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Abstract

Empirical research indicates that the volatility of stock return time series have long memory. How-
ever, it has been demonstrated that short memory processes contaminated with random level shifts
can often be confused as being long memory. Often this feature is referred to as spurious long
memory. This paper represents an empirical study of the random level shift (RLS) model using
the approach of Lu and Perron (2010) and Li and Perron (2013) for the volatility of daily stocks
returns data for �ve Latin American countries. The RLS model consists of the sum of a short term
memory component and a level shift component, where the level shift component is governed by
a Bernoulli process with a shift probability �. The estimation results suggest that the level shifts
in the volatility of daily stocks returns data are infrequent but once they are taken into account,
the long memory characteristic and the GARCH e¤ects disappear. An out-of-sample forecasting
exercise is also provided.

JEL Classi�cation: C22.

Keywords: Returns, Volatility, Long Memory, Random Level Shifts, Kalman Filter, Forecasting,
Latin America.

Resumen

La evidencia empírica indica que la volatilidad de las series de retornos bursátiles (o �nancieras en
general) poseen la característica de larga memoria. Sin embargo, de otro lado, existe evidencia que
ha mostrado que los procesos de memoria corta contaminados con cambios de nivel aleatorios o
esporádicos a menudo pueden ser confundidos con procesos de larga memoria en cuyo caso se dice
que esta larga memoria es espuria. En este caso se tiene prcesos con memoria larga espúria. Este
trabajo representa un estudio empírico del modelo de cambio de nivel aleatorio (RLS), utilizando
el enfoque de Lu y Perron (2010) y Li y Perron (2013) para la volatilidad de los retornos bursátiles
diarios de cinco países de América Latina. El modelo RLS consiste en la suma de un componente
de memoria corta y un componente de cambio de nivel aleatorios, el cual se rige por un proceso de
Bernoulli con una probabilidad �. Los resultados de las estimaciones sugieren que los cambios de
nivel son poco frecuentes, pero una vez que se tienen en cuenta, la característica de larga memoria
y los efectos GARCH desaparecen. También se proporciona un ejercicio de pronóstico fuera de
muestra.

Classi�cación JEL: C22.

Palabras Claves: Retornos, Volatilidad, Larga Memoria, Cambios de Nivel Aleatorios, Filtro de
Kalman, Predicción, América Latina.
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1 Introduction

There are two important stylized facts that are found in returns from �nancial market variables
such as stock and exchange rate: the long memory behavior of the volatility of returns and the
presence of GARCH e¤ects. Fractionally integrated processes have become a standard class of
models to describe the long memory features of economic and �nancial time series data. Let
fytgTt=1 be a stationary time series. Let 
y(�) be the autocovariance function of yt, so yt has long
memory if 
y(�) = c(�)�2d�1, for � ) 1; where c(�) is a smooth variation function. It implies
that the autocorrelation function (ACF) decays to a hyperbolic rate3. On the other hand, fytgTt=1
has spectral density function fy(!) in the frequency !, so yt has long memory if fy(w) = g(!)!�2d,
for ! ) 0; where g(!) is a smooth variation function in a neighborhood of the origin, which means
that for all real numbers t, it is veri�ed that g(t!)=g(!)) 1 for w ) 0. When d > 0, the spectral
density function is growing for frequencies that are increasingly close to the origin. The rate of
divergence to in�nity depends on the given value of the parameter d.

A vast literature exists in estimating the long memory parameter d. Granger and Joyeux
(1980) developed by �rst time the notion of fractional integration in terms of an in�nite �lter
corresponding to the expansion of (1 � L)d, where L is the lag operator. When this expansion is
applied to a white noise, then we get a series with long memory. Then, Hosking (1981) developed
the ARFIMA(p,d,q) model that generalizes the autoregressive integrated moving average processes
incorporating fractional values for the integration parameter d. When 0 < d < 0:5, the fractional
integration process has long memory and when �0:5 < d < 0:5 the series is stationary. Geweke
and Porter-Hudak (1983) show that the asymptotic distribution of the integration parameter d
has a Normal distribution based on a linear regression of the log-periodogram with a deterministic
regressor; see also Robinson (1995).

In the context of GARCH models, Baillie et al. (1996) proposed the FIGARCH model, where
the fractional integration parameter determines that shocks to the conditional variance disappear

1This paper is drawn from the Thesis of Roxana Tramontana Tocto at the Department of Economics, Ponti�cia
Universidad Católica del Perú. We thank useful comments of Paul Castillo (Central Bank of Peru), Rodolfo Cer-
meño (CIDE), Jiawen Xu (Shangai University of Finance and Economics), Zhongjun Qu and Pierre Perron (Boston
University), Patricia Lengua Lafosse (PUCP), Mauricio Zevallos (Universidad Estadual de Campinas, Brazil) and
participants at the XXXII Meeting of the Central Bank of Peru (2014). We also thank Marco Vega (BCRP) and
useful comments of an anonymous Referee. Any remaining errors are our responsibility.

2Address for Correspondence: Gabriel Rodríguez, Department of Economics, Ponti�cia Universidad Católica del
Perú, Av. Universitaria 1801, Lima 32, Lima, Perú, Telephone: +511-626-2000 (4998), Fax: +511-626-2874. E-Mail
Address: gabriel.rodriguez@pucp.edu.pe.

3A practical de�nition of long memory is to state that the sum of the autocorrelations is in�nite; that is,
limT)1

PT
j=�T j�j j =1.
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at a hyperbolic rate of decay. This characteristic allows the temporal dependencies in �nancial
market volatility to be explained. Bollerslev and Mikkelsen (1996) extended the model to the
fractional integration exponential GARCH (FIEGARCH). In both cases, the fractional parameter
is signi�cant and asymmetries are identi�ed. Ding et al. (1993) estimates the ARCH model taking
into account the squared returns and absolute returns and show the existence of long memory.
Then, the authors propose the asymmetric power GARCH model (APARCH) allowing the long
memory parameter in the volatility and the asymmetry parameter. Finally, Lobato and Savin
(1998) apply a semiparametric test to detect the presence of long memory in the daily S&P500
stock returns and their squares. The short memory null hypothesis is not rejected for the level of
stock returns while the null hypothesis is rejected for the squared and absolute returns. However,
the authors argue that the �nding results could be spurious in the squared stock returns due to the
nonstationarity of the series and in the absolute values due to the aggregation.

