

La relación entre los ciclos discretos en la inflación y el crecimiento: Perú 1993 - 2012

Carlos R. Barrera Chaupis*

* Banco Central de Reserva del Perú

DT. N° 2014-024
Serie de Documentos de Trabajo
Working Paper series
Diciembre 2014

Los puntos de vista expresados en este documento de trabajo corresponden a los autores y no reflejan necesariamente la posición del Banco Central de Reserva del Perú.

The views expressed in this paper are those of the authors and do not reflect necessarily the position of the Central Reserve Bank of Peru.

LA RELACIÓN ENTRE LOS CICLOS DISCRETOS EN LA INFLACIÓN Y EL CRECIMIENTO: PERÚ 1993 - 2012

Carlos R. Barrera Chaupis*

22 de diciembre de 2014

Resumen

El presente estudio contrasta la hipótesis de una relación no lineal entre la inflación y el crecimiento de la actividad económica del Perú con datos que cubren el periodo enero 1993 - junio 2012. Se usa una familia de modelos dicotómicos que enfatizan la relación entre las fases de aceleración y desaceleración presentes en los ciclos de ambas variables. Se estima modelos logit uni-ecuacionales auto-regresivos así como modelos probit bi-ecuacionales estáticos y auto-regresivos. Los resultados sugieren la existencia de una relación estocástica entre los ciclos discretos de inflación y actividad económica.

Palabras claves: modelos de series de tiempo, regresión discreta, modelos *logit*, construcción y evaluación de modelos, predicción, fluctuaciones en los negocios.

Clasificación JEL: C22, C25, C51, C52, C53, E32.

^{*}BCRP; email: carlos.barrera@bcrp.gob.pe. Las opiniones vertidas en el presente documento no representan necesariamente las del Banco Central de Reserva del Perú. El autor agradece las sugerencias de Nikita Céspedes, Nelson Ramírez, Marco Vega y Diego Winkelried.

I. Introducción

La literatura empírica que estudia la relación entre la tasa de inflación y el crecimiento real en la actividad económica es amplia. Por un lado, en línea con el renovado interés por el crecimiento económico desde fines de los años 90s, numerosos estudios han estimado los efectos de la inflación sobre el crecimiento económico en el largo plazo utilizando modelos de panel con grupos amplios de países y una serie de variables de control al lado derecho de regresiones no lineales (ver Baglan & Yoldas (2014) y referencias). Típicamente se encuentra que la inflación afecta negativamente al crecimiento económico sólo cuando sobrepasa un límite o 'threshold'.

Por otro lado, numerosos trabajos para países individuales han estudiado una relación estructural de corto plazo, denominada 'curva de oferta agregada' o 'curva de Phillips' (según la variable explicada sea el crecimiento real en la actividad económica o la tasa de inflación, respectivamente). Por supuesto, se ha añadido una serie de variables de control y más recientemente, se ha considerado relaciones no lineales para enfrentar su inherente inestabilidad (ver por ejemplo, Musso et al. (2007) para el área europea, De Veirman (2007) para Japón, Debelle & Vickery (1997) para Australia, y Eliasson (1999) para Suecia).

Guardando las diferencias entre ambas ramas de la literatura, resulta evidente que, en cualquier país individual, el crecimiento del producto real (g) y la tasa de inflación (π) no logran mantener una relación directa y estable en el corto plazo porque dependen, de manera desconocida, de un conjunto amplio e idiosincrásico de otras variables. En la rama que enfatiza el efecto de largo plazo sobre el crecimiento económico, el conjunto de variables de control está restringido por la disponiblidad de información para todo el grupo de países considerado. En la rama que enfatiza la relación de corto plazo entre ambas variables, el conjunto de variables de control suele estar restringido por los objetivos teóricos del modelador, incluso con métodos que suelen favorecer esta restricción. 3

En aras de mayor objetividad y mayor generalidad, resulta necesario considerar tanto los efectos de los determinantes individuales de *ambas* variables, así como la hipotética relación de corto plazo que remanente y estocásticamente podrían guardar entre sí.⁴ Hay un gran número de historias conceptuales simplificadas o mecanismos que pueden racionalizar la ampliación del conjunto de variables explicativas pre-determinadas tanto en la literatura que mide los efectos adversos de la inflación sobre el crecimiento real como en la literatura de la 'curva de Phillips' ampliada con diversas variables explicativas. En ambos casos, los argumentos teóricos pueden extenderse de tal manera que el esfuerzo por

 $^{^1}$ Aunque la concepción original de su creador, A.W.H. Phillips, enfatizaba la existencia de una relación inversa y estable entre la tasa de desempleo (u) y la tasa de inflación en el nivel de salarios nominales (ver Sleeman (2011)), las dificultades estadísticas para medir u han limitado el uso de esta variable en la mayoría de países (ver p. ej., Kumar & Vashist (2012)), obligando a replantear la hipótesis de la 'curva de Phillips' en términos de la existencia de una relación directa y estable entre el crecimiento del producto real (g) y la tasa de inflación en el nivel de precios (π) .

²Aunque Baglan & Yoldas (2014) no mencionan este problema, sí señalan resultados que indican la tendencia de que ninguna variable de control resulte significativa, lo que atribuyen únicamente al sesgo por endogeneidad asociado al nivel inicial de ingreso que aparece junto con un escaso número de variables de control en su aplicación de panel dinámico. Ello les motiva a usar un procedimiento de *bootstrap* salvaje de diseño fijo (que soluciona parcialmente *ambos* problemas).

³Por ejemplo, el modelo de Musso *et al.* (2007) con cambios estructurales en la media, la persistencia, la volatilidad de la inflación así como en la pendiente de la curva; el modelo con parámetros cambiantes en el tiempo de De Veirman (2007); y el modelo de Debelle & Vickery (1997) con la 'tasa de desempleo que no acelera la inflación' -*NAIRU*- como variable no observada.

⁴Una inflación determinada por factores de demanda y oferta es una hipótesis más general que la que enfatiza sólo el exceso de demanda. Ver sección 6.4. en Romer (2011).

racionalizar la relación no-lineal entre ambas variables alcance los límites de un modelo teórico. Por el lado empírico, sin embargo, para construir modelos cada vez más cercanos a la realidad, se requiere inspeccionar los 'hechos de la realidad', es decir, aquellas **hipótesis** primarias que, controlando por los efectos de los otros potenciales determinantes individuales, no han encontrado evidencia contraria (un caso ejemplar de esta línea de investigación es (Acemoglu *et al.*, 2009)).

Gráfico No. 1: El ciclo discreto de la tendencia inflacionaria (π) como variable endógena

El presente estudio construye modelos que contrastan la hipótesis primaria de la ausencia de una relación no lineal entre la inflación y el crecimiento real en la actividad económica del Perú entre enero 1993 y junio 2012. Esta relación enfatiza los eventos más relevantes del ciclo en los negocios dentro del dominio del tiempo, es decir, las fases alternadas de aceleración y desaceleración que componen los ciclos discretos de la tendencia inflaciona-ria, π , y el crecimiento real, g. A diferencia de otros trabajos que usan las series continuas⁵, aquí se utiliza los ciclos discretos presentes en la variación del componente subyacente del Indice de Precios al Consumidor de Lima Metropolitana (IPC), el IPC subyacente (IPCS), como medida de tendencia inflacionaria (π), y en el crecimiento real del componente interno del Producto Bruto Interno (PBI), el PBI no primario (YNP), como medida de exceso de demanda agregada (g). Los Gráficos Nos. 1 y 2 presentan los ciclos discretos de ambas variables, las variables a explicar, obtenidas mediante el 'filtro' de Harding & Pagan (2003) (H&P). El Gráfico No. 1 evita el efecto escala de presentar el periodo de desinflación inicial.

Al modelar estos ciclos discretos, es necesario capturar la persistencia típica de las fases alternadas de aceleración y desaceleración, por lo que se considera modelos dicotómicos auto-regresivos (uni- y bi-ecuacionales). En la primera etapa, se selecciona los mejores modelos uni-ecuacionales asociados a las mejores variables explicativas (predictores o 'tratamientos'). Estas variables son incluidas en modelos logit uni-ecuacionales múltiples en los ciclos discretos de la inflación y del crecimiento real por separado para seleccionar el conjunto de explicativas y obtener las semillas para los modelos probit bi-ecuacionales en los dos ciclos discretos simultáneamente. En la segunda etapa, dada la selección del conjunto de explicativas predeterminadas, los modelos logit uni-ecuacionales múltiples pueden encontrar evidencia contraria a la ausencia de una relación fuerte tanto entre el

 $^{^5}$ Aznarán (2010) con especificaciones lineales para Perú; Carrera & Ramírez (2013) y Groen & Mumtaz (2008) con especificaciones no lineales para EE.UU.

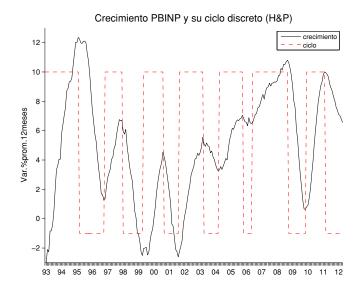


Gráfico No. 2: El ciclo discreto del crecimiento real (g) como variable endógena

crecimiento real y el ciclo discreto de la inflación como entre la inflación y el ciclo discreto del crecimiento real. Como la selección (i) se refiere tanto a la variable explicativa (de un conjunto amplio de indicadores) como al rezago de ésta (del conjunto $\{0,1,2,...,12\}$) y (ii) se realiza sobre la base de un criterio de información adecuado, la ausencia de una de estas dos variables macroeconómicas claves (π y g) en el conjunto seleccionado de explicativas predictoras del ciclo discreto de la otra variable implica que no se logró obtener evidencia contraria a la ausencia de la relación fuerte o directa correspondiente.

