Evidence is symmetric for the three countries under consideration, and log-marginal likelihood

3See other trend-cycle models using heteroskedasticity in Perron and Wada (2016).
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comparison validates the superiority of the model with time variances variances with respect to

a restricted model with constant variances.

The document is organized as follows: section 2 describes the structural time series model,

section 3 explains the estimation procedure, section 4 discusses the main results, and section 6

concludes.

2 A Structural Time Series model

Let yt be the macroeconomic time series that will be the object of analysis (e.g. the real GDP

in levels). Then, consider the following structural time series model, which can be applied for

both quarterly (S = 4) and monthly data (S = 12), with p < S:

yt = µt + ct + γt + ηyt , ηyt ∼ N (0, εyt ) (1)

µt = µt−1 + bt−1 + ηµt , ηµt ∼ N (0, εµt ) (2)

bt = bt−1 + ηbt , ηbt ∼ N
(

0, εbt

)
(3)

ct =

p∑
l=1

φlct−l + ηct , ηct ∼ N (0, εct) (4)

γt,1 = −
S−1∑
s=1

γt−1,s + ηγt , ηγt ∼ N (0, εγt ) (5)

γt,s = γt−1,s, s = 1, . . . , S − 1 (6)

ln
(
εkt

)
= ln

(
εkt−1

)
+ εkt , εkt ∼ N (0, σk) , k = (y, µ, b, c, γ) (7)

where µt is the trend component, ct is the cyclical component, bt is a time-varying intercept for

the trend and γt is the vector of seasonal factors4. In addition, εkt is the stochastic volatility

component for each k = (y, µ, b, c, γ), which follows a log-random walk in order to ensure posi-

tive values for variances, and it is a simplified and more parsimonious specification of Kim et al.

4See details in Pelagatti (2016).
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(1998) without an intercept and an autorregressive parameter, i.e. we have to estimate and

identify a reduced number of parameters. It is important to clarify that all the stochastic inno-

vations are treated as independent white noises, so that every factor or component is correctly

identified. Last but not least, we consider in this specification the presence of a measurement

error with potentially time varying variance. This is also an issue that should not be ignored,

since there might be some special cases within the sample of analysis that are subject to this

problem, such as financial crises episodes or even the Covid-19 pandemic.

The presented model is a generalization of the typical trend-cycle model (Clark, 1987), which

belongs to the family of Unobserved Components (UC) models (Harvey, 1985, 1989). That is,

the particular case without stochastic volatility, which implies that εkt = 0 and delivers as a

consequence the case of constant variances εkt = εkt−1 = εk > 0 for each k = (y, µ, b, c, γ), is the

standard trend-cycle model with seasonal factors. In this context, the specification of popular

filters such as Hodrick and Prescott (1997) can be achieved with further restrictions5.

The model can be interpreted as additive or multiplicative, depending on the transformation

used for the raw data. Typically, real GDP indicators are expressed in constant monetary units

or as an index with a basis point in time. In both cases, if we introduce the observable in levels,

i.e. yt = GDPt, the resulting model will be considered as ”additive”. On the other hand, if

introduce the observable in logs, i.e. yt = 100∗ ln (GDPt) the resulting model will be considered

as ”multiplicative”. The latter is the most common use for the application of different filters in

the literature, so we will be aligned with this practice.

The model can be re-written as a state-space system with time varying matrices, so that:

yt = DtXt + εt, εt ∼ N (0, Ht) (8)

Xt = AtXt−1 +Rtηt, ηt ∼ N (0, Qt) (9)

Denote Θ =
(
θ,XT

)
as the parameter set of the model, with Xt = (µt, ct, bt, γ

′
t)
′ (see details in

5Harvey and Trimbur (2007) study the connection between the trend and cycle model in its state space form
and the Hodrick-Prescott filter (see also Maravall and Del Ŕıo (2001) and Morley et al. (2003)).
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Appendix A). Then, the complete posterior distribution for the parameter set Θ is:

p
(
Θ | yT

)
= p

(
θ,XT | yT

)
∝ p (θ) p (X0)

T∏
t=1

p (yt | Xt, θ) p (Xt | Xt−1, θ) (10)

Notice that in this case the model is linear and normally distributed conditional on a value of

the matrices Ht, At, Qt, Rt. In line with that, the log-likelihood function evaluation and the

analytical computation of the posterior distribution is feasible. In the next section we describe

the main estimation algorithm.