It has been demonstrated in studies that structural break processes and processes with non-
linear features can often be confused as being long memory. Often this feature is referred to as
spurious long memory. A steadily growing literature has developed with emphasis on whether it
is possible to empirically discriminate between true long memory processes (or fractionally inte-
grated processes) and spurious long memory processes. Perron (1989, 1990) has shown that when
there is a contaminated stationary process with structural breaks, the sum of the autoregressive
coe¢ cients is biased to the unit. Diebold and Inoue (2001) show that the change of stochastic
regime is easily confused with long memory, even asymptotically, provided that the probabilities of
structural breaks are small; see also Engle and Smith (1999). Using Monte Carlo simulation, they
emphasize the relevance of the theory in �nite samples and make it clear the confusion is not merely
a theoretical question, but a real possibility in the empirical applications in economic and �nance
time series. Gourieroux and Jasiak (2001) �nd that nonlinear time series with infrequent linear
breaks could have long memory on the basis of the estimation of the correlogram instead of the
estimation of the fractional parameter. This �ndings show that these series and not the fractionally
integrated processes with i:i:d: innovations would generate the hyperbolic decay of the autocorrelo-
gram. Granger and Hyung (2004) show that the slow decay in autocorrelation and others properties
of fractionally integrated models are generated by occasional breaks. The authors show that not
taking into account the breaks causes the presence of long memory in the ACF and the fractional
parameter estimated using the method of Geweke and Porter-Hudak (1983) is biased. Mikosch and
St¼aric¼a (2004a) provide the theoretical basis to explain two stylized facts that are observed in the
logarithm of returns: long range dependence in volatility and the integrated GARCH (IGARCH)
if it assumed that the data are not stationary. The simulations show that the time series with
changing unconditional variance produce estimates of the long memory parameter d that may be
erroneously interpreted as evidence of long memory under the assumption os stationarity. There is
evidence that the characteristic of long range dependence is caused by feasible structural changes in
the logarithm of stock market returns. Also Mikosch and St¼aric¼a (2004b) propose a goodness of �t
test that shows the similarity between the spectral density of a GARCH process and the logarithm
of stock market returns that detect changes in the structure of the data that are related to changes
in the unconditional variance. These changes would induce long range dependence in the ACF of
absolute returns; see also St¼aric¼a and Granger (2005).

Perron and Qu (2010) perform an analysis of various statistics when the underlying model is a
short memory process with random level shifts rather than a fractionally integrated process. They
analyze the estimates of the ACF, the periodogram, and the log-periodogram. The results show that
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a short memory process with level shifts is a good candidate for modeling volatility. The estimates
clearly follow a pattern that would be obtained if the underlying process was short memory with
level shifts. Lu and Perron (2010) estimate a random level shift (RLS) model that consists of the
sum of a short term process and a level shift component, where the shift component are governed
by a Bernoilli process with a shift probability �. The estimation method transforms the model into
linear state-space equations with a mixture of Normal innovations to apply the Kalman �lter. The
results show that there is reduced evidence of correlation in the remaining noise; therefore, there is
no evidence of long memory. On the other hand, once the level shifts found are introduced into a
GARCH model and applied to the series, any evidence of GARCH e¤ects disappear. For predictions
outside the sample of squared returns, in most cases the RLS model has a better performance than
the GARCH (1,1) model and than the fractionally integrated GARCH. Similar results are found
by Li and Perron (2013) but applied to two exchange rates.

Empirical studies for �nancial variables in Latin America are very scarce. This essay forms
part of a research agenda suggested in Humala and Rodríguez (2013). The main aim of this paper
is to estimate a RLS model to the volatilities of returns of �ve Latin American �nancial markets
following Lu and Perron (2014) and Li and Perron (2013). The results show that the probability
of level shifts is small but is responsible for the presence of long memory in the volatilities of the
series analyzed. Having estimated the probability of level shifts, the exact number of such level
shifts can be calculated. Thus, the component obtained as a di¤erence between the volatility series
and the level shifts possesses an ACF that indicates an absence of long memory. Therefore, we
show that short memory processes contaminated with random level shifts can be confused as being
long memory in the data considered. Finally, an exercise of out-of-sample forecasting shows that
the RLS model has better performance than traditional models for modeling long memory such as
the ARFIMA (p,d,q) models.

This paper is structured as follows: Section 2 presents the RLS model and some details related
to the estimation algorithm. Section 3 presents the empirical results, which are divided into two
aspects: the e¤ects of the level shift component on long memory and on GARCH components.
Section 4 discusses the performance of the RLS in terms of prediction, while Section 5 presents the
conclusions.

2 The Model

We utilize a simple mixture model that is a combination of a short memory process that depends
on a Binomial distribution. Following the notation of Lu and Perron (2014), the RLS model is
speci�ed as follows:

yt = a+ � t + ct; (1)

� t = � t�1 + �t;

�t = �t�t;

where a is a constant, � t is the level shift component and ct is the short memory process, �t, is a
Binomial variable, which takes the value of 1 with probability � and the value of 0 with probability
(1��). In this way, the third expression in (1), when �t assumes the value of 1, a random level shift
�t occurs with a distribution �t � i:i:d:N(0; �2�). The short memory process (in its general form) is
de�ned by the process ct = C(L)et, with et � i:i:d: N(0; �2e) and Ejetjr <1 for values r > 2 and
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where C(L) =
P1
i=0 ciL

i;
P1
i=0 ijcij <1 y C(1) 6= 0. Likewise, it is assumed that �t, �t and ct are

mutually independent. Based on the results of Lu and Perron (2010) and Li and Perron (2013),
even when it would be worthwhile to consider the component et as a random variable (noise), in
this paper we model this component as an AR(1) process; that is, ct = �ct�1 + et4.

