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Abstract

Macroeconomic Forecasting in a changing and uncertain environment over time is a great challenge
today. This paper uses a Bayesian VAR with a time-varying mean and stochastic volatility, in
order to elaborate forecasts for the Peruvian economy. The model is flexible enough to consider the
structural changes that potentially occur in the economy. Forecasts are made mainly for variables
such as inflation and GDP growth, although the model might be adapted to include other variables.
The empirical model uses information from the survey of macroeconomic expectations as observables
linked to the long-term means, following Banbura and van Vlodrop (2018). Results show a good fit,
and reaffirm the idea associated with the use of expectations surveys to reduce long-term uncertainty,
while the time varying parameters improve the predictive power of the model.

Resumen

Realizar predicciones macroeconómicas en un entorno cambiante en el tiempo e incierto es hoy en
d́ıa un gran desaf́ıo. Este trabajo utiliza un modelo VAR Bayesiano con una media cambiante en
el tiempo y volatilidad estocástica, y para aśı elaborar proyecciones para Perú. Estas propiedades
mencionadas le brindan al modelo suficiente flexibilidad para considerar los cambios estructurales
que potencialmente se registren en la economı́a. Las proyecciones se realizan principalmente para
variables como inflación y crecimiento del PBI, aunque el modelo es suficientemente flexible como
para ser adaptado en el futuro hacia el uso de otras variables. Este ejercicio utiliza información de la
encuesta de expectativas macroeconómicas como observables para estimar las medias de largo plazo,
siguiendo a Banbura and van Vlodrop (2018). Los resultados muestran un buen ajuste, y reafirman
la idea asociada a que el uso de encuestas de expectativas permite reducir la incertidumbre a largo
plazo, a la vez que los parámetros cambiantes en el tiempo mejoran el poder predictivo del modelo
dinámico utilizado.
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1 Introduction

Macroeconomic Forecasting in a changing and uncertain environment over time is a great chal-

lenge today. As a matter of fact, density forecasts became a relevant output for policy makers

and forecasters, especially after observing the end of the Great Moderation and the outbreak of

the Great Financial Crisis (Clark, 2011). That is, instead of providing simple point-forecasts,

in a Bayesian setup it is possible to exploit the estimated uncertainty of the parameter set from

the data (and some priors), and to combine it efficiently to produce fan charts.

This paper uses a Bayesian VAR with a time-varying mean and stochastic volatility (Banbura

and van Vlodrop, 2018), in order to elaborate forecasts for the Peruvian economy. The main

motivation for using this model is the fact that it is flexible enough to consider the structural

changes that potentially occur in the economy. Forecasts are made mainly for variables such

as inflation and GDP growth, although the model might be adapted to include other variables.

The empirical model uses information from the BCRP’s survey of macroeconomic expectations

as observables linked to the time-varying long-term means.

Our results show a good fit and a considerable predictive power for inflation and output growth

and for the last years previous to the Covid-19 pandemic. These results reaffirm the idea

associated with the use of expectations surveys to reduce long-term uncertainty, while the time

varying parameters improve the predictive power of the model.

Literature Review The existing forecasting models using Bayesian techniques for the Peruvian

economy can be found first in Llosa et al. (2005) and, the main workhorse of the Central Bank

of Peru, i.e. the Quarterly Projection Model (Departamento de Modelos Macroeconómicos,

2009; Winkelried, 2013). The model presented in this paper points towards being an alternative

satellite model which, because of its flexibility, could be extended in the future for using different

sets of variables and specifications.

Bayesian Vector Auto-regressive models with time varying parameters are nowadays widely

used, both for forecasting and for policy experiments, see e.g. Cogley and Sargent (2005),

Primiceri (2005) Del Negro and Primiceri (2015), Canova and Gambetti (2009), Canova and
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Gambetti (2010), Banbura and van Vlodrop (2018), among others. The story would not be

completed if we do not mention the Stochastic Volatility component, which is part of the

Markov Chain Monte Carlo (MCMC) applied literature, starting with Jacquier et al. (1994),

the widely applied approximation of Kim et al. (1998), and recent papers, e.g. Carriero et al.