In terms of the Kalman filter6, the forecast distribution is

yt|t−1 ∼ N
(
DtXt|t−1, DtPt|t−1D

′
t +Ht

)
and since yt is scalar the probability density is equal to

f
(
yt|t−1

)
= (2π)−1/2 det

(
DtPt|t−1D

′
t +Ht

)−1/2 × (11)

exp
(
ỹ′t
(
DtPt|t−1D

′
t +Ht

)−1
ỹt

)

where ỹt ≡ yt −DtXt|t−1 and t = p+ 1, . . . , T .

The log-likelihood function l
(
θ | yT

)
= ln

(
L
(
θ | yT

))
of the system is given by:

l
(
θ | yT

)
=

T∑
t=p+1

ln
[
f
(
yt|t−1

)]
(12)

which can be re-written as

l
(
θ | yT

)
= −(T − p)

2
ln [2π]− (T − p)

2
ln
[
det
(
DtPt|t−1D

′
t +Ht

)]
(13)

−1

2

T∑
t=p+1

(
yt −DtXt|t−1

)′ (
DtPt|t−1D

′
t +Ht

)−1 (
yt −DtXt|t−1

)
6See e.g. Anderson and Moore (1979), Hamilton (1994) or Kim and Nelson (1999).
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3 Bayesian Estimation

3.1 Data and estimation setup

To illustrate the effects of the presented filter, we use quarterly real GDP data (as discussed

in the previous section, we include data in logs and multiplied by 100) for the United States,

Canada and Peru. Data from the first two countries is taken from the FRED Database, and

the Peruvian data is taken from the Central Bank website. In the case of the United States, we

also include the NBER recessions dates as shaded bars.
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Figure 1: Log GDP Data

It is important to mention that FRED data is seasonally adjusted, and the Peruvian data is not.

Nevertheless, our presented filter is flexible relative to the previous transformations, so that we
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apply the same specification for each country. That is, even in the case of using seasonally

adjusted data, where there is no unique method for that transformation, and they might deliver

some problems with structural breaks, our setup is capable of capturing the remaining seasonal

factors (and their volatility) from the data.

3.2 Priors

In the case of the stochastic volatility processes, we need to specify the distribution of the initial

point ln
(
σk1
)

as follows:

ln
(
εk1

)
∼ N (0, νk) (14)

with k = (y, µ, b, c, γ). Specifically, we set νy = νµ = νc = νb = νγ = 1000, i.e. we treat this as

a diffuse filter since the prior law of motion of volatility is a random walk.

For the case of the variances σk, the distribution calibrates the a priori amount of time variation

in the process:

σk ∼ IG (dσk × σk, dσk) (15)

where we set dσy = dσµ = dσc = dσb = dσγ = 10 and σy = σµ = σc = σb = σµ = 0.1. A similar

parametrization can be found in Carriero et al. (2016).

Then, the prior for the vector of coefficients φ is given by

φ ∼ N
(
φ, V

)
× I (φ) (16)

where I (.) is the prior truncation for stationary draws, with φ = 0dim(φ) and V = Idim(φ).

Finally, for the case of the state vector Xt, we specify the prior for the initial point as fol-

lows:

Xp+1 ∼ N
(
X0|0, P0|0

)
(17)

In this case we set X0|0 = 0dim(X) and P0|0 = 1000 × Idim(X) except for the stationary block

associated with ct, where we solve the Riccati’s equation instead.
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3.3 Gibbs Sampling

Given the priors and the likelihood function of the model, we proceed to estimate the set of

parameters Θ. Using the Bayes theorem:

p (Θ | Y ) ∝ p (Y | Θ) p (Θ) (18)

Let Θ =
{
µT , bT , cT , γT , εyT , εµT , εbT , εcT , φ, σy, σµ, σb, σc, σγ , S

T
y , S

T
µ , S

T
b , S

T
c , S

T
γ

}
where STi is

the set of indicators associated with the mixture of normals approximation when simulating

Stochastic Volatility (Kim et al., 1998), and we put this block at the end of the simulation in

line with the correction proposed by Del Negro and Primiceri (2015). We denote Θ/χ as the

parameter vector Θ excluding χ.