In comparison with the Hamilton�s Markov-Switching model (1989), this model does not limit
the magnitude of level shifts, meaning that any number of patterns is possible. Moreover, the
probability 0 or 1 does not depend on past facts, unlike the Markov model. Note that the process
�t can be described as �t = �t�1t + (1 � �t)�2t, with �it � i:i:d:N(0; �2�i) for i = 1; 2 and �2�1 =
�2�; �

2
�2
= 0. The �rst di¤erence model, with the object of eliminating the autoregressive process

of the level shift component, only depends on the Binomial process: �yt = � t � � t�1 + ct � ct�1 =
ct � ct�1 + �t, and passing to the state space form, the measurement and transition equations are
obtained, respectively: �yt = ct�ct�1+�t, ct = �ct�1+et. In matrix form we have �yt = HXt+�t

and Xt = FXt�1 + Ut, where, Xt = [ct; ct�1], F =

24� 0

1 0

35, H = [1;�1]0 . In this case, the

�rst row of the matrix F shows the coe¢ cient � of the autoregressive part of the short memory
component. Moreover, U is a Normally distributed vector of dimension 2 with mean 0 and variance:

Q =

24�2e 0

0 0

35. In comparison with the standard state space model, the major di¤erence in the
current model is that the distribution of �t is a mixture of Normal di¤erences with variance �2� and
0, occurring with probabilities � and 1� �, respectively5.

The model set out above is a special case of the models employed in Wada and Perron (2006)
and Perron and Wada (2009). In this case, there only exist shocks that a¤ect the level of the
series, with the restriction imposed that the variance of one of the components of the mixture
of distributions is zero. The basic input for the estimation is the increase of the states through
realizations of the mixture at time t so that the Kalman �lter can be used to form the conditional
likelihood function to the realizations of the states. The latent states are eliminated from the �nal
likelihood expression by adding on all possible realizations of the states. In consequence, despite its
fundamental di¤erences, the model takes a structure that is similar to Hamilton�s Markov-Switching
model (1994). Let Yt = (�y1; :::;�yt) the vector of available observations at time t and denote
the vector of parameters by � = [�2�; �; �

2
e; �]. By adopting the notation used in Hamilton (1994),

1 represents a (4 � 1) vector of ones, the symbol � denotes element-by-element multiplication,b�ijtjt�1 = vec(e�tjt�1) with the (i; j)th element of e�tjt�1 being Pr(st�1 = i; st = jjYt�1; �) and !t =
vec(e!t) with the (i; j)th element of e!t being f(�ytjst�1 = i; st = j; Yt�1; �) for i; j 2 f1; 2g.
Thus, we have st = 1 when �t = 1; that is, a level shift occurs. Using the same notation as
Lu and Perron (2010), the logarithm of the likelihood function is ln(L) =

PT
t=1 ln f(�ytjYt�1; �),

where f(�ytjYt�1; �) =
P2
i=1

P2
j=1 f(�ytjst�1 = i; st = j; Yt�1; �) Pr(st�1 = i; st = jjYt�1; �) �

10(b�tjt�1 � !t). By applying conditional probability rules, the Bayes rule and the independence of

4We opted for an AR(1) speci�cation but if the coe¢ cient � is statistically insigni�cant, ct = et. Estimates
with longer lags for the AR process showed no signi�cance of the respective parameters. This is consistent with the
statements by the RLS model because if the persistence or long memory in the volatility of the series analyzed is
mainly explained by rare or sporadic level shifts, then the short-memory component contains little persistence or it
is a noise. This justi�es ct is modeled as a noise or maximum as an AR (1) process.

5Note that this model could be extended to model the short memory component as an ARMA process.
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st with respect to past realizations, we have e�kitjt�1 = Pr(st�2 = k; st�1 = ijYt�1; �). The evolution
of b�tjt�1 can be expressed as:26666664

e�11t+1jte�21t+1jte�12t+1jte�22t+1jt

37777775 =
26666664

� � 0 0

0 0 � �

1� � 1� � 0 0

0 0 1� � 1� �

37777775

26666664
e�11tjte�21tjte�12tjte�22tjt

37777775 ,

which is equal to b�t+1jt = �b�tjt with b�tjt = (b�tjt�1�!t)
10(b�tjt�1�!t) . In consequence, the conditional likelihood

function for �yt follows the following Normal density:

e!ijt = f(�ytjst�1 = i; st = j; Yt�1; �) =
1p
2�
jf ijt j�1=2 exp(�

vij
0

t (f
ij
t )

�1=2vijt
2

); (2)

where vijt is the prediction error and f ijt is its variance, and these terms are de�ned as: vijt =

�yt � �yitjt�1 = �yt � E[�ytjst = i; Yt�1; �], and f
ij
t = E(vijt v

ij0

t ). The best predictions for the

state variable and its respective conditional variance in st�1 = i are Xi
tjt�1 = FXi

t�1jt�1, and

P itjt�1 = FP it�1jt�1F
0 +Q, respectively.

The measurement equation is�yt = HXt+�t; where the error �t has mean 0 and a variance that
can take values R1 = �2� with probability � or R2 = 0 with probability (1��). Thus, the prediction
error is vijt = �yt�HX i

tjt�1 and its variance is f
ij
t = HP itjt�1H

0+Rj . In this way, given that st = j

y st�1 = i and using update formulas, we have Xij
tjt = Xi

tjt�1 + P
i
tjt�1H

0(HP itjt�1H
0 +Rj)�1(�yt �

HXi
tjt�1) and P

ij
tjt�1 = P itjt�1�P

i
tjt�1H

0(HP itjt�1H
0+Rj)�1HP itjt�1. With the objective of reducing

the dimensionality problem in the estimation, Lu and Perron (2010) use the re-collapsing procedure
suggested by Harrison and Stevens (1976). By doing so, !ijt is una¤ected by the history of the states
before time t � 1. We have four possible states corresponding to St = 1 when (st = 1; st�1 = 1),
St = 2 when (st = 1; st�1 = 2), St = 3 when (st = 2; st�1 = 2) and St = 4 when (st = 2; st�1 = 2)
and the matrix � is de�ned as before. Taking the de�nitions of !t, b�tjt, b�t+1jt, the group of
conditional probabilities and one-period forward predictions, the same structure as a version of
Hamilton�s Markov model (1994) is obtained. Nonetheless, the EM algorithm cannot be utilized.
This is because the mean and the variance in the function of conditional density are non-linear
functions of the parameters � and of the past realizations f�yt�j ; j � 1g. Likewise, the conditional
probability of being in a given regime b�tjt, it is not separable from the conditional densities !t. For
further details, see Lu and Perron (2010), Li and Perron (2013), and Wada and Perron (2006).