Finalmente, se procede a la búsqueda de evidencia en contra de la ausencia de una relación débil (estocástica) entre los ciclos discretos de la inflación y el crecimiento real en un modelo bi-ecuacional que explique la evolución de ambas variables dicotómicas, condicional a la información pre-seleccionada de variables explicativas predictoras. El modelo pertenece a la familia de los modelos probit bi-ecuacionales, que ha sido usado en contextos similares en Nyberg (2009), Huguenin $et\ al.\ (2009)$ y Candelon $et\ al.\ (2012)$. Esta familia de modelos es robusta respecto a la presencia de quiebres en la volatilidad o de heteroscedásticidad condicional en las series continuas a explicar. Debe mencionarse que el presente estudio es el primero en (1) usar esta familia de modelos para contrastar la hipótesis primaria de la ausencia de una relación no lineal entre π y g, así como en (2) estimar estos modelos mediante $m\'{a}xima\ verosimilitud\ penalizada$. La derivación completa de las condiciones requeridas es un material suplementario disponible para quienes no soliciten.

La segunda sección describe los requerimientos para la construcción del modelo biecuacional en el que se contrasta la hipótesis con la evidencia de los datos. La tercera sección presenta los resultados de la búsqueda de las mejores especificaciones de los modelos uni-ecuacionales para ambas variables por separado, lo que brinda evidencia sobre la versión directa de la hipótesis de existencia, así como las correspondientes proyecciones para un horizonte de al menos 6 meses adelante. La cuarta sección presenta los resultados del contraste de la hipótesis de la ausencia de una relación estocástica entre los dos ciclos discretos. Finalmente, la quinta sección concluye.

⁶Descartando la existencia de estos problemas, gran parte de la rama de la literatura sobre la 'curva de Phillips' ha usado típicamente las series continuas de ambas variables, aunque también se ha considerado las fluctuaciones en estas variables con periodicidades entre 18 y 96 meses (asociadas al ciclo en los negocios) mediante un filtro *band-pass* diseñado en el dominio de la frecuencia. Ver por ejemplo King & Watson (1994).

II. Requerimientos para falsear la hipótesis

Obtener la evidencia necesaria en contra de la hipótesis de ausencia de relación requiere la aplicación de un esfuerzo selectivo. La primera selección se refiere a los eventos relevantes en π y g, específicamente los dos eventos recurrentes (aceleraciones y desaceleraciones) que conforman los ciclos discretos de las dos variables bajo estudio. El énfasis en estos eventos favorece resultados menos sensibles ante la presencia de factores anecdóticos, como cambios en la calidad estadística, problemas de medición y cambios estadísticos que afectan la variabilidad de ambas variables, los cuales perturban la relación que puede existir entre ambas cuando son expresadas en variaciones porcentuales promedio anual.⁷

Los ciclos discretos en los Gráficos Nos. 1 y 2 fueron obtenidos aplicando el procedimiento uni-ecuacional H&P a ambas variables en el cual las fases de corta duración y asociadas a cambios pequeños fueron eliminadas siguiendo la tradición de Bry & Boschan (1971). Obtenida la secuencia de eventos relevantes, es posible identificar sus tratamientos, según resulten de presiones de demanda, oferta, entre otros, y por ende, buscar falsear la hipótesis de que los eventos relevantes en π están determinados por factores de demanda y oferta (entre otros). Esta hipótesis es bastante más general que una hipótesis secundaria donde casi el único determinante es una medida del exceso de demanda. Como sub-productos, el pronóstico de los ciclos presentes en ambas variables y sus determinantes puede usarse como referencia en las decisiones de política económica. De hecho, un balance del riesgo inflacionario y un balance del riesgo de descaceleración productiva (por separado) son usados por la información que proveen sobre los escenarios de política más probables para ambas variables.

La segunda selección corresponde a la familia más apropiada de modelos de respuesta discreta. Las fases del ciclo discreto de las dos variables bajo estudio son persistentes casi por construcción, por lo que la familia de modelos más apropiada corresponde a los modelos logit/probit auto-regresivos (uni-ecuacionales y bi-ecuacionales), que incluyen al menos un rezago de la(s) variable(s) latente(s) a explicar (o del estimado disponible de la(s) misma(s), ver Kauppi & Saikkonen (2005), Nyberg (2009) y Barrera (2012b)).

La tercera selección proviene de la necesidad de que el modelo bi-ecuacional construido para falsear la hipótesis tenga potencial capacidad para replicar la muestra futura (capacidades predictivas). De hecho, el mérito científico de todo modelo debería ser replicar la muestra futura, toda vez que la imposición de una estructura teórica contemporánea no sea necesaria, como es el caso en la relación no lineal entre las dos variables que aquí se plantea. Para construir un modelo bi-ecuacional con tal potencial, es necesaria (1) la estimación de un conjunto relativamente amplio de modelos uni-ecuacionales para la probabilidad de aceleración/desaceleración de ambas variables (por separado) con alternativas variables explicativas o determinantes individuales, y (2) la selección tanto de las variables explicativas como de sus rezagos individuales para estimar un conjunto de modelos uni-ecuacionales múltiples con un vector de variables explicativas de dimensión creciente (un número creciente de tratamientos) hasta que se minimize un criterio de parsimonia. El uso de este criterio favorece sus capacidades de explicación dentro de

⁷Aunque todas las posibles variables explicativas (predictoras) consideradas en el presente estudio (ver Anexo A) han sido utilizadas en variaciones porcentuales promedio anual (en algunos casos mediante una transformación previa para obtener índices), ninguna de ellas ha sido discretizada.

⁸Más adelante se considera las potenciales consecuencias que ello impone sobre los estimados.

 $^{^9}$ Todos los modelos estáticos se estiman aquí mediante el método de máxima verosimilitud (MV; ver Greene (2002) y Maddala (1983)). Por su parte, todos los modelos auto-regresivos son estimados mediante 2 iteraciones del método de máxima verosimilitud recursiva (MVR; ver Barrera (2012b)).

¹⁰En modelos dinámicos lineales, esto sucede en la mayoría de los casos. Los modelos dinámicos no lineales como los utilizados aquí son estructurales para las hipótesis consideradas.

la muestra sin deteriorar sus capacidades predictivas¹¹ para la probabilidad de las fases de aceleración y desace-leración presentes en los ciclos discretos individuales de ambas variables. La información modelística así obtenida determina la especificación del modelo bi-ecuacional suficientemente complejo y parsimonioso como para tener la capacidad de replicar, de manera confiable, la muestra futura de los ciclos discretos en ambas variables (un modelo más cercano al proceso generador de los datos) y en el cual falsear la hipótesis tendrá suficiente mérito científico.

Procedimiento

Se aplicó un procedimiento bottom-up para llegar a la especificación bi-ecuacional final. Se parte del objetivo de predecir las fases de aceleración y desaceleración de las dos variables objetivo por separado, sobre la base de un conjunto amplio de información desagregada. El criterio de Akaike (CAIC) y (especialmente) el criterio de Akaike modificado para muestras pequeñas (AICc) son los usados para seleccionar los principales indicadores anticipadores, así como sus rezagos respectivos,

$$CAIC \equiv -2logL^{**} + 2k \qquad AICc \equiv -2logL^{**} + \frac{2Tk}{T - k - 1} \qquad (1)$$

donde L^{**} es la verosimilitud maximizada, k es el número de parámetros libres (o regresores) y T es el número de observaciones. AICc mide el valor informacional de las variables explicativas del ciclo discreto de π o de g como endógena, por separado, en un modelo logit auto-regresivo uni-ecuacional. En primer lugar, los modelos individuales o simples se estiman para cada rezago $l_i \in \Lambda = \{0,1,2,...,12\}$ de la variable explicativa candidata i e incluyen un intercepto y un rezago de la variable latente (tres regresores en total). Se obtiene así una lista ordenada según los valores informacionales de cada variable i con su respectivo rezago óptimo l_i^* . La versión estática (sin el rezago de la variable latente) también es estimada para fines comparativos.

En segundo lugar, con dicha lista se construye una secuencia de modelos logit autoregresivos uni-ecuacionales **múltiples** añadiendo una a una las primeras variables de la lista (con su correspondiente rezago). Nuevamente, estos modelos son estimados junto con su versión estática para fines comparativos. El mejor conjunto de variables explicativas o predictoras del ciclo discreto de π o de g como endógena, por separado, se obtiene minimizando el mismo criterio de información, es decir, agotando las capacidades de ajuste balanceadas por los costos de parámetros adicionales en cada caso. Finalmente, ambos conjuntos son utilizados para estimar un modelo bi-ecuacional probit auto-regresivo **múltiple**, el cual incluye un coeficiente de correlación a estimar y sobre el cual reside una parte importante del contraste de la hipótesis. Si no es posible rechazar la hipótesis de que este coeficiente de correlación es cero, ello es equivalente a no poder rechazar la hipótesis de la ausencia de una relación estocástica entre ambas varaibles para el Perú durante el periodo 1993-2011.

Método de estimación

La estimación de los modelos *logit* uni-ecuacionales (simples y múltiples) se realiza mediante una estrategia preventiva muy similar al método de máxima verosimilitud pena-

¹¹El periodo 1993-2011 contiene 5 desaceleraciones, y sólo 2 devinieron en recesiones. Una evaluación ex post requeriría una muestra de al menos el doble de desaceleraciones.