(2016) among others. There are also plenty of applications of Stochastic Volatility using particle

filters, but since the presented model is based on a state-space structure the is conditionally

linear and normal, we keep it simple and use the popular simulation smoother based on kalman

filter techniques, i.e. see Carter and Kohn (1994) and Durbin and Koopman (2002).

The document is organized as follows: section 2 describes the BVAR model, section 3 describes

the estimation procedure, section 4 discusses the main results, section 5 illustrates predictive

power of the model, and section 6 concludes.

2 The model

Consider the following Vector Autorregressive (VAR) model (Banbura and van Vlodrop, 2018):

yt − τt =

p∑
k=1

Bk (yt−k − τt−k) + εt, εt ∼ i.i.d.N (0, Ht) (1)

where yt is an M × 1 vector of macroeconomic variables, Bk with k = 1, . . . , p are M ×M

matrices of coefficients that satisfy the stability condition, Ht = A−1ΛtA
−1′ is the M × M

covariance matrix, being Λt = diag
(
σ2H,1,t, . . . , σ

2
H,M,t

)
a M ×M diagonal a positive definite

matrix with the shock variances in its main diagonal, and A−1 a lower triangular matrix with

1s in its main diagonal.

The vector τt contains the local mean of each variable. In order to undertake a flexible forecasting

exercise relative to the standard approach of Litterman (1986) and Waggoner and Zha (1999),

we follow Banbura and van Vlodrop (2018) and assume that this vector is time varying according

to:

τt = τt−1 + ηt, ηt ∼ i.i.d.N (0, Vt) (2)
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with Vt = diag
(
σ2V,1,t, . . . , σ

2
V,M,t

)
as a M ×M diagonal a positive definite matrix with the

shock variances in its main diagonal. Under these assumptions, we have that:

limh→∞Et [yt+h | τt] = τt (3)

where Et denotes the expectation conditional on the information set available at time t.

In addition to the data vector yt we also consider survey variables zt, where it is assumed that

they are closely linked to the local mean vector τt as follows1:

zt = Pττt + gt, gt ∼ i.i.d.N (0, Gt) (4)

with Gt = diag
(
σ2G,1,t, . . . , σ

2
G,M,t

)
as a M ×M diagonal a positive definite matrix with the

shock variances in its main diagonal. Pτ is a selection matrix for the variables in yt that are

associated with their corresponding expectations in zt. Innovations gt should not be considered

as measurement errors. Instead, since zt are proxies for the long term value of each variable,

the mentioned innovations capture the short term deviations from these values, and these might

be eventually large. Nevertheless, the inclusion of these additional variables is crucial for disci-

plining the forecasting exercise, as they play the role of democratic priors.

Finally, in this setup we assume Stochastic Volatility, i.e. that variances are also time varying

according to a random walk (Kim et al., 1998):

log
(
σ2i,m,t

)
= log

(
σ2i,m,t−1

)
+ ei,m,t, ei,m,t ∼ i.i.d.N (0, φi,m) (5)

where m = 1, . . . ,M and i = {H,V,G}. The stochastic volatility component is crucial for

mitigating the potential problems of model misspecification. In particular, it is also a well

known fact that the use of stochastic volatility improves the model forecasts in a significant way

(see e.g. Diebold et al. (2017)).

1The dimension of vector zt can be potentially different than vector yt (see Banbura and van Vlodrop (2018)),
but in this paper we simplify this assumption including one survey variable for each component of yt. Last but
not least, the latter specification assumes that both vectors are expressed in the same units.
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The complete model can be cast as a state-space system. In the next section we describe the

estimation setup, together with the data and priors, etc.