Once the point estimate of � is obtained, a possible path is the use of a smoothed estimate of the
level shift component � t. Nonetheless, in this context of abrupt structural changes, the conventional
smothers perform poorly. Instead of this, we use the method proposed by Bai and Perron (1998,
2003) to obtain the dates on which the level shifts occur as well as the means (averages) inside
each segment. Thus, we use the estimate � to obtain an estimate of the number of level shifts
and the Bai and Perron method (1998, 2003) to obtain the estimates of break dates that globally

minimize the following squared residuals:
m+1X
i=1

TiX
t=Ti�1+1

[yt � �i]2, where m is the number of breaks,
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Ti (i = 1; 2; :::;m) are the break dates with T0 = 0 and Tm+1 = T and �i (i = 1; 2; :::;m+1) are the
means (averages) inside each regime, which can be estimated once the break dates are estimated.
This method is e¢ cient and can manage a large number of observations; see Bai and Perron (2003)
for further details6.

3 Empirical Results

We use �ve daily series that are the volatilities of the returns of the major Latin American stock
markets: MERVAL (Argentina) from 05/01/1988 to 13/06/2013 (6284 observations), IBOV (Brazil)
from 02/01/1992 to 13/06/2013 (5303 observations), IPSA (Chile) from 03/01/1989 to 13/06/2013
(6097 observations), MEXBOL (Mexico) from 20/01/1994 to 13/06/2013 (4840 observations), and
IGBVL (Peru) from 03/01/1990 to 13/06/2013 (5832 observations). The returns series are gener-
ated as rt = ln(Pt) � ln(Pt�1), where Pt is the closing price index of the respective stock market.
Following recent literature (see Lu and Perron (2010), Li and Perron (2010), Xu and Perron (2010),
among others), we model log-absolute returns7. When returns are zero or close to it, the log-absolute
transformation implies extreme negative values. Using the estimation method described in Section
2.1, these outliers would be attributed to the level shifts component and thus bias the probability of
shifts upward. To avoid this inconvenient, we bound absolute returns away from zero by adding a
small constant, i.e., we use yt = log(jrtj+0:001), a technique introduced to the stochastic volatility
literature by Fuller (1996). The results are robust to alternative speci�cations, for example using
another value for this so-called o¤set parameter, deleting zero observations, or replacing them by
a small value. Another important comment is the fact that we use daily returns as opposed to re-
alized volatility series constructed from intra-daily high-frequency data which has recently become
popular. It is true that realized volatility series are less noisy measure of volatility. However, it is
problematic in the current context for he following reasons: (i) such series are typically available
for short span. Given the fact that the level shifts will be relatively rare, it is imperative to have
a long span of data in order to made reliable estimates of the probability of occurrence of the level
shifts; (ii) such series are available only for speci�c assets as opposed to market indices. Because
the goal of the RLS model is to allow for particular events a¤ecting overall markets, using speci�c
asset would confound such market-wide events with idiosyncratic ones associated with the particu-
lar asset used; (iii) we are interested to re-evaluate the adequacy of ARFIMA and GARCH models
applied to daily returns when taking into account the possibility of level shifts. Therefore, it is
important to have estimates of these level shifts for squared daily returns which are equivalent to
those estimated using log-absolute returns.

The Figure 1 shows the returns series for �ve economies while Table 1 shows the descriptive
statistics of the returns and the volatilities. In Figure 1, the frequent high variation grouping of
returns in periods of international or local crisis can be observed. The values of the descriptive

6Note that since the model allows for consecutive level shifts, we set the minimum segment length to only one
observation.

7Using this measure has two advantages: (i) it does not su¤er from a non-negativity constraint as do, for example,
absolute or squared returns. Actually, it is a similar argument as used in the EGARCH(1,1) model proposed by
Nelson (1991): the dependent variable is log(�2t ) in order to avoid the problems of negativity when the dependent
variable is �2t as in the standard GARCH models and other relatives models; (ii) there is no loss relative to using
square returns in identifying level shifts since log-absolute returns is a monotonic transformation. It is true that
log-absolute returns are quite noisy but it is not problematic since the algorithm used is robust to the presence of
noise.
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statistics show a mean close to zero. On the other hand, the standard deviation is di¤erent, and
the markets of Argentina, Brazil, and Peru are the most volatile. Figure 2 shows the ACF for the
�ve series for 2,000 lags. In all cases, the long memory evidence is clear.

3.1 E¤ects of Level Shifts on Long Memory and ARFIMA Models

The estimated parameters are set out in Table 28 and correspond to the standard deviation of the
level shift component ��, the probability of a level shift �, the standard deviation of the stationary
component �e and the autoregressive � of the speci�cation AR(1) for ct. All estimated coe¢ cients
can be seen to be signi�cant.

The estimate of � is not signi�cant for the cases of Argentina and Brazil. In the other cases,
though signi�cant, it is small. On the other hand, the probability of level shift is small in all cases
considered. Therefore, given T and the estimates of �, we can �nd the number of level shifts for
each country: Argentina has 25 breaks, Brazil has 53 breaks, Chile has 49 breaks, Mexico has 29
breaks and Peru has 26 breaks. These values indicate that level shifts are rare and occur with a
duration of 222, 98, 124, 161 and 216 days on average for Argentina, Brazil, Chile, Mexico and
Peru, respectively9.

The Figure 3 presents the smoothed (Gaussian kernel) series of the level shift component and
the level shift component with dates estimated by the method of Bai and Perron (1998, 2003). The
smoothed estimates are erratic, even though they closely follow the changes in the mean of the
series as indicated by the method of Bai and Perron (1998, 2003). Figure 3 shows the grouping of
the dates of level shifts where volatility has experienced strong variations in short periods of time.
Moreover, Figure 3 shows that the main dates of level shifts are similar across the �ve countries.
These level shifts proceed from two sources. The �rst is of external origin and comes due to crises
occurring in other countries: the Asian, Russian and Mexican crises that a¤ected the volatilities of
the �ve markets analyzed. Another important external factor was the international crisis (2008)
that a¤ected all the economies analyzed. The second is of domestic origin and includes level shifts
caused by primary election periods, monetary crises that trigger periods of high in�ation, as well
as social events. All these factors contribute to the presence of level shifts in the volatility series.
Argentina and Brazil experience successive level shifts at the start of their samples due to high
in�ationary processes that have occurred in these countries. The continuous level shifts in Brazil
go on until 1998. The greatest level shifts in Chile are discerned in 1990-1996. In the case of Peru,
level shifts in 1990, 1996, and 1998 are appreciated10. The year 2008 clearly a¤ects all economies.