¹²Se destaca el crecimiento sectorial al interior del PBI, del volumen de exportaciones sectoriales no tradicionales, de variables financieras y fiscales, de los principales socios comerciales del Perú (EE.UU., China y Europa), así como la inflación por sub-agregados de rubros al interior del IPC. Ver Anexo A.

lizada~(MVP), aunque sin la necesidad del denominado 'parámetro de sintonización' (ver Barrera(2010,2011)). Como veremos, tanto esta estrategia como MVP fuerzan la existencia de solución al problema de $m\'{a}xima~verosimilitud~(MV)$ en la estimación de modelos logit/probit y permiten la estimación de parámetros tanto finitos como robustos ante los sesgos por muestras pequeñas (Lesafre & Marx (1993)).

Las referencias respecto a los casos de mal acondicionamiento de la matriz de información que generan la falla en la existencia de solución al problema de MV en estos modelos son escasas. Albert & Anderson (1984) definen dos casos extremos en los que no existe solución para el problema de maximización de la (log) verosimilitud: (1) Separación completa, cuando existe un hiperplano separador b de todas las observaciones $\{y_i, x_i\}$ tal que separa perfectamente los valores de $\{y_i\}$ en ceros a un lado y en unos al otro lado y además $x_i'b \neq 0$; y (2) Separación cuasi-completa, cuando existe un hiperplano separador b de un grupo de observaciones $\{y_i, x_i\}$ tal que separa perfectamente los valores de $\{y_i\}$ en ceros a un lado y en unos al otro lado para este grupo y además $x_i'b = 0$ para por lo menos una de las observaciones del grupo. En estos casos extremos, la variable latente salta brúscamente cuando el valor absoluto de al menos un parámetro estimado por MV salta sin límite superior (ver Fijorek & Sokolowski (2012)).

Estos casos extremos guardan una relación especial con la multicolinealidad en modelos de regresión lineal. Por un lado, a diferencia de esta multicolinealidad, estos casos extremos llevan al **sobre-ajuste** en modelos logit/probit. Por otro lado, de manera similar a la multicolinealidad en modelos de regresión lineal, estos casos extremos llevan al **problema de 'multi-colinealidad en máxima verosimilitud'** (Lesafre & Marx (1993)), que puede aparecer en muestras pequeñas y en el que se puede caer simplemente por pasar 'muy cerca' a un valor cero para el determinante de la matriz de información (en términos de la precisión de las operaciones en la computadora; ver McCullough & Vinod (2001)) en el proceso de optimización.

Por estas razones, Zorn (2005) propone utilizar la estrategia preventiva de Firth (1993) (ver también Fijorek & Sokolowski (2012)), muy similar al MVP, añadiendo una función de pérdida particular (el límite inferior de Cramer-Rao) a la función de (log) verosimilitud usual, $l(\theta)$,

$$l^*(\theta) = l(\theta) - \frac{1}{2}log(|Var(\theta)|) = l(\theta) + \frac{1}{2}log(|I(\theta)|)$$
 (2)

donde $I(\theta) \equiv (-Var(\theta))^{-1}$ es la matrix de información evaluada en el valor del vector de todos los parámetros libres θ . Dos ventajas de esta estrategia son: (1) la inexistencia de un 'parámetro' de sintonización alguno, en contraste con otras versiones de la (log) verosimilitud penalizada, y (2) el estimado obtenido de la maximización de $l^*(\theta)$ existe y es único debido a que los dos términos que definen $l^*(\theta)$ son estríctamente cóncavos y sin límite desde abajo. En general, las score equations pueden escribirse como

$$\partial l^*(\theta)/\partial \theta_i = \partial l(\theta)/\partial \theta_i + \frac{1}{2} tr\{I(\theta)^{-1} [\partial I(\theta)/\partial \theta_i]\}$$
 (3)

donde $tr\{A\}$ es la traza de cualquier matriz cuadrada A. Para el caso de la regresión logística, Firth (1993) y Zorn (2005) encuentran que

$$U^*(\theta) = \sum_{t=1}^{T} \{ (y_t - \Lambda_t(\theta))(1 + h_t/2) + (1 - y_t - \Lambda_t(\theta))(h_t/2) \} X_t = 0$$

donde $U^*(\theta) \equiv \{\partial l^*(\theta)/\partial \theta_i\}$, $\Lambda_t(\theta)$ es la usual notación para la probabilidad de 'éxito' (es decir, de que la variable dicotómica $y_t \in \{0,1\}$ tome el valor '1') bajo el supuesto de que

los errores latentes tienen una distribución logística, y h_t es el elemento t de la diagonal de la matriz de proyección H definida como

$$H = W(\theta)^{1/2} X (I(\theta))^{-1} X' W(\theta)^{1/2}$$

donde
$$I(\theta) \equiv X'W(\theta)X$$
, $X = \{X_t\}$ y $W(\theta) \equiv diag\{\Lambda_t(\theta)(1 - \Lambda_t(\theta))\}$.¹³

En el contexto del presente estudio, la 'multi-colinealidad en máxima verosimilitud' podría aparecer de la selección de algunas variables explicativas en el conjunto de variables considerado (Anexo A), específicamente cuando (1) la inflación por sub-agregados de rubros al interior del IPC contiene algunas medidas alternativas a la inflación subyacente IPC (π) y, de manera similar, (2) el crecimiento sectorial al interior del PBI contiene algunas medidas alternativas al crecimiento del PBI no primario (g). Como estas variables son muy similares a π o g, sus ciclos discretos también lo son y por ello estas variables tenderán a ingresar como explicativas.

La solución natural al problema de 'multi-colinealidad en máxima verosimilitud' es simplemente descartar aquellas variables cuando se sospecha que generan el problema. El método MVP surgió como solución cuando estas sospechas son ambiguas y un síntoma del problema es el sobre-ajuste. En el presente estudio, el método de MVP permite incluirlas para apreciar su valor informacional individual al elaborar la lista ordenada correspondiente, pero como se conoce qué variable puede coincidir con la versión contínua de la variable endógena correspondiente, pueden dejarse de lado en la estimación de los modelos bi-ecuacionales.

Gráfico No. 3: Ajuste de Pr(aceleración de π) con modelos estáticos simples

III. Resultados de las estimaciones

El Anexo A lista el conjunto de información desagregada utilizado para seleccionar los determinantes y su rezago optimo (predictores) de las fases de aceleración y desaceleración de las dos variables por separado. Con estas variables dicotómicas a explicar, los modelos auto-regresivos son estimados via $m\'{a}xima$ verosimilitud recursiva penalizada (MVRP; con 2 iteraciones) utilizando los estimados de la variable latente provenientes del modelo

 $^{^{13}}$ Ver Firth (1993), pgs. 30-32, y Zorn (2005), pgs. 9-11. Estas referencias usan un símbolo $\partial I(\theta)/\partial\theta$, que no obedece una convención. Esta ambigüedad se elimina expresando las derivadas respecto al vector θ mediante las derivadas respecto a su componente θ_i , como se procede en el material suplementario (disponible para quienes lo soliciten) y aquí se indica en la ecuación (3). La matriz H y la (log) verosimilitud en estas referencias no parecen corresponder al problema. Ver material suplementario.

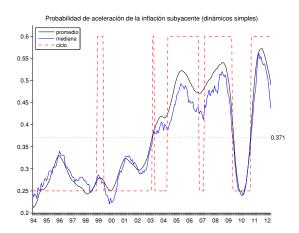


Gráfico No. 4: Ajuste de $Pr(\text{aceleración de }\pi)$ con modelos auto-regresivos simples

Ajuste de los modelos para el ciclo discreto de π

El Gráfico No. 3 ilustra el ajuste dentro de la muestra mensual de los modelos estáticos simples respecto a los ciclos de aceleración/desaceleración en la tendencia inflacionaria. Se compara los estadísticos de las probabilidades estimadas de todos los modelos (para cada periodo) y se incluye una línea horizontal para la probabilidad incondicional del evento 'aceleración', estimada con toda la muestra. Se aprecia que los modelos estáticos simples sólo logran capturar las aceleraciones relevantes más recientes, presentando una señal falsa al inicio del periodo de estabilización. Puede argumentarse que las presiones inflacionarias que estos modelos señalan como existentes al inicio de este periodo (debido a diversos determinantes individuales) no lograron revertir la tendencia desinflacionaria de ese periodo. Los modelos auto-regresivos simples en el Gráfico No. 4 sólo presentan una capacidad ligeramente superior para capturar la aceleración más reciente en la muestra. El reducido número de iteraciones MVR puede explicar la similitud en los resultados mostrados.

La lista ordenada de variables con la que se construyen los dos tipos de modelos múltiples se obtiene únicamente de los modelos uni-ecuacionales auto-regresivos, pues en general, con más iteraciones MVR, estos modelos son mejores que los uni-ecuacionales estáticos. 16 El Gráfico No. 5 muestra que los modelos estáticos múltiples logran anticipar todas las aceleraciones de la muestra y con pocas señales falsas. Nuevamente, las presiones inflacionarias al inicio del periodo de estabilización según estos modelos no fueron tan importantes respecto a la tendencia desinflacionaria de ese periodo. Los modelos auto-regresivos múltiples en el Gráfico No. 6 presentan una capacidad muy similar todas las aceleraciones de la muestra, en particular la segunda aceleración (de corta duración). Las señales falsas con estos modelos son de magnitud ligeramente menor según la mediana. 17

 $^{^{14}}$ Ver Barrera (2012b) para una descripción de MVR, sin penalización de parámetros en un contexto similar. Los métodos de estimación aquí utilizados son las versiones penalizadas de MV y MVR.