3 Bayesian Estimation

3.1 Data and estimation setup

Our baseline specification for the Bayesian Vector Autorregresive model (BVAR) takes into

account four core macroeconomic variables (yt): i) Year-on-year GDP growth (Y), ii) Year-on-

year CPI Inflation (P), iii) Overnight Interbank Rate in soles and in annual terms (R), and iv)

Year-on-year PEN Nominal Depreciation (E). The sample exercise considers the entire inflation

targeting regime, starting in February 2002 up to December 20202, as it is shown in Figure

1.
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Figure 1: Peruvian Macroeconomic Data (yt)

2We do some nowcasting estimations for GDP growth at the end of the sample using the model proposed by
Pérez Forero (2018).
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In addition, the presented model considers Long-term expectations for the four macroeconomic

variables (zt), which will be useful for estimating the time varying means (τt). We employ the

BCRP’s monthly Macroeconomic Expectations Survey3 for the cases of GDP growth, Inflation

and PEN Depreciation. In all cases we take the furthest expectation on the horizon, which

is typically between 18 and 24 months. Fore the case of the expectations associated with

the interbank rate, we use the 18-month interest rate of the Central Bank Securities in soles

(CDBCRP). What is also valuable for the case of the state space models, is the fact that we can

consider data with missing values. As a result, we do not need a balanced panel to undertake

the estimation. In general, we might consider a smaller set of expectations variables zt relative

to the number of variables included in the BVAR model (yt).
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Figure 2: Long Term Expectations (zt)

3See https://www.bcrp.gob.pe/en/estadisticas/encuesta-de-expectativas-macroeconomicas.html
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3.2 Prior specification

Consider the complete parameter set of the model Θ =
{

ΛT , V T , GT , φH , φV , φG, B,A, τ
T
}

,

where the superscript T denotes the full time series of the parameter block. Moreover, B

represents the BVAR matrix coefficients, A is the lower triangular matrix with ones in the main

diagonal and the covariances as free parameters.

For the VAR coefficients β = vec(B) we take an independent normal prior, i.e. a conjugated

prior:

p (β) = N (µB, λ0ΩB) (6)

with µB as the common mean and λ0 as the overall tightness parameter. The covariance matrix

ΩB takes the form of the typical Minnesota prior (Litterman, 1986), i.e. ΩB = diag (ωij,l) such

that

ωij,l =


1
lλ3

, i = j

λ1
lλ3

(
σ̂2
j

σ̂2
i

)
, i 6= j

λ2 , exogenous

(7)

where

i, j ∈ {1, . . . ,M} and l = 1, . . . , p

and σ̂2j is the variance of the residuals from an estimated AR(p) model for each variable j ∈

{1, . . . ,M}.

In this setup, since the variables included in the model are transformed to be stationary, we

set µB = 0dim(β). In addition, we set the parameters λ0 = 0.2, λ1 = 0.5, λ2 = 1, λ3 = 2. We

take the benchmark values of Doan et al. (1984) (see also Canova (2007)) except the one for

the exogenous component λ2, which is typically set to 10, 000. We do not consider this value

since this was set for a constant intercept, and the context is completely different is this model.

In addition, the presented parameter configuration is traditional for US data, and part of the

future agenda is to properly estimate these parameters for the Peruvian case4.

4Giannone et al. (2015) discuss the estimation of some of these hyper-parameters, and this could a natural
extension of this setup.
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The prior distributions for the covariances parameters included in matrix A could be specified

row by row. That is, since the VAR model is recursive, we can estimate parameters equation by

equation assuming that they are independent5. Consider αi, i = 2, . . . ,M , where αi is a column

vector with the free parameters of the ith row in A, i.e. dim (αi) = i− 1. The prior distribution

for each column vector in this case is

αi ∼ N (µα,i,Ωα,i) (8)

However, following Canova and Pérez Forero (2015)6 we extract the vector of parameters as

follows

vec (A) = SAα+ sA (9)

Thus, it is then possible to specify a prior for the entire vector such that:

α ∼ N (µα,Ωα) (10)

where we assume µα = 0dim(α) and Ωα = 10× Idim(α).