The ACF was estimated by leaving aside the estimated level component using the algorithm
of Bai and Perron (2003). What is observed (Figure 4) is that all traces of long memory have
disappeared11. A complementary way of analyzing the long memory characteristic is by estimating

8Given that all components of the vector of states are stationary, we will initialize the vector of states and its

variance matrix by its unconditional expected values: X0j0 = (0; 0)
0 and P0j0 =

24 �2e 0

0 0

35. With the aim of avoiding

the problem of local maximums, we re-estimate the model using a long group of random initial values and select the
related estimates with the highest likelihood after �nding convergence.

9Observing the distribution of the level shifts, we �nd that the minimum occurrence of the level shifts are 2, 1, 3,
4, and 3 days for Argentina, Brazil, Chile, Mexico and Peru, respectively. Their maximum values are, respectively:
1010, 750, 614, 734 and 1715 days.
10A more detailed account of the Peruvian case can be found in Ojeda Cunya and Rodríguez (2014).
11Similar results are obtained when we use the smoothed estimates of the level shift component.
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models ARFIMA(0,d,0) and ARFIMA (1,d,1) for the volatility series and the volatility series ex-
cluding the level component12. In the case of ARFIMA(0,d,0) model estimates, the results indicate
the same message observed in the ACF in Figure 4. The estimates of the fractional parameter
(d) indicate a long term behavior, which is a stylized fact frequently mentioned in the literature.
However, the short term component shows fractional parameter estimates bd with values that are
positive but too reduced to imply long memory or in other cases is negative implying anti persis-
tence. The results are similar for the case of the ARFIMA(1,d,1) model. The volatility series show
a positive and signi�cant fractional parameter. Moreover, the parameters � (autoregressive) and
� (moving averages) are small but signi�cant. In the case of volatility adjusted by the level shift
component estimated by Bai and Perron (1998, 2003), the fractional parameter show a value that
is negative and very close to zero by allowing con�rmation that once the level shifts are taken into
account, the long memory behavior is eliminated.

3.2 Level Shift E¤ect in the GARCH and CGARCH Models

Given that GARCH models -as well as ARFIMA models -are frequently used to model volatility,
we estimate GARCH(1,1) and CGARCH models. The GARCH model is formulated as:

ert = �t�t; (3)

�2t = �+ �1er2t�1 + �2�2t�1; (4)

where ert are returns discounted by their mean, �t is a distribution i:i:d: t-Student with mean 0 and
variance 1. The CGARCH model is speci�ed as follows:

ert = �t"t; (5)

(�2t � nt) = �1(er2t�1 � nt�1) + �2(�2t�1 � nt�1); (6)

nt = �+ �(nt�1 � �) +  (er2t�1 � �2t�1): (7)

The important coe¢ cients are �1 and �2, which indicate the presence of conditional het-
eroskedasticity e¤ects. The parameter � is a constant to which nt converges, which represents
the long term component of time-varying volatility. Moreover, the equation (6) represents the tran-
sitory component of volatility. In addition, the parameter � measures the persistence of shocks in
the permanent component of the equation (7), while persistence is measured by (�1 + �2) in the
equation (4) and the transitory component in the equation (6).

On the other hand, a CGARCH model is estimated but increased with auxiliary variables
(dummy):

ert = �t"t (8)

(�2t � nt) = �1(er2t�1 � nt�1) + �2(�2t�1 � nt�1) (9)

nt = �+ �(nt�1 � �) +  (er2t�1 � �2t�1) + m+1X
i=2

Di;t
i; (10)

where Di;t = 1 if t pertains to the regime i, and 0 if this does not pertain to the regime, with
t 2 fTi + 1; :::; Ti+1g and Ti (i = 1; :::;m) with the dates of the level shifts which are estimated by
12The results are available upon request.
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the Bai and Perron method (1998, 2003). The coe¢ cients 
i are estimated alongside the parameters
of the GARCH model and indicate the size of the level shifts.

The results are presented in Table 3. The parameters �1 and �2 in the GARCH model are
signi�cant for the �ve markets analyzed. The parameter �2 is raised and �uctuates between 0.729
(Perú) and 0.913 (Argentina). The sum of �1 and �2 is close to the unit indicating that the e¤ect of
the shocks slowly decline, which is a characteristic frequently found in the estimates. The estimates
imply that half-lives of the shocks are around 77, 29, 99 and 43 days for Brazil, Chile, Mexico and
Peru, respectively. In the case of the Argentina, the sum of the coe¢ cients is the unity implying a
half-life of the shocks equal to in�nity days.

In the CGARCH model we �nd two scenarios for the estimates of �1 and �2. For the case of
Argentina, Brazil and Mexico these coe¢ cients are not signi�cant. On the other hand, for Chile and
Peru they are signi�cant but their sum is reduced to around 0.50 (Chile) and 0.80 (Peru). Overall,
the half-life of the shocks is reduced. This fact is interesting as it shows that in the CGARCH
model, on dividing the volatility into a long term component and another short term component,
the coe¢ cients �1 and �2 are not important, with the so-called GARCH e¤ects disappearing.
Nonetheless, the coe¢ cients linked to the long term (�,  ) are highly signi�cant. In particular, it
is important to note that the parameter � is located very close to the unit. This indicates high
persistence in all �nancial markets analyzed. In fact the half-lives of the shocks are 77, 41, 87 and
173 days for Brazil, Chile, Mexico and Peru, respectively. In the case of Argentina we �nd again a
half-life of the shocks equal to in�nity days.