 $^{^{15}}$ Un resultado adelantado es que, en el caso de la tendencia inflacionaria, π , variables tan volátiles como los componentes de la inflación no subyacente IPC logran ser útiles para predecir el ciclo en π , evidencia contraria a la hipótesis simplista de que los choques de oferta incluidos en la inflación no subyacente IPC tienen efectos de poca importancia en π .

¹⁶Las variables se añadieron una a una según el orden de la lista mencionada, hasta que surgieron dificultades en el *condition number*, por lo que sólo se llegó a considerar las primeras 12 variables en la

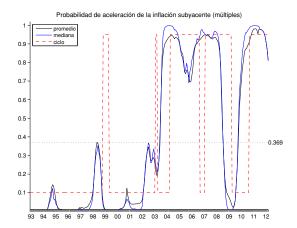


Gráfico No. 5: Ajuste de Pr(aceleración de π) con modelos estáticos múltiples

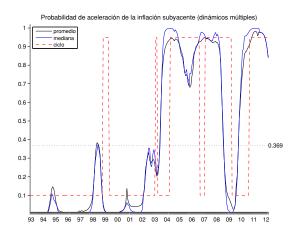


Gráfico No. 6: Ajuste de Pr(aceleración de π) con modelos auto-regresivos múltiples

En términos de la idoneidad de la medida de probabilidad, las proyecciones de la probabilidad de aceleración generadas con los modelos simples tienen niveles promedio ligeramente por debajo de 0.4 para todo el periodo de 12 meses posteriores a junio 2012, mientras que las proyecciones generadas con los modelos múltiples alcanzan niveles superiores a 0.7 para el periodo suguiente a esta misma cota (ver Anexo B).

Selección del conjunto de información para el ciclo discreto de π

El Gráfico No. 7 muestra que los mínimos de los dos criterios de información de Akaike no coinciden con los modelos auto-regresivos múltiples. El mejor modelo para uno de los criterios contiene las primeras 3 variables¹⁸ de la lista ordenada: LABI (crecimiento del empleo en empresas de más de 100 trabajadores del sector industrial), RAPELE (crecimiento del promedio de los precios al consumidor del resto de aparatos electro-domésticos) y SILVER (crecimiento del precio internacional del metal plata); mientras que para el otro criterio debemos añadir 9 variables más: TCP (crecimiento del tipo de cambio bancario promedio C-V), TIN (crecimiento del precio internacional del metal estaño), IMPSUB (crecimiento del IPC importado subyacente), TXISCC (crecimiento de la recaudación del impuesto ISC a los combustibles por el G. Central), SUBSAB (crecimiento del IPC subyacente sin alimentos y bebidas), RPIND4 (crecimiento de los precios promedio

lista. El uso de más iteraciones MVR puede implicar listas ordenadas diferentes.

¹⁷Al menos una de estas señales que aquí consideramos falsas corresponde a una de las fases de corta duración que fueron eliminadas en el ciclo discreto.

¹⁸Por convención, los gráficos muestran sólo la variable que ingresa adicionalmente a las anteriores.

al consumidor del grupo 4 de productos industriales), RPIND1 (crecimiento de los precios promedio al consumidor del grupo 1 de productos industriales), METAL (crecimiento del índice de precios de *commodities* en el grupo metales -IFS) e IPCSAE (crecimiento del IPC sin alimentos y energía). ¹⁹ Las 12 variables no llevan el porcentaje total de aciertos al 100 %, pero el problema de 'multi-colinealidad en máxima verosimilitud' es un problema de grado que en este caso podría atribuirse a las variables SUBSAB y IPCSAE (especialmente a esta última). ²⁰

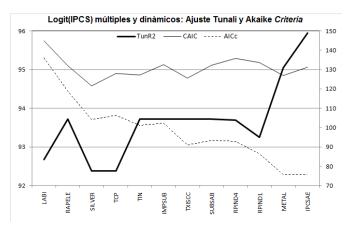


Gráfico No. 7: Ajuste y parsimonia de los modelos auto-regresivos múltiples

El Gráfico No. 8 muestra que la minimización de los dos criterios de información de Akaike con los modelos estáticos múltiples da lugar a la misma disjuntiva anterior: un criterio señala el modelo con las mismas primeras 3 variables y el otro criterio señala aquél con todas las 12 variables. Ello no debería extrañar: al utilizar la misma lista ordenada proveniente de los modelos uni-ecuacionales auto-regresivos simples, se ha forzado que las variables sean las mismas e ingresen en el mismo orden. Ambos modelos logran coeficientes de ajuste Tunali (% de aciertos en ambos estados, aceleración y desaceleración; ver Greene (2002)) menores que los correspondientes modelos auto-regresivos.

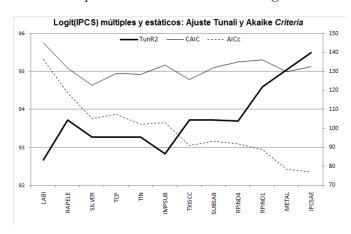


Gráfico No. 8: Ajuste y parsimonia de los modelos estáticos múltiples

Es importante señalar que algunos efectos marginales individuales (ver Anexos C y D) resultan poco importantes estadísticamente, lo que en este tipo de modelos discriminantes

 $^{^{19} {\}rm Los}$ rubros de precios al consumidor en estos grupos fueron agrupados especialmente para el presente estudio. Ver Anexo E

 $^{^{20}}$ Como se explicó, un ajuste demasiado cercano al $100\,\%$ no es apropiado en este tipo de modelos: ello señala que la variable latente salta brúscamente cuando el valor absoluto de al menos un parámetro estimado de MVRP salta (aunque con límite superior) ante el ingreso de IPCSAE.

no implica que el conjunto de información lo sea (ver Greene (2002), aunque ello puede reflejar la importancia del rezago de la variable latente. En todo caso, los resultados del procedimiento de selección confirman que variables asociadas a presiones de demanda interna (LABI, RAPELE, SUBSAB e IPCSAE) son importantes. Estos resultados también sustentan la importancia de las presiones de demanda externa (SILVER, TIN, IMPSUB y METAL), de las condiciones de oferta interna (TXISCC, RPIND4 y RPIND1) y de las condiciones de oferta externa de dólares relativa a la oferta interna de dólares (TCP).

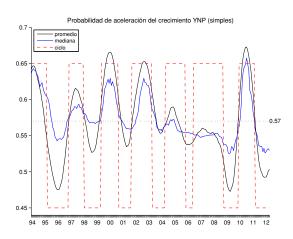


Gráfico No. 9: Ajuste de Pr(aceleración de g) con modelos estáticos simples

Ajuste de los modelos para el ciclo discreto de g

El Gráfico No. 9 ilustra el ajuste dentro de la muestra mensual de los modelos estáticos simples respecto a los ciclos de aceleración/desaceleración en el crecimiento real. Se presenta la media y la mediana de las probabilidades estimadas de todos los modelos (para cada periodo) incluyendo la probabilidad incondicional del evento 'aceleración'. Los modelos estáticos simples logran capturar casi todas las aceleraciones y desaceleraciones en la muestra, presentando una señal débil para la penúltima aceleración en la muestra. Los modelos auto-regresivos simples en el Gráfico No. 10 logran una capacidad ligeramente superior para capturar los ciclos en la muestra. Nuevamente, el reducido número de iteraciones MVR explica la similitud en los resultados mostrados.

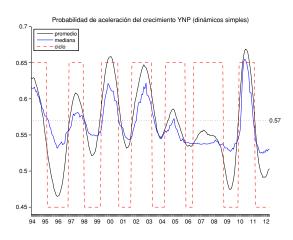


Gráfico No. 10: Ajuste de Pr(aceleración de g) con modelos auto-regresivos simples

Nuevamente, los dos tipos de modelos múltiples se obtienen con la lista ordenada de variables asociada a los modelos uni-ecuacionales auto-regresivos simples.²¹ En el Gráfico

 $^{^{21}}$ Las variables fueron añadidas una a una según el orden de esta lista, sin que se presentara el problema

No. 11, los modelos estáticos múltiples logran anticipar todas las aceleraciones de la muestra con ninguna señal débil ni falsa.

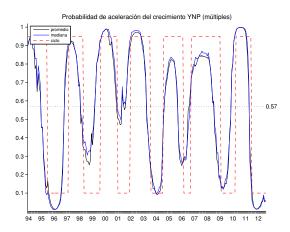


Gráfico No. 11: Ajuste de Pr(aceleración de g) con modelos estáticos múltiples

Los modelos auto-regresivos múltiples en el Gráfico No. 12 presentan una capacidad muy similar al anticipar todas las aceleraciones de la muestra. 22

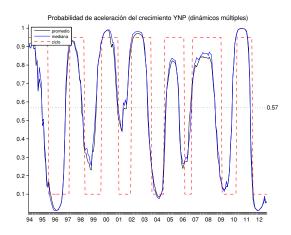


Gráfico No. 12: Ajuste de Pr(aceleración de g) con modelos auto-regresivos múltiples

En términos de la idoneidad de la medida de probabilidad, es importante señalar que las proyecciones de la probabilidad de aceleración generadas con los modelos simples tienen niveles promedio ligeramente por debajo de 0.6 para todo el periodo de 12 meses posteriores a junio 2012, mientras que las proyecciones generadas con los modelos múltiples (en particular los que incluyen los índices compuestos de indicadores anticipadores LI8MM y LI9ALG) alcanzan niveles superiores que 0.6 a partir del 3^{er} mes adelante (ver Anexo E).