In the case of the stochastic volatility processes, we need to specify the distribution of the initial

point and the prior distributions for the variance parameters φ governing the amount of time

variation in the process as follows:

lnσ2H,i,p+1 ∼ N
(
0, υ2H

)
, φH,i ∼ IG

(
dφH × φH,i, dφH

)
, i = 1, . . . ,M (11)

lnσ2V,i,p+1 ∼ N
(
0, υ2V

)
, φV,i ∼ IG

(
dφV × φV,i, dφV

)
, i = 1, . . . ,M (12)

lnσ2G,i,p+1 ∼ N
(
0, υ2G

)
, φG,i ∼ IG

(
dφG × φG,i, dφG

)
, i = 1, . . . ,M (13)

Specifically, we set νH = νV = νG = 100, i.e. we treat this as a diffuse filter since the

prior law of motion of volatility is a random walk. In addition, we set dφH=dφV =dφG=10
and

5See Cogley and Sargent (2005) and Primiceri (2005) and Banbura and van Vlodrop (2018).
6See also Amisano and Giannini (1997)
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φ
H,i

= φ
V,i

= φ
G,i

= 0.1 for i = 1, . . . ,M . A similar parametrization can be found in Carriero

et al. (2016).

Finally, for the case of the time-varying mean τt, we specify the prior for the initial point in a

similar way:

τp+1 ∼ N (µτ ,Ωτ ) (14)

In this case, since this is also a diffuse filter, we set µτ = 0dim(τ) and Ωτ = 100× Idim(τ).

3.3 Gibbs Sampling

Given the priors and the likelihood function of the model, we proceed to estimate the parameter

set Θ. First, we need to recall the Bayes’ Theorem in order to identify the posterior distribution,

so that:

p (Θ | Y ) ∝ p (Y | Θ) p (Θ) (15)

Given the parameter set Θ =
{

ΛT , V T , GT , φH , φV , φG, B,A, τ
T , sT

}
, where sT =

{
sTH , s

T
V , s

T
G

}
is the set of indicators associated with the mixture of normals approximation when simulation

Stochastic Volatility (Kim et al., 1998), and we put this block at the end of the simulation in

line with the correction proposed by Del Negro and Primiceri (2015). We denote Θ/χ as the

parameter vector Θ excluding the element χ. We set k = 1 and consider K as the total number

of draws and Y =
{
yT , zT

}
as the full data set. The simulation algorithm is as follows:

1. Draw p
(
ΛTi | Θ/ΛTi , yT , zT

)
, i = 1, . . . ,M : Stochastic Volatility (Kim et al., 1998)

2. Draw p
(
V T
i | Θ/V T

i , y
T , zT

)
: i = 1, . . . ,M : Stochastic Volatility (Kim et al., 1998)

3. Draw p
(
GTi | Θ/GTi , yT , zT

)
: i = 1, . . . ,MZ : Stochastic Volatility (Kim et al., 1998)

4. Draw p
(
φH,i | Θ/φH,i, yT , zT

)
: Inverse-Gamma simulation, i = 1, . . . ,M

5. Draw p
(
φV,i | Θ/φV,i, yT , zT

)
: Inverse-Gamma simulation, i = 1, . . . ,M

6. Draw p
(
φG,i | Θ/φG,i, yT , zT

)
: Inverse-Gamma simulation, i = 1, . . . ,M
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7. Draw p
(
A | Θ/A, yT , zT

)
: Linear Regression, Normal Distribution

8. Draw p
(
B | Θ/B, yT , zT

)
: Linear Regression, Normal Distribution

9. Draw p
(
τT | Θ/τT , yT , zT

)
: State-Space simulation (Carter and Kohn, 1994)

10. Draw p
(
sT | Θ/sT , yT , zT

)
: Discrete distribution (Kim et al., 1998)

11. If k < K, set k = k + 1 and back to step 1.

See details for each block in Appendix A. We run the Gibbs sampler for K = 50, 000 and discard

the first 25, 000 draws in order to minimize the effect of initial values. In order to reduce the

serial correlation across draws, we set a thinning factor of 10. As a result, we have 2, 500 draws

for conducting inference. After simulation and convergence, we are ready to present the results

of the empirical exercise in the next section.