However, since the level shifts are taken into consideration under the form of dummy variables,
the parameters �1 and �2 are not signi�cant for all series except for the case of Chile. Nonetheless,
the sum of both coe¢ cients is much less than the unit. On the other hand it can be seen that
the parameter � lowers its value drastically from 0.73 (Perú) to 0.26 (Chile). This shows that even
when this parameter is signi�cant,the impact of the shocks declines more rapidly than when the
level shifts are not considered. The half-lives of the shocks are 1.5, 1.1, 0.52, 1.0, and 2.2 days for
Argentina, Brazil, Chile, Mexico and Peru, respectively13.

Moreover, we analyze the sensitivity of the results using the smoothed estimator of the trend
component. This is done by replacing the term

Pm+1
i=2 Di;t
i with the smoothed estimator (Gaussian

kernel) of the level shift component. The results are similar to those obtained previously. The
parameters �1 and �2 are not signi�cant (this time including Chile) and the value of the parameter
� -even if it is signi�cant- decreases drastically by reducing the power of the permanent e¤ect of
the equation.

Some conclusions can be ventured thus far: (i) the RLS model with a stationary AR(1) compo-
nent providing an adequate description of the data; (ii) the level shift component is important and
explains both the long memory aspect and the presence of conditional heteroskedasticity as they
are generally perceived in the literature. As a �nal test, we will look at whether the RLS model
provides reasonable predictions compared with some traditional models.

4 Forecasting

In this section the RLS model is assessed in comparison with ARFIMA models, with respect to
prediction capacity. The predictions are based on the approximation of Varneksov and Perron

13Using the smoothed estimate of the component of level shifts, the estimates are very similar: 2.7, 3.0, 1.5, 2.7
and 2.1 for Argentina, Brazil, Chile, Mexico and Peru, respectively.
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(2014). In this way, the � -periods forward predictions are given by:

byt+� jt = yt +HF
� [

2X
i=1

2X
j=1

Pr(st+1 = j) Pr(st = ijYt)Xij
tjt]; (11)

where Et(yt+� ) = byt+� jt is the prediction of volatility in time t+� , conditional to information on time
t; and the matrices F and H are de�ned as before and the prediction horizons are � = 1; 5; 10; 20; 50
and 100. Moreover, as a criteria for measuring prediction con�dence, we use the mean squared
forecast error (MSFE) proposed by Hansen and Lunde (2006) and de�ned by:

MSFE�;i =
1

Tout

ToutX
t=1

(�2t;� � yt+�;ijt)2; (12)

where Tout is the number of predictions �2t;� =
P�
s=1 yt+s, and yt+�;ijt =

P�
s=1 byt+s;ijt, with i

representing each model. The evaluation and comparison are performed using 5% of the model
con�dence set (MCS) proposed by Hansen et al. (2011). The MCS allows better evaluations of
the models than can be done with comparisons between pairs of models. One of the advantages of
this procedure is that the evaluations are performed by taking into account the limitations of the
data. This means that if the data are clear, then a single model will be selected; while the data
are not su¢ ciently informative, a MCS with various models would be the result. In these cases we
can establish that more than one model o¤ers a good prediction, which cannot be established using
other kinds of comparisons.

To perform the predictions, the observations from 02/01/2006 up to the end of the sample were
retained. This period includes the international crisis and can serve to verify whether the RLS
model is a good predictor. The results are presented in Table 4, and lead to the conclusion that
the RLS model is included within 5% of the MCS for practically all prediction horizons.

5 Conclusions

In this paper, we estimate a RLS model using the approach of Lu and Perron (2010) and Li
and Perron (2013) for the volatilities of the �nancial returns of �ve Latin American economies.
Even though we have less observations in comparison with developed countries, our results are
conclusive and in line with the �ndings of Lu and Perron (2010). The estimation results show that
the probability of level shifts is small but is responsible for the presence of long memory in the
volatilities of the series analyzed. Having estimated the probability of level shifts, the exact number
of such level shifts can be calculated. Thus, the component obtained as a di¤erence between the
volatility series and the level shifts possesses an ACF that indicates an absence of long memory.
Therefore, we show that short memory processes contaminated with random level shifts can be
confused as being long memory in the data considered. The estimates of autoregressive conditional
heteroskedasticity models discounted by level shifts shows that these components are arti�cially
introduced by level shifts because the estimates of the fractional parameter is negative or close
to zero. Finally, an exercise of out-of-sample forecasting shows that the RLS model has better
performance than traditional models for modeling long memory such as the models ARFIMA
(p,d,q).

10



References

[1] Bai, J. and P. Perron (1998), �Estimating and Testing Linear Models with Multiple Structural
Changes�, Econometrica 66, 47-78.

[2] Bai J. and Perron P. (2003), �Computation and Analysis of Multiple sStructural Change
Models�, Journal of Applied Econometrics 18, 1-22.

[3] Baillie R., Bollerslev T., Mikkelsen H. (1996), �Fractionally Integrated Generalized Autore-
gressive Conditional Heteroskedasticity�, Journal of Econometrics 73, 3-30.

[4] Bollerslev T. and Mikkelsen H.(1996), �Modeling and Pricing Long Memory in Stock Market
Volatility�, Journal of Econometrics 73, 151-184.

[5] Diebold F. and Inoue A. (2001) �Long Memory and Regime Switching�, Journal of Economet-
rics 105, 131-159.

[6] Ding Z., Engle R. and Granger C. (1993), �A Long Memory Property of Stock Market Returns
and a New Model�, Journal of Empirical Finance 1, 83-106.

[7] Engle, R. F. and A. D. Smith (1999), �Stochastic Permanent Breaks�, Review of Economics
and Statistics 81, 553-574.

[8] Fuller, W. A. (1996), Introduction to Time Series, 2nd Edition, New York: John Wiley.

[9] Geweke J. and Porter-Hudak S.(1983), �The Estimation and Applications of Long Memory
Time Series Models�, Journal of Time Series Analysis 4, 189-209.

[10] Gourieroux C., and Jasiak J. (2001), �Memory and Infrequent Breaks�, Economic Letters 70,
29-41.

[11] Granger, C. W. J. and N. Hyung (2004), �Occasional Structural Breaks and Long Memory
with an Application to the S&P 500 Absolute Stock Returns�, Journal of Empirical Finance
11, 399-421.

[12] Granger C. W. and Joyeux R. (1980), �An Introduction to Long Memory Time Series Models
and Fractional Di¤erencing�, Journal of Time Series Analysis 1, 15-29.