We then set l = 1 and denote L as the total number of draws.

1. Draw p
(
εiT | Θ/σiT , Y T

)
, k = (y, µ, b, c, γ): Stochastic-Volatility

2. Draw p
(
φ | Θ/φ, yT

)
: OLS Regression

3. Draw p
(
σi | Θ/σi, yT

)
, k = (y, µ, b, c, γ): Inverse-Gamma

4. Draw p
(
XT | Θ/XT , yT

)
: State-Space

5. Draw p
(
STi | Θ/STi , yT

)
, k = (y, µ, b, c, γ): Discrete Distribution

6. If l < L, set l = l + 1 and go back to step 2.

We run the Gibbs sampler for L = 100, 000 and discard the first 50, 000 draws in order to

minimize the effect of initial values. In order to reduce the serial correlation across draws, we

set a thinning factor of 50. As a result, we have 1, 000 draws for conducting inference. See

details in Appendix B.
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4 Results

4.1 Results for the United States

Results for the Postwar US GDP exhibit an estimated smooth trend component µt as it is

depicted in Figure 2. The blue line is the median value, the red lines are the error bands for

the credible set of 68% and the black line is the actual data.
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Figure 2: US: Log-GDP and Trend component µt (1947.Q1-2021.Q1)

In addition, the year-to-year growth rate of the estimated trend component µt is the compared

with the GDP year-to-year growth rate (see panel (a) in Figure 3). As a result, trend growth

rate is less volatile than GDP growth rate. This is a crucial point in order to correctly identify

and disentangle permanent and transitory components within the context of structural breaks

(besides the significant change in the time-varying intercept bt depicted in panel (b). If we take

a look to the Covid-19 pandemic episode, the model is capable to separate the contribution

of permanent factors associated with µt from the change in GDP growth rate. In this regard,
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permanent factors could also be related with capital and labor utilization, as well as changes

in total factor productivity7. Then, the rest of the change in growth can be attributed to the

cyclical component ct (see panel (c)), which coincides with the NBER recession dates for the full

sample. Interestingly, even tough we have used seasonally adjusted data, so that the seasonal

factors γt show a low magnitude for almost the full sample, this is not the case for the Covid-

19 pandemic episode. That is, traditional seasonal-adjustment methods cannot deal with the

Covid-19 shock, and therefore it is necessary to use a more flexible approach and also reinforces

the idea of using raw data in order to correctly identify time series structural components.
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(d) Seasonal Factors γt

Figure 3: United States: Estimated GDP components

7See a large discussion about this theme in Hodrick (2020).
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A result that is complementary to the previous one is the resulting estimated volatilities in

Figure 4. In this case, time varying volatilities are consistent with the Great Moderation

literature8, where there is a significant decline in variances starting in the decade of 1980s,

but these volatilities are also consistent with the end of the Great Moderation, starting with

the Great Financial Crisis and exacerbated with the Tapering Tantrum and the recent Covid-

19 pandemic episode. That is, time varying volatilities exhibit a significant change for the

trend, cycle, seasonal and even the measurement error variance, showing statistical evidence in

favor of the presented flexible approach compared to standard constant variances state space-

system.

The previous result that shows statistical evidence of significant changes in variances could also

be interpreted as the problem model misspecification. Of course, the misspecified model is the

with constant variances (i.e. the standard trend-cycle model and the particular cases such as

Hodrick-Prescott, Baxter-King, etc.), and here we validate our approach through the argument

that using stochastic volatility is a safe strategy against the typical omitted variable bias. As a

matter of fact, continuous changes in variances shed light on the idea that something important

is missing, so that it reinforces the necessity of using richer models with a larger information

set, such as multivariate ones.

Another valid interpretation of these results is the fact that the model should not be linear, and

even that innovations should not be normally distributed, and that this is the main weakness

of standard approaches. Thus, the more flexible is the approach, the more likely the results are

reliable and truthful. Of course, the presented model can be extended in different directions,

but the main conclusion should not change at all.