4 Results

The estimated time-varying means are depicted in Figure 3. The estimated time-varying means

are of course less volatile than the observed macroeconomic data, and the credible set of these

latent variables exhibit a good symptom of precision, although the priors described in subsection

3.2 are standard and not very restrictive.
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Figure 3: Estimated Time varying means τt

Given the stability assumption for the BVAR model, at each point in time these values could

be considered as a long term mean, i.e. the reference value for the long term forecasts. In other

words, if we consider a long horizon, forecasts distribution should converge to a value close to

τt. One of the main limitations of the constant coefficients BVAR forecasting model, although

it is disciplined through the use of shrinkage priors (Litterman, 1986), is the fact that it is

forced to converge to the sample mean7. On the other extreme, full time-varying parameters

BVAR models might be limited by the fact that they are computationally costly (because of

7In this context, in order to improve the forecasting performance, the naive solution is to consider rolling
window, or to select the ”appropriate” sub-sample. None of these alternatives sound particularly robust to
changes in data, if you are willing to use your model every month or quarter.
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the use intensive use of the kalman filter), and they could crash easily if we impose stationarity.

Therefore, they are not suitable for including a large set of variables (even 6 or more). As a

consequence, the estimated model is in the middle of these two extremes, and because of its

flexibility it could be easily extended without worrying about the mentioned issues.

Given the estimated parameters (see appendix B for the rest of the blocks in Θ), in the next

section we present a simple evaluation of the forecasting power of the model.

5 Predictive Power

In order to test the predictive power of the presented model, we perform a forecasting exercise

for a medium term horizon, i.e. two years or h = 24. It is important to remark that the two-

year horizon is the one that is relevant for the BCRP in terms of its monetary policy design.

In addition, the BCRP survey of expectations also has the same maximum horizon.

We proceed as follows: First, we need to recall the state space structure of the model, in

particular equation (1)

yt − τt =

p∑
k=1

Bk (yt−k − τt−k) + εt, εt ∼ i.i.d.N (0, Ht)

together with the transition equation (2)

τt = τt−1 + ηt, ηt ∼ i.i.d.N (0, Vt)

and the volatilities in equation (5).

log
(
σ2i,m,t

)
= log

(
σ2i,m,t−1

)
+ ei,m,t, ei,m,t ∼ i.i.d.N (0, φi,m)

where m = 1, . . . ,M and i = {H,V,G}. See the complete state-space form in Appendix A.

The forecasting exercise starts at point t = T . Then, repeat the followings steps for t =

T + 1, . . . , T + h for a given draw of Θ:
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1. Draw ei,m,t ∼ i.i.d.N (0, φi,m) for m = 1, . . . ,M and i = {H,V,G}.

2. Forecast log
(
σ2i,m,t+1

)
using equation (5) for m = 1, . . . ,M and i = {H,V,G}.

3. Draw εt ∼ i.i.d.N (0, Ht) and ηt ∼ i.i.d.N (0, Vt)

4. Forecast τt+1 and yt+1 using the system (39)-(40).

In addition, order assess the uncertainty in an accurate way, we repeat the algorithm l = 1, . . . , L

times and take averages in each point in time. As a result, we have the fancharts for selected

dates depicted in figures 4, 5, 6, 7 and 8 together with the ex-post observed values for comparison

purposes.
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Figure 4: Forecast starting in Dec-2015
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Figure 5: Forecast starting in Dec-2016

The forecasting model performs particularly well for the case of inflation, and the for GDP

growth. It is important to clarify that this is not a nowcasting or a short term horizon forecast

model. Instead, given the fact that we are using long-term expectations, and that we have

estimated the time-varying long term means, we should consider this model at least as a medium

run one. The presented fancharts consider a horizon of two years (h = 24) using monthly data.

Although the horizon is quite large, density forecasts look quite stable and converge to the local

mean τt.
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Figure 6: Forecast starting in Dec-2017

Finally, given the extremely large shock of the Covid-19 pandemic, and the given the GDP

growth and inflation expectations at the end of 2019, it was simply impossible to forecast eco-

nomic activity conditional on the information set available at that point in time. Nevertheless,

since inflation and its expectations remained stable, the forecast at the end of the year was very

close the center of the target range (2%).
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Figure 7: Forecast starting in Dec-2018
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Figure 8: Forecast starting in Dec-2019

6 Concluding Remarks

This paper uses a Bayesian VAR with a time-varying mean and stochastic volatility (Banbura

and van Vlodrop, 2018), in order to elaborate forecasts for the Peruvian economy. Density

Forecasts are made mainly for variables such as inflation and GDP growth, and they provide a

useful approach to quantify the uncertainty regarding both parameters and model specification.