Selección del conjunto de información para el ciclo discreto de g

El Gráfico No. 13 muestra que los mínimos de los dos criterios de información de Akaike logran coincidir en el mismo modelo auto-regresivo múltiple: el mejor modelo contiene las

del condition number. Ver nota anterior No. 16.

²²No se presenta ninguna señal débil. Por lo tanto, en el caso del crecimiento del PBI no primario, es posible que la eliminación de fases de corta duración en su ciclo discreto no afecte la obtención del plano discriminante en todos estos modelos.

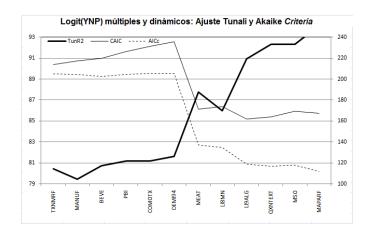


Gráfico No. 13: Ajuste y parsimonia en los modelos auto-regresivos múltiples

primeras 12 variables²³ de la lista ordenada: TXNMRF (crecimiento del sub-índice de la producción manufactura -MANUF- que incluye Textiles, Cuero y Calzado, Minería no metálica y Refinación de Metales no ferrosos), MANUF (crecimiento del sub-índice del PBI no primario correspondiente a la producción manufacturera), BEVE (crecimiento del del índice de precios de commodities en el grupo bebidas -IFS), PBI (crecimiento del índice del PBI agregado), COMOTX (crecimiento del sub-índice del PBI no primario que incluye Comercio, Ot. servicios e impuestos a la producción y der. a la importación), DEMI94 (crecimiento del índice de demanda interna), MEAT (crecimiento del índice de precios de commodities en el grupo carnes -IFS), LI8MN (crecimiento del índice de 8 indicadores anticipadores de los puntos de quiebre del crecimiento del PBI no primario), LI9ALG (crecimiento del índice de 9 indicadores anticipadores de los puntos de quiebre del crecimiento del PBI no primario).²⁴ QXNTEXT (crecimiento del índice de volumen de exportaciones no tradicionales de textiles), MSO (crecimiento de las importaciones totales -sin otros) y MAPARF (crecimiento del sub-índice de la producción manufactura -MANUF- que incluye madera, muebles, papel y refinación de patróleo). Aunque estas 12 variables no generan un porcentaje total de aciertos de 100 %, el problema de 'multicolinealidad en máxima verosimilitud' no parece estar presente a pesar de la presencia de las variables MANUF y PBI.

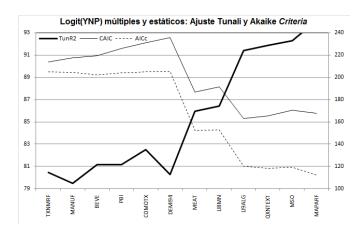


Gráfico No. 14: Ajuste y parsimonia en los modelos estáticos múltiples

El Gráfico No. 14 muestra que la minimización de los dos criterios de información

²³Los gráficos muestran sólo la variable que ingresa adicionalmente a las anteriores.

²⁴Para la definición de estas dos variables, ver Barrera (2009).

de Akaike en los modelos estáticos múltiples obtenidos con la misma lista ordenada lleva a la misma coincidencia anterior: el modelo estático múltiple con las mismas primeras 12 variables. Este resultado surge de forzar (para fines comparativos) a que las variables sean las mismas y además ingresen en el mismo orden. Este modelo logra un coeficiente de ajuste Tunali (% de aciertos en todos los estados) menor que el correspondiente modelo auto-regresivo.

Nuevamente, todos los efectos marginales individuales (ver Anexos F y G) resultan poco importantes estadísticamente, reflejando el grado de importancia del rezago de la variable latente. Sin embargo, los resultados del procedimiento de selección confirman que variables asociadas a presiones de demanda interna (TXNMRF, MANUF, PBI, CO-MOTX, DEMI94, MSO y MAPARF) son importantes, así como los de presiones de demanda externa (BEVE, MEAT y QXNTEXT) y de condiciones de oferta interna (LI9ALG y LI8MN).

IV. Contraste de la ausencia de relación estocástica

En la sección anterior se determinó que (1) ningún rezago de alguna variable del crecimiento del PBI real sectorial ingresa como explicativa del ciclo discreto en la tendencia inflacionaria, y que (2) ningún rezago de alguna variable de la inflación IPC desagregada ingresa como explicativa del ciclo discreto en el crecimiento real. Estos resultados indican que no existe relación entre ambos ciclos discretos de manera directa. Sin embargo, es posible que exista una relación indirecta que, subyacentemente, relacione ambos ciclos discretos: la correlación entre los límites de sensibilidad de las dos variables latentes que determinan estos ciclos en un modelo probit bi-ecuacional.

La pregunta que surge es entonces: ¿Podría existir alguna relación entre el ciclo de π y el ciclo de g luego de considerar sus principales indicadores anticipadores? En contra de esta hipótesis, los ciclos de las dos variables podrían estar poco relacionados entre sí debido al efecto de determinantes diferentes. A favor de esta hipótesis, la evolución del ciclo económico agregado debería reflejarse simultáneamente en los ciclos de π y g. Ambos casos están condicionados a la idoneidad de la definición del ciclo discreto que se aplica para ambas variables y, por ende, al procedimiento utilizado para calcular sus ciclos discretos. 25

Modelo probit bi-ecuacional

Ashford J. & Sowden, R. (1970) motivan su propuesta de análisis de dos respuestas dicotómicas simultáneas en términos de dos sub-sistemas fisiológicos de un organismo biológico que está expuesto a diferentes estímulos o tratamientos. Este organismo se caracteriza mediante dos variables de tolerancia asociados a las respuestas de sus dos sub-sistemas fisiológicos. La relación entre las dos respuestas se expresa tanto mediante la correlación de estas dos variables de tolerancia (errores latentes) como mediante la relación estímulo-respuesta de cada sub-sistema por separado.

Sean ϵ_{t1} y ϵ_{t2} las dos variables de tolerancia, tales que $E(\epsilon_{t1}) = E(\epsilon_{t2}) = 0$, $Var(\epsilon_{t1}) = Var(\epsilon_{t2}) = 1$ y $Cov(\epsilon_{t1}, \epsilon_{t2}) = \rho \equiv \omega(\rho_E)$, donde $\omega(\rho_E) \in (-1, 1)$ es una función contínua y dos veces diferenciable. Asimismo, sean x_{t1} y x_{t2} los dos conjuntos de estímulos o tratamientos (determinantes de las respuestas) que afectan directamente la respuesta del sub-sistema 'tendencia inflacionaria', el ciclo discreto de π (y_{t1}), y la respuesta del sub-sistema 'crecimiento real', el ciclo discreto de g (y_{t2}), que mantienen una relación

²⁵La tradición de Bry & Boschan (1971) de eliminar las fases de corta duración y asociadas a cambios pequeños afecta de manera particular al ciclo discreto de la tendencia inflacionaria, que se vuelve más persistente, y a la vez induce una mayor relación entre ambos ciclos discretos.

estrecha con el signo de las variables latentes $y_{t1}^* = \beta_1' x_{t1} + \epsilon_{t1}$ e $y_{t2}^* = \beta_2' x_{t2} + \epsilon_{t2}$, respectivamente. Para construir adecuadamente la (log) verosimilitud se define además $q_{t1} = 2y_{t1} - 1$ y $q_{t2} = 2y_{t2} - 1$, y correspondientemente $z_{t1} \equiv \beta_1' x_{t1}$ y $z_{t2} \equiv \beta_2' x_{t2}$, $w_{t1} \equiv q_{t1} z_{t1}$ y $w_{t2} \equiv q_{t2} z_{t2}$ y finalmente $\rho_{t*} = q_{t1} q_{t2} \rho$.

Entonces, la probabilidad de cada observación individual es $Prob\{Y_1 = y_{t1}, Y_2 = y_{t2}\} \equiv \Phi_2(w_{t1}, w_{t2}, \rho_{t*})$, donde $\Phi_2(,,)$ es la distribución acumulada normal estándar bi-variada. Por lo tanto, los parámetros $\theta \equiv (\beta_1', \beta_2', \rho_E)'$ pueden estimarse por MV maximizando la función

$$l(\theta) = log L(\theta) = \sum_{t} log(\Phi_2(w_{t1}, w_{t2}, \rho_{t*}))$$
 (4)

Los estimados de los modelos bi-ecuacionales estáticos no penalizados se obtienen ma-ximizando la función en la ecuación (4) mediante el algorítmo Newton-Raphson a partir de las condiciones de primer orden (CPO) y las condiciones de segundo orden (CSO) para esta maximización considerando la restricción $\rho \in (-1,1)$ mediante una reparametrización y una función acotada en este intervalo que depende del parámetro libre $\rho_E \in \mathbb{R}^1$. En el caso de los modelos bi-ecuacionales auto-regresivos, la estimación considera el rezago de la variables latente obtenido en el modelos estático uni-ecuacional asociado al modelo auto-regresivo uni-ecuacional pre-seleccionado para las dos ecuaciones en el modelo bi-ecuacional, con la particularidad que los dos coeficientes estimados de las sendas variables latentes rezagadas están restringidos de manera similar a ρ .²⁶ La matriz de co-varianzas usada para calcular las pruebas t para las hipótesis de los parámetros individuales corresponde a la inversa de la matriz de información (el límite inferior de Cramer-Rao), pre- y pos-multiplicada por la matriz con las primeras derivadas del vector de parámetros transformados (por ejemplo, ρ) en la diagonal (la aproximación provista por el método Delta).