8See e.g. Stock and Watson (2003), Bernanke (2004), among others.
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Figure 4: United States: Estimated Log-Volatilities
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4.2 Results for Canada

We now turn to examine the results for Canada, where we also use seasonally adjusted data.

In a similar fashion to the results obtained using US data, we observe in Figure 5 an estimated

smooth trend component µt, which is particularly notorious for the two last episodes with large

shocks, i.e. the Great Financial Crisis and the Covid-19 pandemic, as well as for the Great

Moderation in early 1980s.
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Figure 5: Canada: Log-GDP and Trend component µt (1961.Q1-2021.Q1)

In all of the mentioned cases, the change in trend component µt is small relative to the actual

change in GDP, as it is also depicted in Figure 6 (see panel (a)), i.e. the model captures a stable

and smooth trend, and disentangles it from the cyclical component (panel (c)) and the seasonal

factors (panel (d)). Notice that in this case we also find a significant and volatile vector of

seasonal factors, although we are working with seasonally adjusted data.
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Figure 6: Canada: Estimated GDP components

Given the previous results, Figure 7 depicts the significant changes in variances. In particular,

variances from cyclical component and seasonal factors experimented a huge increase in the last

portion of the sample, and this is not the case for the trend and intercept error variances. Trend

and measurement error variances are in line with the Great Moderation hypoyhesis. Finally,

the measurement error variance also exhibits a relevant change over time, which might be valid

specially for the pandemic Covid-19 episode.
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Figure 7: Canada: Estimated Log-Volatilities
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4.3 Results for Peru

We finally turn to examine the results in Figure 8 using Peruvian GDP data, which is no

seasonally adjusted. Estimated smooth trend component µt for Peru captures the structural

change in 1980s associated with a big recession and a hyperinflation episode, as well as the

recovery of the 1990s and the periods ahead. The Covid-19 pandemic episode deserves particular

attention, where although the change is smooth, there is an evident structural break in the trend

path.
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Figure 8: Peru: Log-GDP and Trend component µt (1979.Q1-2021.Q1)

In line with the previous results, Figure 9 (panel (a)) compares the Year-to-Year growth rate of

actual GDP and trend component µt. As it is expected, trend growth rate is smoother than the

actual GDP. More interestingly, in this case we observe large movements both in trend µt
9 and

in the cyclical component ct (panel (c)) for the episodes considered as structural breaks such

9See Aguiar and Gopinath (2007) for discussion about the volatility in both trend and cycle components for
emerging markets.
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as the large recession with hyperinflation and also the Covid-19 pandemic. Finally, seasonal

factors also seem to be well identified, with increasing magnitudes for the last portion of the

sample.
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Figure 9: Peru: Estimated GDP components

Figure 10 suggest that there exist structural changes, especially for the cases of variances as-

sociated with trend and cyclical components, and for seasonal factors. That is, besides the

moderation starting in the recovery period of 1990s, we observe an increase in variances in the

last portion of the sample, which is mainly related with the Covid-19 pandemic. All in all, the

identification of time series components is possible because of the consideration of stochastic
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volatility. We provide more evidence for this hypothesis in the next section.
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Figure 10: Peru: Estimated Log-Volatilities
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5 Model Comparison

Our Baseline specification considers the Stochastic Volatility component and two lags for the

cyclical component, i.e. p = 2. We also consider alternative specifications without the time

varying volatility feature and with only one lag, i.e. p = 1, with the purpose of comparing

and determine which model describes better the data. To do so, a good practice in Bayesian

Econometrics is to compute the Marginal Likelihood for each model (Chib, 2001). That is, we

need to integrate out the posterior distribution across the parameter space, and the see to what

extent a given model is a good representation of the data, i.e. the model with a higher marginal

likelihood will be the best one. The marginal likelihood for each model Mi is

f
(
yT |Mi

)
=

∫
L
(
Θj | yT ,Mi

)
P (Θj |Mi) dj (19)

where the log-likelihood function is represented by equation (12). Given the scales, it is better

to compute the log-marginal likelihood ln f
(
Y T |Mi

)
, and this is estimated using a standard

harmonic mean estimator.