These outputs are particularly relevant for Central Banks and other policy makers. Moreover,

the empirical model uses information from the BCRP’s survey of macroeconomic expectations

as observables linked to the time-varying long-term means.

Our density forecast results show a good fit and a considerable predictive power for inflation

and output growth and for the last years, and they reaffirm the idea associated with the use of

expectations surveys to reduce long-term uncertainty, while the time varying parameters and

stochastic volatility improve the predictive power of the model, since they are a safe strategy

against model misspecification.

The future agenda considers the adaptation of the model to include other relevant variables

for policy makers, such as money aggregates, different financial variables with an informative

component, and also using different sources of Surveys of Expectations. We expect to continue
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expanding the set of satellite models in order to boost our forecasting capacity.
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A Gibbs Sampling details

1. Block 1: Sampling from p
(
ΛTi | Θ/ΛTi , yT , zT

)
, i = 1, . . . ,M

Given the parameter values of the model B and τt, compute the innovations εt such that

εt = (yt − τt)−
p∑

k=1

Bk (yt−k − τt−k) , t = p+ 1, . . . , T (16)

Recall that εt ∼ i.i.d.N (0, Ht), with Ht = A−1ΛtA
−1′ and Λt = diag

(
σ2H,1,t, . . . , σ

2
H,M,t

)
.

Therefore, the standardized innovations are ε̃t = Aεt. In order to sample volatilities Λt

we proceed for each i = 1, . . . ,M as follows:

ln
(
ε̃2i,t + 0.001

)
= ln

(
σ2H,i,t

)
+ uH,i,t (17)

where uH,i,t ∼ log
(
χ2
)

is approximated through a mixture of 7 normal distributions:

f (uH,i,t) ≈
7∑
j=1

qjfN
(
uH,i,t | mj − 1.2704, υ2j

)
(18)

In addition, we have the transition equation

ln
(
σ2H,i,t

)
= ln

(
σ2H,i,t−1

)
+ eH,i,t, eH,i,t ∼ i.i.d.N (0, φH,i) (19)

As a result, equations (17) − (19) form a state-space system, so that we can simulate

log
(
σ2H,i

)T
following Kim et al. (1998), i.e. using the algorithm of Carter and Kohn

(1994) conditional on the discrete variable sTH,i and given the prior (11).

2. Block 2: Sampling from p
(
V T
i | Θ/V T

i , y
T , zT

)
: i = 1, . . . ,M

Given the parameter values of the model τt, compute the innovations ηt such that

ηt = τt − τt−1 (20)
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Recall that ηt ∼ i.i.d.N (0, Vt), with Vt = diag
(
σ2V,1,t, . . . , σ

2
V,M,t

)
. In order to sample

volatilities Vt we proceed for each i = 1, . . . ,M as follows:

ln
(
η2i,t + 0.001

)
= ln

(
σ2V,i,t

)
+ uV,i,t (21)

where uV,i,t ∼ log
(
χ2
)

is approximated through a mixture of 7 normal distributions:

f (uV,i,t) ≈
7∑
j=1

qjfN
(
uV,i,t | mj − 1.2704, υ2j

)
(22)

In addition, we have the transition equation

ln
(
σ2V,i,t

)
= ln

(
σ2V,i,t−1

)
+ eV,i,t, eV,i,t ∼ i.i.d.N (0, φV,i) (23)

As a result, equations (21) − (23) form a state-space system, so that we can simulate

log
(
σ2V,i

)T
following Kim et al. (1998), i.e. using the algorithm of Carter and Kohn

(1994) conditional on the discrete variable sTV,i and given the prior (12).