	Parámetr	os estimados	y prueba LM para HO): correlació	n nula	
	b1			b2		_
variable	estimado	Tcalc	variable	estimado	Tcalc	
const	1,175	1,098	consts	3,237	4,645	
LABI	1,775	2,572	TXNMRF	-0,217	-4,439	
RAPELE	-2,467	-3,400	BEVE	0,011	0,691	
SILVER	-0,110	-2,412	COMOTX	-0,428	-1,953	
TCP	0,566	2,591	DEMI94	0,225	1,300	
TIN	0,271	3,580	MEAT	0,147	5,263	
IMPSUB	0,516	1,101	LI8MM	-0,995	-4,431	
TXISCC	-0,105	-3,089	LI9ALG	0,864	4,302	
SUBSAB	0,995	2,386	QXNTEXT	-0,019	-1,464	
RPIND4	-0,600	-2,251	MSO	0,025	0,787	
METAL	-2,168	-2,794				
_			_			LM
			Correl.	-0,693	-2,082	6,423

Cuadro No. 1: Modelo probit bi-ecuacional estático (MV)

Los estimados de los modelos bi-ecuacionales penalizados (estáticos y auto-regresivos) se obtienen maximizando la versión penalizada de la función en la ecuación (4) (ver ecuación (2)) mediante el algoritmo de optimización denominado Sequential Quadratic Programming (SQP) que permite imponer restricciones de desigualdad (el determinante en la ecuación (2) debe ser positivo). Este algoritmo puede usar las CPO para esta maximización (ecuación (3)) y calcular numéricamente las correspondientes CSO, cuya

 $[\]overline{\ ^{26}\text{Es decir, se tiene que }\beta_{1}^{AR1}\in(-1,1)\text{ y }\beta_{2}^{AR1}\in(-1,1)\text{ mediante sendas funciones acotadas en este intervalo que dependen de sendos parámetros libres }\beta_{1E}^{AR1}\in\mathbb{R}^{1}\text{ y }\beta_{2E}^{AR1}\in\mathbb{R}^{1}.$

derivación es extremadamente tediosa. 27 En este caso, la matriz de co-varianzas usada para calcular las pruebas t para las hipótesis de los parámetros individuales corresponde

	Parámetr	os estimados	y prueba LM para H	0: correlació	n nula	
	b1			b2		
variable	estimado	Tcalc	variable	estimado	Tcalc	
const	1,175	1,098	consts	3,237	4,645	
LABI	1,775	2,572	TXNMRF	-0,217	-4,439	
RAPELE	-2,467	-3,400	BEVE	0,011	0,691	
SILVER	-0,110	-2,412	COMOTX	-0,428	-1,953	
TCP	0,566	2,591	DEMI94	0,225	1,300	
TIN	0,271	3,580	MEAT	0,147	5,263	
IMPSUB	0,516	1,101	LI8MM	-0,995	-4,431	
TXISCC	-0,105	-3,089	LI9ALG	0,864	4,302	
SUBSAB	0,995	2,386	QXNTEXT	-0,019	-1,464	
RPIND4	-0,600	-2,251	MSO	0,025	0,787	
METAL	-2,168	-2,794				
						LM
			Correl.	-0,693	-2,082	6,423

Cuadro No. 2: Modelo probit bi-ecucional estático (MVP)

a la inversa de la matriz de información de la (log) verosimilitud no penalizada, prey pos-multiplicada por la matriz con las primeras derivadas del vector de parámetros transformados en la diagonal. 28

Los conjuntos de determinantes x_{t1} y x_{t2} corresponden al mejor conjunto de información seleccionado para cada ciclo discreto por separado (descartando aquellas que generan redundancia evidente con el ciclo discreto a explicar; ver sección anterior). Los siguientes cuadros presentan los parámetros estimados, incluyendo los restringidos, $\hat{\theta} \equiv (b_1', b_2', \hat{\rho})'$, donde $b_j \equiv (\hat{\beta}'_j, \hat{\beta}^{AR1}_j)'$, $j \in \{1, 2\}$. El Cuadro No. 1 muestra los estimados no penalizados del modelo probit bi-ecuacional estático, así como la prueba del multiplicador de Lagrange (LM) para la hipótesis nula de no correlación ($\rho = 0$).

	Parámetr	os estimados	y prueba LM para H(): correlació	n nula	
	b1			b2		
variable	estimado	Tcalc	variable	estimado	Tcalc	
const	0,115	0,165	consts	2,044	7,792	
LABI	1,583	3,208	TXNMRF	-0,236	-5,613	
RAPELE	-1,725	-4,089	BEVE	-0,027	-2,048	
SILVER	-0,065	-2,579	COMOTX	-0,041	-0,208	
TCP	0,379	3,566	DEMI94	-0,024	-0,135	
TIN	0,169	3,817	MEAT	0,143	5,310	
IMPSUB	0,066	0,239	LI8MM	-0,960	-5,030	
TXISCC	-0,118	-6,300	LI9ALG	0,934	5,498	
SUBSAB	1,465	6,219	QXNTEXT	-0,027	0,000	
RPIND4	-0,855	-3,791	MSO	0,060	2,048	
METAL	-1,938	-3,444	ar(1)	-0,049	0,000	
ar(1)	-0,166	0,000				
						LM
			Correl.	0,998	4,019E+25	4,932

Cuadro No. 3: Modelo probit bi-ecuacional auto-regresivo (MV)

Las pruebas t para la significancia estadística individual de cada uno de los determinantes indican que dos variables explicativas del conjunto pre-seleccionado para la ecuación del ciclo discreto de π no son importantes y que cuatro no lo son en el caso de la ecuación del

²⁷En el material suplementario (disponible para quienes lo soliciten) se provee la derivación completa de las CPO y CSO para estos problemas, que no está disponible en ningún otro estudio previo.

²⁸En todos los casos se usó varios métodos de optimización previos para mejorar las semillas iniciales.

ciclo discreto de g. ²⁹ La prueba estadística LM recoge la poca evidencia capturada por el mejor modelo de los datos, en contra de la ausencia de una relación débil o estocástica entre las dos variables cuando el nivel de significancia es de 1 por ciento y se considera la influencia de los otros determinantes que explican o anticipan los ciclos de las dos variables explicativas de manera individual. ³⁰

De manera complementaria, el Cuadro No. 2 muestra los estimados penalizados de este modelo probit bi-ecuacional estático, así como la prueba LM correspondiente. Las pruebas t para la significancia estadística de cada uno de los determinantes indican nuevamente que sólo dos variables explicativas de todo el conjunto pre-seleccionado no son importantes individualmente en el caso de la tendencia inflacionaria y que cuatro no lo son en el caso del crecimiento real. En este caso existe evidencia suficiente en contra de la ausencia de una relación débil no lineal entre ambas variables.

	Parámetr	os estimados	y prueba LM para H): correlació	n nula	
	b1			b2		
variable	estimado	Tcalc	variable	estimado	Tcalc	
const	0,065	0,234	consts	0,659	2,063	
LABI	0,463	3,736	TXNMRF	-0,099	-2,898	
RAPELE	-0,520	-4,569	BEVE	-0,013	-1,303	
SILVER	-0,004	-0,333	COMOTX	-0,068	-0,532	
TCP	0,056	0,975	DEMI94	-0,025	-0,215	
TIN	0,049	4,266	MEAT	0,036	3,342	
IMPSUB	0,166	1,783	LI8MM	-0,233	-1,863	
TXISCC	-0,049	-3,348	LI9ALG	0,213	1,980	
SUBSAB	0,347	3,429	QXNTEXT	-0,016	-1,457	
RPIND4	-0,245	-3,371	MSO	0,007	0,312	
METAL	-0,495	-3,833	ar(1)	-0,027	-1500,827	
ar(1)	0,072	0,000				
			•			LM
			Correl.	0,986	1,877E+03	6,860

Cuadro No. 4: Modelo probit bi-ecuacional auto-regresivo (MVP)

También se presenta los resultados de las versiones auto-regresivas de los modelos anteriores. El Cuadro No. 3 muestra los estimados no penalizados del modelo probit bi-ecuacional auto-regresivo y la prueba LM de no correlación. Las pruebas t para la significancia estadística de cada uno de los determinantes indican que pocas variables explicativas no son importantes (3 en la ecuación del ciclo de π y 4 en la de g). En este caso no hay evidencia suficiente en contra de la ausencia de una relación débil no lineal entre ambas variables cuando el nivel de significacia es de 1 por ciento.

Para complementar estos últimos resultados, el Cuadro No. 4 muestra los estimados penalizados de este modelo probit bi-ecuacional auto-regresivo y la prueba LM de no correlación. Las pruebas t para la significancia estadística de cada uno de los determinantes indican un número mayor de variables explicativas poco importantes individualmente (4 en la ecuación del ciclo de π y 5 en la de g). Nuevamente se dispone de evidencia en contra de la ausencia de una relación débil no lineal entre ambas variables.

Es importante mencionar algunas limitaciones de los estimados MVP. En primer lugar, pueden corresponder a óptimos locales, lo que resulta particularmente importante en el caso del modelo bi-ecuacional estático. En segundo lugar, no existe consenso respecto al procedimiento para realizar pruebas de hipótesis con parámetros individuales o para discriminar entre dos diferentes especificaciones de modelos estimados via MVP (las pruebas

 $^{^{29}\}mathrm{Si}$ el área de probabilidad de dos colas es de $\{10,5,2,1\}$ por ciento, el valor crítico de la distribución normal estándar es de $\{1.645,1.960,2.326,2.576\}$ en valor absoluto.