Model Description United States Canada Peru

M1 With Stochastic Volatility and p = 2 −740.2 −686.5 −546.2

M2 No Stochastic Volatility and p = 2 −1102.4 −947.8 −2292.0

M3 With Stochastic Volatility and p = 1 −756.3 −691.4 −655.1

M4 No Stochastic Volatility and p = 1 −1116.1 −1081.1 −2304.6

Table 1: Log-Marginal Likelihood ln f
(
Y T |Mi

)

Given the results in Table 1, it is fairly easy to conclude that the model that has the best fit

in the data is our benchmark approach (with the highest log-marginal density), and that any

variation in the specification considered here delivers a poorer fit relative to the benchmark

case. The consideration of stochastic volatility delivers extremely significant gains relative the
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constant variances case according to the Bayes’s factor BFi,j :

BFi,j = exp
(
ln f

(
Y T |Mi

)
− ln f

(
Y T |Mj

))
(20)

6 Concluding Remarks

In this paper a so-called ’flexible filter’ is proposed, which is of the Trend-Cycle type, but

which considers shocks with time-varying variances (Stochastic Volatility). In general lines, the

consideration of this component is a safe and flexible strategy against structural changes.

The results for United States, Canada and Peru adequately quantify the trend component of

GDP, taking into account that this and other latent variables are subject to shocks whose

variances change over time. The usefulness of the presented filter also lies in the fact that it

quantifies the uncertainty associated with estimated latent factors and variances, which allows

us to present confidence intervals easily.

Our research agenda is related with the application of a similar procedure to multivariate

filters, i.e. semi-structural models and also richer models such as Dynamic Stochastic General

Equilibrium (DSGE) models that can be taken to the data (see e.g. Diebold et al. (2017)).
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A The State Space form of the system

Recall equations (8)-(9), the model re-written as a state-space system with time varying matri-

ces:

yt = DtXt + εt, εt ∼ N (0, Ht)

Xt = AtXt−1 +Rtηt, ηt ∼ N (0, Qt)

with Θ =
(
θ,XT

)
as the parameter set of the model and where Xt = [µt, ct, ct−1, bt, γ

′
t]
′ is a

(2 + p+ S − 1) × 1 vector. The matrix Ht is given by equation (7) with k = y. Then, given

equation (1), with p = 2 and S = 4, we define Dt = Dt−1 = D as the matrix:

D =

[
1 1 0 0 1 0 0

]
(A.1)

Regarding the transition equation we define At = At−1 = A as the matrix:

A =



1 0 0 1 0 0 0

0 φ1 φ2 0 0 0 0

0 1 0 0 0 0 0

0 0 0 1 0 0 0

0 0 0 0 −1 −1 −1

0 0 0 0 1 0 0

0 0 0 0 0 1 0



(A.2)

Then, Qt is a (4× 4) matrix, where its main diagonal is given by equation (7) with k = µ, c, b, γ.

Finally, Rt = Rt−1 = R is a rectangular (7× 4) matrix given by
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R =



1 0 0 0

0 1 0 0

0 0 0 0

0 0 1 0

0 0 0 1

0 0 0 0

0 0 0 0



(A.3)

B Gibbs Sampling details

1. Block 1: Sampling from p
(
εkT | Θ/εkT , Y T

)
: k = (y, µ, b, c, γ)

Given the parameter values of the model µt, ct, bt and γt and equations (1)− (2)− (4)−

(5)− (6), compute the innovations ηkt such that

ηyt = yt − µt − ct − γt (B.1)

ηµt = µt − µt−1 − bt−1 (B.2)

ηct = ct − φ1ct−1 − φ2ct−2 (B.3)

ηbt = bt − bt−1 (B.4)

ηγt = γt +

S−1∑
s=1

γt−1,s (B.5)

Recall that ηkt ∼ i.i.d.N
(
0, εkt

)
. In order to sample volatility εkt we proceed for each k as

follows :

ln

((
ηkt

)2
+ 0.001

)
= ln

(
εkt

)
+ uk,t (B.6)

24



where uk,t ∼ log
(
χ2
)

is approximated through a mixture of 7 normal distributions:

f (uk,t) ≈
7∑
j=1

qjfN
(
uk,t | mj − 1.2704, υ2j

)
(B.7)

In addition, we have the transition equation

ln
(
εkt

)
= ln

(
εkt−1

)
+ εkt , εkt ∼ i.i.d.N (0, σk) (B.8)

As a result, equations (B.6) − (B.8) form a state-space system, so that we can simulate

ln
(
εk
)T

following Kim et al. (1998), i.e. using the algorithm of Carter and Kohn (1994)

conditional on the discrete variable sTk and given the prior (14).