3. Block 3: Sampling from p
(
GTi | Θ/GTi , yT , zT

)
: i = 1, . . . ,MZ

Given the parameter values of the model τt, compute the innovations gt such that

gt = zt − PZτt (24)

Recall that gt ∼ i.i.d.N (0, Gt), with Gt = diag
(
σ2G,1,t, . . . , σ

2
G,M,t

)
. In order to sample

volatilities Gt we proceed for each i = 1, . . . ,MZ as follows:

ln
(
g2i,t + 0.001

)
= ln

(
σ2G,i,t

)
+ uG,i,t (25)

where uG,i,t ∼ log
(
χ2
)

is approximated through a mixture of 7 normal distributions:

f (uG,i,t) ≈
7∑
j=1

qjfN
(
uG,i,t | mj − 1.2704, υ2j

)
(26)
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In addition, we have the transition equation

ln
(
σ2G,i,t

)
= ln

(
σ2G,i,t−1

)
+ eG,i,t, eG,i,t ∼ i.i.d.N (0, φG,i) (27)

As a result, equations (25) − (27) form a state-space system, so that we can simulate

log
(
σ2G,i

)T
following Kim et al. (1998), i.e. using the algorithm of Carter and Kohn

(1994) conditional on the discrete variable sTG,i and given the prior (13).

4. Block 4: Sampling from p
(
φH,i | Θ/φH,i, yT , zT

)
: i = 1, . . . ,M

Variance parameters are simulated using an Inverse-Gamma distribution. Given the prior

φH,i ∼ IG
(
dφH × φH,i, dφH

)
, the posterior distribution is:

p
(
φH,i | Θ/φH,i, yT , zT

)
= IG

dφH × φH,i +

T∑
t=p+2

u2H,i,t, dφH + T − p− 1

 (28)

5. Block 5: Sampling from p
(
φV,i | Θ/φV,i, yT , zT

)
: Inverse-Gamma simulation, i = 1, . . . ,M

Variance parameters are simulated using an Inverse-Gamma distribution. Given the prior

φV,i ∼ IG
(
dφV × φV,i, dφV

)
, the posterior distribution is:

p
(
φV,i | Θ/φV,i, yT , zT

)
= IG

dφV × φV,i +

T∑
t=p+3

u2V,i,t, dφV + T − p− 2

 (29)

6. Block 6: Draw p
(
φG,i | Θ/φG,i, yT , zT

)
: Inverse-Gamma simulation, i = 1, . . . ,MZ Vari-

ance parameters are simulated using an Inverse-Gamma distribution. Given the prior

φG,i ∼ IG
(
dφG × φG,i, dφG

)
, the posterior distribution is:

p
(
φG,i | Θ/φG,i, yT , zT

)
= IG

dφG × φG,i +

T∑
t=tz,i+1

u2G,i,t, dφV + T − tz,i

 (30)

7. Block 7: Sampling from p
(
A | Θ/A, yT , zT

)
: Linear Regression, Normal Distribution

Consider the BVAR residual terms εt ∼ i.i.d.N (0, Ht). Recall that Ht = A−1ΛtA
−1′
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and Λt = diag
(
σ2H,1,t, . . . , σ

2
H,M,t

)
. Therefore, the standardized innovations are Aεt = ε̃t.

Recall also that vec (A) = SAα + sA, so that (Amisano and Giannini, 1997; Canova and

Pérez Forero, 2015):

vec (Aεt) =
(
ε′t ⊗ I

)
(SAα+ sA) (31)

As a consequence we can define ẽt = (ε′t ⊗ I) sA and x̃t = − (ε′t ⊗ I)SA such that we have

the following linear-normal regression model:

ẽt = x̃tα+ ε̃t (32)

Given the prior α ∼ N (µα,Ωα) we sample the posterior

p
(
α | Θ/α, yT

)
= N

(
α, V α

)
(33)

with

V α =

Ω−1α +

T∑
t=p+1

x̃′tΛ
−1
t x̃t

−1 (34)

α = V α

Ω−1α µα +

T∑
t=p+1

x̃′tΛ
−1
t ẽt

 (35)

8. Block 8: Sampling from p
(
B | Θ/B, yT , zT

)
: Linear Regression, Normal Distribution

Given the BVAR model in (1), let β = vec (B) and given the prior (6), then the posterior

distribution of β is Normal according to(Koop and Korobilis, 2010):

p
(
β | Θ/β, yT

)
= N

(
β, V

)
(36)

with

V =

λ−10 Ω−1B +
T∑

t=p+1

X ′tH
−1
t Xt

−1 (37)

β = V

λ−10 Ω−1B µB +
T∑

t=p+1

X ′tH
−1
t (yt − τt)

 (38)
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where Xt = x′t ⊗ IM and xt =
[
(yt−1 − τt−1)′ , . . . , (yt−p − τt−p)′

]′
.