 $^{^{30}}$ Los valores críticos de la prueba LM con dos colas de 0.5% cada una son [0.00004,5.02]. Con dos colas de 5% cada una, los valores críticos son [0.004,3.84].

t en las versiones penalizadas usan la matriz de información de la log-verosimilitud, justamente la que participa en la penalización). Por lo tanto, sobre la base de los resultados no penalizados, y con ellos se realiza una prueba de ratio de verosimilitud para la hipótesis nula de que los dos parámetros de los términos auto-regresivos son cero en el modelo probit bi-ecuacional auto-regresivo, con lo que se obtendría el modelo probit bi-ecuacional estático (el modelo en la hipótesis nula). El valor calculado es 10.12, que resulta mayor que 9.21 (el valor crítico en la tabla de la distribución con 2 grados de libertad y un nivel de significancia de 1 por ciento), por lo que es posible rechazar la hipótesis de que dichos parámetros son cero. Ello favorece al modelo probit bi-ecuacional auto-regresivo, en el cual no se tiene suficiente evidencia contraria a la ausencia de una relación débil no lineal entre ambas variables. Sin embargo, este es el único modelo de los cuatro en el cual no se tiene suficiente evidencia contraria a la ausencia de esta relación.

V. Conclusiones

Disponer de la probabilidad de eventos relevantes definidos tanto en la tendencia inflacionaria y el crecimiento real puede ser útil para definir adecuadamente los instrumentos de política macro-económica. Para una medición apropiada de esta probabilidad es importante determinar el mejor conjunto de indicadores anticipadores de un conjunto amplio de variables candidatas así como considerar la persistencia de las fases o estados del ciclo discreto en la tendencia inflacionaria y el crecimiento real (vía modelos auto-regresivos logit).

Los resultados del procedimiento de selección confirman la importancia de las presiones de demanda interna (LABI, RAPELE, SUBSAB e IPCSAE), de las presiones de demanda externa (SILVER, TIN, IMPSUB y METAL) así como de las presiones sobre la oferta interna (TXISCC, RPIND4 y RPIND1) y de las condiciones de oferta externa de dólares relativa a la oferta interna de dólares (TCP) en el ciclo discreto de la tendencia inflacionaria. Ninguno de los indicadores agregados y sub-agregados en el PBI aparece en en este conjunto de información compuesto por 11 variables, lo que es consistente con los perfiles de información adelantada presentados en Barrera (2012a). Un complemento para estos resultados sería la aplicación del esquema utilizado para seleccionar los determinantes de los ciclos discretos de otras medidas de inflación subyacente IPC (SUBSAB e IPCSAE), que aquí se han clasificado como 'demanda interna'.

Asimismo, se confirma la importancia de las presiones de demanda interna (TXNM-RF, MANUF, PBI, COMOTX, DEMI94, MSO y MAPARF), de las presiones de demanda externa (BEVE, MEAT y QXNTEXT) así como de las condiciones de oferta interna (LI9ALG y LI8MN) en el ciclo discreto del crecimiento real. Ninguno de los indicadores agregados y sub-agregados de precios al consumidor IPC aparece en en este conjunto de información compuesto por 10 variables, lo que es consistente con los perfiles de información adelantada presentados en Barrera (2009). De manera similar, una confirmación similar de los determinantes de los ciclos discretos de otras medidas de crecimiento de la producción no primaria (TXNMRF, MANUF y COMOTX) que aquí se han clasificado como 'demanda interna', sería complementaria.

Con la selección de estos conjuntos de información (predictores o tratamientos), se estima 4 modelos probit bi-ecuacionales (estático y auto-regresivo, vía MV y MVP). Todos estos modelos logran capturar evidencia contraria a la ausencia de una relación estocástica entre ambos ciclos discretos, excepto en el caso del modelo auto-regresivo estimado por MV. Sólo en este modelo, la correlación entre las dos variables latentes incluidas es estadísticamente nula y, por lo tanto, el proceso que gobierna los ciclos discretos de la tendencia inflacionaria, por un lado, y el que gobierna los ciclos discretos del crecimiento real, por el otro, serían dos procesos independientes.

Finalmente, distintas racionalizaciones o explicaciones (historias) pueden servir para justificar la presencia de las variables especificadas. Los modelos de probabilidad usados en el presente estudio imponen el uso de tamaños de muestra relativamente extensos y por ende impiden el uso de algunas variables relevantes, como las encuestas de expectativas de inflación. Por otra parte, los resultados obtenidos en el presente estudio son interpretados como favorables a la utilización de la versión recursiva del método de estimación de máxima verosimilitud (MVR), el cual no ha sido utilizado explícitamente en la literatura para estimar los modelos auto-regresivos múltiples logit uni-ecuacionales y probit bi-ecuacionales. Los resultados en el presente estudio indican que puede ser necesario usar más de una etapa en la estimación MVR.

Referencias

- Acemoglu, Daron; Johnson, Simon; Robinson, James & Yared, Pierre (2009) Reevaluating the modernization hypothesis, Journal of Monetary Economics, Vol. 56, pgs. 1043-1058.
- Albert, A. & Anderson, J. (1984) On the existence of maximum likelihood estimates in logistic regression models, Biometrika, Vol. 71, pgs. 1-10.
- Ashford J. & Sowden, R. (1970) Multi-variate probit analysis, Biometrics, Vol. 26, No. 3 (setiembre), pgs. 535-546.
- Aznarán, Guillermo (2010) La curva de Phillips en la economía peruana, Facultad de Ciencias Económicas, Universidad Nacional Mayor de San Marcos.
- Baglan, Deniz & Yoldas, Emre (2014) Non-linearity in the inflation-growth relationship in developing economies: evidence from a semiparametric panel model, Division of Research and Statistics and Monetary Affairs, Federal Reserve Board, Finance & Economics Discussion Series No. 2014-51.
- Barrera, Carlos (2009) Ciclos sectoriales de los negocios en el Perú e indicadores anticipadores para el crecimiento del PBI no primario, Documento de Trabajo BCRP No. 2009-013 (junio), Banco Central de Reserva del Perú.
- Barrera, Carlos (2010) ¿Respuesta asimétrica de precios domésticos de combustibles ante choques en el WTI?, Documento de Trabajo DT No. 2010-016, Banco Central de Reserva del Perú.
- Barrera, Carlos (2011) Impacto amplificador del ajuste de inventarios ante choques de demanda según especificaciones flexibles, Documento de Trabajo DT No. 2011-009, Banco Central de Reserva del Perú.
- Barrera, Carlos (2012a) El ciclo común y los grupos homogéneos en la inflación, Documento de Trabajo DT No. 2012-010 (abril), Banco Central de Reserva del Perú.
- Barrera, Carlos (2012b) Prediciendo recesiones con modelos auto-regresivos *logit* ordinales (mimeo disponible a solicitud).
- Bry, Gerhard & Boschan, Charlotte (1971) Cyclical analysis of time series: selected procedures and computer programs, NBER, New York.
- Carrera, César & Ramírez, Nelson (2013) Inflation, information rigidity and the sticky-information Phillips curve, Documento de Trabajo DT No. 2013-017 (diciembre), Banco Central de Reserva del Perú.
- Candelon, Bertrand; Dumitrescu, Elena-Ivona; Hurlin, Christophe & Palm, Franz (2012) Multivariate dynamic probit models: an application to financial crises mutation, Maastricht University & Université d'Orléans.

- De Veirman, Emmanuel (2007) Which nonlinearity in the Phillips curve? The absence of accelerating deflation in Japan, Reserve Bank of New Zealand (enero).
- Debelle, Guy & Vickery, James (1997) Is the Phillips curve a curve? Some evidence and implications for Australia, Economic Research Department, Reserve Bank of Australia, Research Discussion Paper No. 9706 (octubre).
- Eliasson, Ann-Charlotte (1999) Is the short-run Phillips curve nonlinear? Empirical evidence for Australia, Sweden and the United States, Stockholm School of Economics, Department of Economic Statistics (junio).
- Fijorek, Kamil & Sokolowski, Andrzej (2012) Separation-resistant and bias-reduced logistic regression: $\mathcal{STATISTICA}$ macro, Journal of Statistical Software, Vo. 47, No. 2 (abril).
- Firth, David (1993) Bias reduction of maximum likelihood estimates, Biometrika, Vol. 80, No. 1, pgs. 27-38.
- Greene, William (2002) Econometric Analysis, 5^{ta} edición.
- Groen, Jan & Mumtaz, Harron (2008) Investigating the structural stability of the Phillips curve relationship, Bank of England Working Paper No. 350 (mayo).
- Harding, Don & Pagan, Adrian (2002) Dissecting the cycle: a methodological investigation, Journal of Monetary Economics, Vol. 49, No. 2 (marzo), pgs. 365-381.
- Harding, Don & Pagan, Adrian (2003) A comparison of two business cycle dating methods, Journal of Economic Dynamics and Control, Vol. 27, No. 9, pgs. 1681-1690.
- Huguenin, Jacques; Pelgrin, Florian & Holly, Alberto (2009) Estimation of multivariate probit models by exact maximum likelihood, Institute of Health Economics and Management (IEMS) Working Paper No. 09-02 (febrero), Université de Lausanne.
- Kauppi, Heikki & Saikkonen, Pentii (2005) Predictig U.S. recessions with dynamic binary response models, Helsinki Center of Economic Research (HECER) Discussion Paper No. 79 (setiembre).
- King, Robert & Watson, Mark (1994) The post-war U.S. Phillips curve: a revisionist econometric history, Carnegie-Rochester Conference on Public Policy, Vol. 41, pgs. 157-219.
- Lesaffre, Emmanuel & Marx, Brian (1993) Collinearity in generalized linear regression, Communications in Statistics Theory & Methods, Vol. 22, No. 7, pgs. 1933-1952.
- Maddala, Gangadharrao Soundalyarao 'G. S.' (1983) Limited-dependent and qualitative variables in econometrics, Econometric Society Monographs No. 3, Cambridge U. Press.
- McCullough, Bruce & Vinod, Hrishikesh -Rick- (2001) Diagnosing failure: when is an estimation problem too large for a PC?, Society for Computational Economics, Computing in Economics and Finance Paper No. 246.
- Musso, Alberto; Stracca, Livio & van Dijk, Dick (2007) Instability and nonlinearity in the Euro area Phillips curve, European Central Bank, Working Paper No. 811 (setiembre).
- Nyberg, Henri (2009) A bivariate auto-regressive probit model: predicting U.S. business cycle and growth rates cycle recessions, Helsinki Center of Economic Research (HECER) Discussion Paper No. 272 (setiembre).
- Romer, David (2011) Advanced macroeconomics, 4^{ta} edición, MacGraw-Hill.
- Sleeman, A.G. (2011) The Phillips curve: a rushed job?, Journal of Economic Perspectives, Vol. 25, No. 1 (invierno), pgs. 223-238.
- Zorn, Christopher (2005) A solution to separation in binary response models, Law and Social Science Program, National Science Foundation