[13] Hamilton, J. D. (1989), �A New Approach to the Economic Analysis of Nonstationary Time
Series and the Business Cycle�, Econometrica 57, 357-384.

[14] Hamilton, J. D. (1994), �Time Series Analysis,�Princeton University Press.

[15] Hansen, P. R. and A. Lunde (2006), �Consistent Ranking of Volatility Models�, Journal of
Econometrics 131, 97-121.

[16] Hansen, P. R., A. Lunde and J. M. Nason (2011), �The Model Con�dence Set�, Econometrica
79, 453-497.

[17] Harrison, P. J. and Stevens, C. F. (1976), �Bayesian Forecasting�, Journal of the Royal Sta-
tistical Society Series B 38, 205�247.

11



[18] Hosking J. (1981), �Fraccional Di¤erencing�, Biometrika 68, 165-176.

[19] Humala, A. and G. Rodríguez (2013), �Some Stylized Facts of Return in the Foreing Exchange
and Stock Markets in Perú�, Studies in Economics and Finance 30(2), 139-158.

[20] Li Y. and Perron P. (2013), �Modeling Exchange Rate Volatility with Random Level Shifts�
Working paper, Boston University.

[21] Lu Y. and Perron P. (2010), �Modeling and Forecasting Stock Return Volatility using a Ran-
dom Level Shift Model�, Journal of Empirical Finance 17, 138-156.

[22] Lobato I. and Savin N. (1998), �Real and Spurious Long Memory Properties of Stock Market
Data�, Journal of Business and Economics Statistics 16, 261-268.

[23] Mikosh T. and St¼aric¼a C. (2004a), �Nonstationarities in Financial Time Series, The Long-
Range Dependence and, the IGARCH E¤ects�, The Review of Economic and Statistics 86,
378-390.

[24] Mikosh T. and St¼aric¼a C. (2004b), �Changes of Structure in Financial Time Series and the
GARCH Model�, Statistical Journal 2, 42-73.

[25] Nelson, D. (1991), �Conditional Heteroskedasticity in Asset Returns: A new Approach,�
Econometrica 59(2), 347-370.

[26] Ojeda Cunya, J. A. and Rodríguez, G. (2014), �An Application of a Random Level Shifts
Model to the Volatility of Peruvian Stock and Exchange Rate Returns,�Working Paper 383,
Department of Economics, Ponti�cia Universidad Católica of Peru.

[27] Perron P. (1989), �The Great Crash, the Oil Price Shock, and the Unit Root Hypothesis�,
Econometrica 57, 1361-1401.

[28] Perron P. (1990), �Testing for a Unit Root in a Time Series Regression with a Changing Mean�
Journal of Business an Economic Statistics 8,153-162.

[29] Perron P. and Qu Z. (2010), �Long-memory and Level Shifts in the Volatility of Stock Market
Return Indices�, Journal of usiness an Economic Statistics 28, 275-290.

[30] Perron, P. and T. Wada (2009), �Let�s Take a Break: Trends and Cycles in U. S. Real GDP�,
Journal of Monetary Economics 56, 749-765.

[31] Robinson P. M. (1995) �Log-Periodogram Regression of Time Series with Long Range Depen-
dence�, The Annals of Statistics 23, 1048-1073.

[32] St¼aric¼a C. and Granger C. (2005), �Nonstationarities in Stock Returns�, The Review of Eco-
nomics and Statistics 87, 503-522.

[33] Wada, T. and P. Perron (2006), �An Alternative Trend-Cycle Decomposition using a State
Space Model with Mixtures of Normals: Speci�cations and Applications to International
Data�, Working paper, Department of Economics, Boston University.

12



Table 1. Descriptive Statistics

Country Mean sd Maximum Minimum Skewness Kurtosis Jarque-Bera Prob

Returns

Argentina 0.002 0.033 0.329 -0.757 -0.574 56.744 756638.8 0.000

Brazil 0.003 0.046 0.693 -0.693 0.703 105.558 2544970 0.000

Chile 0.000 0.012 0.118 -0.077 0.182 8.694 8270.115 0.000

Mexico 0.001 0.016 0.122 -0.143 -0.020 9.595 8770.366 0.000

Perú 0.001 0.017 0.143 -0.132 0.519 11.088 16159.29 0.000

Volatility

Argentina -4.434 1.112 -0.277 -6.908 -0.271 2.799 87.557 0.000

Brazil -4.502 1.173 -0.365 -6.901 -0.275 2.995 73.195 0.000

Chile -4.992 0.845 -2.128 -6.908 -0.151 2.538 77.484 0.000

Mexico -4.797 0.894 -1.937 -6.908 -0.161 2.604 52.561 0.000

Peru -4.858 0.951 -1.931 -6.908 -0.027 2.622 35.376 0.000
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Table 2. Estimates of the RLS Model

Country �� � �e � Likelihood

Argentina 1.122a 0.004a 0.964a 8868.144

(0.131) (0.001) (0.009)

Brazil 0.425a 0.010a 0.881a 6965.685

(0.118) (0.006) (0.009)

Chile 0.612a 0.008a 0.778a 0.080a 7299.642

(0.150) (0.004) (0.007) (0.014)

Mexico 0.520a 0.006a 0.830a 0.025a 6067.754

(0.157) (0.004) (0.009) (0.015)

Perú 0.875a 0.004a 0.842a 0.115a 7421.854

(0.128) (0.002) (0.008) (0.015)

Standard errors are in parentheses; a;b;c denote signi�cance at the 1.0%, 5.0% and

10.0%, respectively.