2. Block 2: Sampling from p
(
φ | Θ/φ, yT

)
:

Given the equation (4), we have that

ct =

p∑
l=1

φlct−l + ηct

This expression can be re-arranged as a linear regression model:

ct = φ′Zt + ηct (B.9)

so that draws from the posterior distribution can be obtained from

φ | cT ,ΣT ∼ N
(
φ, V

)
× I (φ) (B.10)

where I (.) is the prior truncation for stationary draws.
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and given the prior (16) we define

V =

V −1 +
T∑

t=p+1

Z′tΣt
−1Zt

−1 (B.11)

and

φ = V

V −1φ+
T∑

t=p+1

Z′tΣt
−1ct

 , (B.12)

with Σt = var (ηct ) for ech t = p+ 1, . . . , T .

3. Block 3: Sampling from p
(
σk | Θ/σk, yT

)
: k = (y, µ, b, c, γ)

Variance parameters are simulated using an Inverse-Gamma distribution. Given the prior

σk ∼ IG
(
dσ2

k
× σk, dσk

)
, the posterior distribution is:

p
(
σk | Θ/σk, yT

)
= IG

(
dσk × σk +

T∑
t=2

u2k,t, dσk + T − 1

)
(B.13)

4. Block 4: Sampling from p
(
XT | Θ/XT , yT

)
: State-Space

Given the State-Space form (8)-(9) with Xt = [µt, ct, ct−1, bt, γ
′
t]
′ (see details in appendix

A):

yt = DtXt + εt, εt ∼ N (0, Ht)

Xt = AtXt−1 +Rtηt, ηt ∼ N (0, Qt)

Given the prior in (17) and the fact that the system is linear and normal, we sample

the posterior distribution of XT using the Kalman Filter and following Carter and Kohn

(1994).

5. Block 5: Sampling from p
(
sTk | Θ/sTk , yT

)
: k = (y, µ, b, c, γ)

Conditional on the values of the other parameters, the term ε̃2k,t is observable, so that we

can sample the states, i.e. the elements of sTk independently from the following discrete
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distributions:

p
(
sk,t = j | ε̃2k,t, σ2k,t

)
∝ fN

(
ln
(
ε̃2k,t + 0.001

)
| lnσ2k,t +mj − 1.2704, υ2j

)
(B.14)

where j ∈ {1, . . . , 7} is the index for the state of the mixture of normals, fN
(
x | µ, σ2

)
is

referred to the normal density function with mean µ, variance σ2 and evaluated at point

x. The values for means, variances and weights for the mixture of normals can be found

in the following table.

s P (s = j) mj υ2j

1 0.00730 −10.12999 5.79596

2 0.10556 −3.97281 2.61369

3 0.00002 −8.56686 5.17950

4 0.04395 2.77786 0.16735

5 0.34001 0.61942 0.64009

6 0.24566 1.79518 0.34023

7 0.25750 −1.08819 1.26261

Table 2: logχ2 Distribution Approximation (Kim et al., 1998)
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C Additional Figures

1 1.2 1.4 1.6

0

20

40

60

80

100

120
1

-1 -0.5 0

0

20

40

60

80

100

120
2

(a) Autorregresive Parameters

4 6

10
-3

0

50

100

2

y

4 6

10
-3

0

50

100

2

4 6

10
-3

0

50

100

2

b

4 6

10
-3

0

50

100

2

c

4 6

10
-3

0

50

100

2

(b) Variance Parameters

Figure C.11: United States: Posterior densities of Hyperparameters
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Figure C.12: Canada: Posterior densities of Hyperparameters
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