9. Block 9: Sampling from p
(
τT | Θ/τT , yT , zT

)
: State-Space simulation (Carter and Kohn,

1994)

We cast the BVAR model and observables in a linear state space model, such that

 zt

yt

 =

 Pτ 0 . . . 0

I I . . . 0




τt

yt − τt

. . .

yt−p+1 − τt−p+1


+

 I

0

 gt (39)



τt

yt − τt

. . .

yt−p+1 − τt−p+1


=



I 0 . . . 0 0

0 B1 . . . Bp−1 Bp

0 I . . . 0 0

. . . . . . . . . . . . . . .

0 0 . . . I 0





τt−1

yt−1 − τt−1

. . .

yt−p − τt−p


+



I 0

0 I

0 0

. . . . . .

0 0



 ηt

εt



(40)

where all the innovations are orthogonal and normally distributed with time varying vari-

ances, i.e. gt ∼ i.i.d.N (0, Gt), ηt ∼ i.i.d.N (0, Vt) and εt ∼ i.i.d.N (0, Ht). Given the

prior in (14) and the fact that the system is linear and normal, we sample the posterior

distribution of τT using the Kalman Filter and following Carter and Kohn (1994).

10. Block 10: Sampling from p
(
sT | Θ/sT , yT , zT

)
: Discrete distribution (Kim et al., 1998)

Conditional on the values of the other parameters, the terms ε̃2i,t, η
2
i,t and g2i,t are observ-

able, so that we can sample the states, i.e. the elements of sT =
{
sTH , s

T
V , s

T
G

}
indepen-

dently from the following discrete distributions:

p
(
sH,i,t = j | ε̃2i,t, σ2H,i,t

)
∝ fN

(
ln
(
ε̃2i,t + 0.001

)
| lnσ2H,i,t +mj − 1.2704, υ2j

)
(41)
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p
(
sV,i,t = j | η2i,t, σ2V,i,t

)
∝ fN

(
ln
(
η2i,t + 0.001

)
| lnσ2V,i,t +mj − 1.2704, υ2j

)
(42)

p
(
sG,i,t = j | g2i,t, σ2H,i,t

)
∝ fN

(
ln
(
g2i,t + 0.001

)
| lnσ2G,i,t +mj − 1.2704, υ2j

)
(43)

where j ∈ {1, . . . , 7} is the index for the state of the mixture of normals, fN
(
x | µ, σ2

)
is

referred to the normal density function with mean µ, variance σ2 and evaluated at point

x. The values for means, variances and weigths for the mixture of normals can be found

in the following table.

s P (s = j) mj υ2j

1 0.00730 −10.12999 5.79596

2 0.10556 −3.97281 2.61369

3 0.00002 −8.56686 5.17950

4 0.04395 2.77786 0.16735

5 0.34001 0.61942 0.64009

6 0.24566 1.79518 0.34023

7 0.25750 −1.08819 1.26261

Table 1: logχ2 Distribution Approximation (Kim et al., 1998)
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B The posterior distribution of hyper-parameters
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Figure 9: Log-Volatility Λ
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Figure 10: Covariance Parameters α
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Figure 11: Log-Volatility V
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Primiceri, G. (2005). Time varying structural vector autoregressions and monetary policy.

Review of Economic Studies, 72, 821–852.

Waggoner, D. F. and Zha, T. (1999). Conditional forecasts in dynamic multivariate models.

The review of economics and statistics, 81 (4), 639–651.

29



Winkelried, D. (2013). Modelo de proyección trimestral del bcrp: Actualización y novedades.

Revista Estudios Econiómicos, 26, 9–60.
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