T-2



Table 3. Estimates of GARCH and CGARCH Models

Model parameter value s.e. p-values

Argentina

GARCH �1 0.092 0.005 0.000

�2 0.913 0.004 0.000

CGARCH �1 -0.002 0.012 0.900

�2 -0.516 5.312 0.922

� 1.000 6.18 0.000

 0.079 0.004 0.000

CGARCH (using � t from Bai and Perron) �1 -0.018 0.011 0.107

�2 -0.671 0.117 0.000

� 0.631 0.036 0.000

 0.015 0.016 0.000

CGARCH (using smoothed estimated of � t) �1 0.013 0.012 0.259

�2 0.004 0.600 0.995

� 0.770 3.82 0.000

 0.212 0.009 0.000

Brazil

GARCH �1 0.095 0.008 0.000

�2 0.896 0.008 0.000

CGARCH �1 -0.026 0.018 0.143

�2 -0.179 0.644 0.781

� 0.991 0.004 0.000

 0.100 0.009 0.000

CGARCH (using � t from Bai and Perron) �1 0.005 0.028 0.865

�2 0.037 3.154 0.991

� 0.543 0.049 0.000

 0.075 0.026 0.004

CGARCH (using smoothed estimated of � t) �1 -1.394 7.658 0.856

�2 2.170 7.729 0.779

� 0.795 0.036 0.000

 1.446 7.660 0.852
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Table 3 (continues). Estimates of GARCH and CGARCH Models

Model parameter value s.e. p-values

Chile

GARCH �1 0.169 0.013 0.000

�2 0.807 0.012 0.000

CGARCH �1 0.138 0.022 0.000

�2 0.359 0.109 0.001

� 0.983 0.005 0.000

 0.120 0.014 0.000

CGARCH (using � t from Bai and Perron) �1 -1.095 0.484 0.024

�2 1.321 0.551 0.016

� 0.261 0.049 0.000

 1.235 0.489 0.011

CGARCH (using smoothed estimated of � t) �1 -0.039 0.406 0.924

�2 0.515 1.676 0.759

� 0.625 0.087 0.000

 0.246 0.401 0.540

Mexico

GARCH �1 0.084 0.008 0.000

�2 0.909 0.008 0.000

CGARCH �1 0.016 0.017 0.341

�2 -0.650 0.507 0.199

� 0.992 0.004 0.000

 0.082 0.008 0.000

CGARCH (using � t from Bai and Perron) �1 0.037 0.041 0.365

�2 0.018 0.528 0.974

� 0.515 0.022 0.000

 0.060 0.038 0.120

CGARCH (using smoothed estimated of � t) �1 -0.740 1.905 0.698

�2 1.484 1.986 0.455

� 0.774 0.006 0.000

 0.811 1.910 0.671
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Table 3 (continues). Estimates of GARCH and CGARCH Models

Model parameter value s.e. p-values

Peru

GARCH �1 0.255 0.010 0.000

�2 0.729 0.008 0.000

CGARCH �1 0.232 0.023 0.000

�2 0.583 0.043 0.000

� 0.996 0.004 0.000

 0.104 0.022 0.000

CGARCH (using � t from Bai and Perron) �1 0.023 0.093 0.804

�2 0.426 1.169 0.716

� 0.730 0.040 0.000

 0.230 0.094 0.014

CGARCH (using smoothed estimated of � t) �1 -0.024 0.018 0.171

�2 0.024 0.448 0.957

� 0.723 0.000 0.000

 0.306 0.021 0.000
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Table 4. Comparison of Forecasts (byt+� jt)
Argentina � = 1 � = 5 � = 10 � = 20 � = 50 � = 100

RLS 0.75 4.73 12.53 37.64 214.88 886.66

(1.00*) (1.00*) (1.00*) (1.00*) (1.00*) (1.00*)

ARFIMA(0,d,0) 0.94 7.32 21.13 65.67 322.63 1096.05

(0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

ARFIMA(1,d,1) 1.23 14.53 50.05 181.17 1025.11 3833.36

(0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

Brazil

RLS 0.69 3.92 10.04 31.05 175.25 773.83

(1.00*) (1.00*) (1.00*) (1.00*) (1.00*) (1.00*)

ARFIMA(0,d,0) 0.93 8.37 26.76 92.74 498.01 1792.57

(0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

ARFIMA(1,d,1) 0.88 7.22 22.14 74.18 383.24 1341.15

(0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

Chile

RLS 0.45 4.08 11.91 40.69 260.54 1002.64

(1.00*) (1.00*) (1.00*) (1.00*) (1.00*) (0.000)

ARFIMA(0,d,0) 0.70 6.31 18.68 58.95 268.86 769.50

(0.000) (0.000) (0.000) (0.000) (0.000) (1.00*)

ARFIMA(1,d,1) 0.71 6.29 18.56 58.47 266.00 760.18

(0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

Mexico

RLS 0.57 4.07 11.90 40.19 231.50 886.56

(1.00*) (1.00*) (1.00*) (1.00*) (1.00*) (1.00*)

ARFIMA(0,d,0) 0.79 7.08 22.73 77.58 394.14 1319.17

(0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

ARFIMA(1,d,1) 0.79 7.11 22.83 77.93 395.49 1322.16

(0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

Peru

RLS 0.49 4.35 11.94 31.94 142.01 620.40

(1.00*) (1.00*) (1.00*) (1.00*) (1.00*) (1.00*)

ARFIMA(0,d,0) 0.80 6.86 19.72 58.01 271.13 927.40

(0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

ARFIMA(1,d,1) 0.80 6.87 19.84 58.91 283.42 1002.74

(0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

Numbers are the MSFE; p-values of the MCS are reported in parentheses; * denotes that

the model belongs to the 5% of the MCS of Hansen et al. (2011) comparing between all

models.
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Figure 2. Sample ACF of Returns Volatility Series

F-2



­7

­6

­5

­4

­3

­2

­1

88 90 92 94 96 98 00 02 04 06 08 10 12

Argentina

­7

­6

­5

­4

­3

­2

92 94 96 98 00 02 04 06 08 10 12

Brazil

­7.0

­6.5

­6.0

­5.5

­5.0

­4.5

­4.0

­3.5

­3.0

90 92 94 96 98 00 02 04 06 08 10 12

Chile

­6.5

­6.0

­5.5

­5.0

­4.5

­4.0

­3.5

­3.0

­2.5

94 95 96 97 98 99 00 01 02 03 04 05 06 07 08 09 10 11 12 13

Mexico

­6.5

­6.0

­5.5

­5.0

­4.5

­4.0

­3.5

­3.0

­2.5

90 92 94 96 98 00 02 04 06 08 10 12

Peru

Figure 3. Level Shift Component � t estimated by Bai and Perron (2003): solid line and Smoothed Level Shift
Component: dotted line
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Figure 4. Sample ACF of Residuals Series
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