$\bf ANEXO~A:~Lista$ de variables explicativas ('tratamientos') para la muestra mensual

Etiqueta	Descripción	Número
	Componentes del IPC de Lima Metropolitana; Fuente: BCRP.	
ALIBEB	1. Alimentos y bebidas	1
ALIAGP	Alimentos agropecuarios (a1-bs)	2
ALIPRO	Alimentos procesados (a1-bs)	3
ADNS1	Alimentos domésticos NS 1 (a2-bs)	4
ADNS2	Alimentos domésticos NS 2 (a2-bs)	5
ADNS3	Alimentos domésticos NS 3 (a2-bs)	6
ADNS4	Alimentos domésticos NS 4 (a2-bs)	7
ADNS5	Alimentos domésticos NS 5 (a2-bs)	8
ADNS6	Alimentos domésticos NS 6 (a2-bs)	9
AIMPNS BEB	Alimentos importados NS (b2-bs) Bebidas (a1-bs)	10 11
COMFH	Comidas fuera del hogar (a1-ss)	12
RALBEB	2. Resto	13
COMBEL	a. Combustibles y electricidad	14
COMBUS	Combustibles (b2)	15
ELECTR	Electricidad (a2-ss)	16
TRANSP	b. Transporte (a2-ss)	17
SSPPSE	c. Servicios públicos s/elect. (a2-ss)	18
SUBSAB	d. Otros bienes y servicios (subyacente s/alim. y beb.)	19
TEXTIL	Textiles (a1-bs)	20
CALZAD	Calzado (a1-bs)	21
TVRALA	TV + Radio + Lavadoras (b1)	22
RAPELE	Resto Ap. Electro-domésticos	23
PMEDSA	Productos medicinales (b1)+ Salud (a1-ss)	24
CVEHIC	Compra de vehículos (b1) + Alquileres (a1-ss)	25
RPIND1	Resto prod. industriales 1 (a1-ss)	26
RPIND2	Resto prod. industriales 2 (a1-ss)	27
RPIND3	Resto prod. industriales 3 (a1-ss)	28
RPIND4	Resto prod. industriales 4 (a1-ss)	29
EDUCA	Educación	30
OTSSPR	Ot. ss. personales + Resto ss. (a1-ss)	31
IPCS	I. INFLACIÓN SUBYACENTE IPC (a1+b1) (a1) IPC doméstico subyacente	32
DOMSUB IMPSUB	(b1) IPC importado subyacente	$\frac{33}{34}$
NSUBYA	II. INFLACIÓN NO SUBYACENTE IPC (a2+b2)	35
DOMNSU	(a2) IPC doméstico no subvacente	36
IMPNSU	(b2) IPC importado no subyacente	37
DOMEST	A. IPC doméstico (a1+a2)	38
IMPORT	B. IPC importado (b1+b2)	39
IPCSAE	C. IPC s/alimentos y energía (b+c+d)	40
IPC	INFLACIÓN IPC HEADLINE	41
	Componentes del PBI; Fuente: BCRP.	
AGROP	Agropecuario	42
AGRIC	Agrícola	43
PECUA	Pecuario	44
PESCA	Pesca	45
MINHID	Minería e hidrocarburos	46
MINMET	Minería metálica	47
HIDROC	Hidrocarburos	48
MANUF	Manufactura	49
ALQUCA	AlimBebTab + QuiCauPlas + Cárnicos	50
TXNMRF	TexCuerCal + MinNoMet + RefinMNF	51
MAPARF	MadMueb + Papel + RefinPet	52
HMAQOT	HierAcer + MetMaqEq + Divers + Azuc + HarAcPes + Conserv	53 = 4
CONELE	Construcción + ElectAgua	54
COMOTX YP	Comercio + Ot. ss. + Imp. a prod. y der. de M PBI Primario	55 56
YNP	PBI no primario	56 57
PBI	PBI	58
1 1/1	1 22	90

Etiqueta	Descripción	Número
20194004	Indicadores 'líderes'; Fuente: Barrera (2009)	1.411010
LIIDEA	Ref. metales no ferrosos + Elec. y Agua	59
LI1REA LI2FRI	(+) Frijol	60
LI3CON	(+) Phyor (+) Construcción	61
LI4VAC	(+) Vacunos	62
LI5QUI	(+) Vacunos (+) Prod. Químicos, caucho y Plásticos	63
LI6MAD	(+) Madera y muebles	64
LI7SUG	(+) Madera y indebies (+) Caña de azúcar	65
LI8MM	(+) Minería metálica	66
LISMINI LI9ALG	(+) Algodón	67
	variables domésticas y foráneas; Fuente: BCRP, FredII, NOAA, B	
CPRMN	Crédito del Sistema Bancaria al Sector Privado en S/. (Mllns. S/.)	68
CPRME\$	Crédito del Sistema Bancaria al Sector Privado en US\$ (Mllns. US\$)	69
TAMN		70
TAMEX	Tasa de interés activa promedio en S/. Tasa de interés activa promedio en US\$	70
IBNKMN		72
IBNKME	Tasa de interés interbancaria promedio en S/.	73
	Tasa de interés interbancaria promedio en US\$	74
TCP XNT	Tipo de cambio bancario CV (S/. x US\$)	
TLIPX	Exportaciones no tradicionales (Mllns. US\$)	75 76
TLIPM	Indice de precios de exportaciones totales P_x (1994=100)	
	Indice de precios de importaciones totales P_m (1994=100)	77
PET	Precio promedio del Petróleo (WTI)	78
MSO	Importaciones totales, sin 'Otros' (Mllns. US\$)	79
INGCOR	Ingresos corrientes del Gobierno Central -GC- (Mllns. S/.)	80
DEMI94 LABI	Demanda interna (1994=100)	81 82
LABC	Indice de empleo Lima, 100+trab., manufactura	
_	Indice de empleo Lima, 100+trab., comercio	83
LABS	Indice de empleo Lima, 100+trab., servicios Indice general bursátil de la Bolsa de Valores de Lima (Dic.1991=100)	84
IGB		85
ISB	Indice selectivo bursátil de la Bolsa de Valores de Lima (Dic.1991=100)	86
CPILFENS	U.S. Core consumer price index	87
INDPRO	U.S. Production manufacturing index	88
FEDFUNDS M0	U.S. Federal funds rate	89
	Emisión primaria promedio (Mllns. S/.)	90
CDMN CDME\$	Cuasi-dinero en S/. (Mllns. S/.)	91 92
DEFPRIM	Cuasi-dinero en US\$ (Mllns. US\$) 1 + (Déficit primario, %PBI)	
PPI	Indice de precios al productor	93 94
NIÑA3		95
	Eastern Tropical Pacific SST index	
TWFXIM PRAWMW	US\$ FX index, major currencies Agricultural raw materials, commodity price index (1995=100)	96
	U.S. Producer price index, all commodities	97
PPIACO UNRATE	U.S. Civilian unemployment rate	98 99
TXYPC	Recaudación de impuestos a los ingresos, pagos cta. GC	
	Recaudación de impuestos a los ingresos, pagos eta. GC Recaudación de impuestos IGV interno, GC	100 101
TXIGVI TXIGVM	Recaudación de impuestos IGV importaciones, GC	101
TXISCC	Recaudación de impuestos ISC combustibles, GC	102
TXISCO	Recaudación de impuestos ISC otros, GC	103
USEXP	U.S. Exports of goods	104
USIMP	U.S. Imports of goods	106
DEFCOMUS	U.S. Trade coefficient, $1 - (X - M)/(X + M)$	107
XCHINA	People's Republic of China Exports	107
MCHINA	People's Republic of China Imports	109
SUPCOMCH	People's Republic of China Trade coefficient, $1 - (X - M)/(X_{us} + M_{us})$	110
RERUS	U.S. Real effective exchange rate	111
PXMUS	U.S. Terms of trade index, P_x/P_m	111
RERCH	People's Republic of China Real effective exchange rate	113
ALLCOM	All commodities, commodity price index (2000=100)	113
NFUEL	Non-fuel commodities, commodity price index (2000=100)	114
FOOD	Food commodities, commodity price index (2000=100)	116

Etiqueta	Descripción	Número
BEVE	Beverages commodities, commodity price index (2000=100)	117
AGRAW	Agricultural raw materials, commodity price index (2000=100)	118
METAL	Metal commodities, commodity price index (2000=100)	119
ENERG	Energy, commodity price index (2000=100)	120
COFFEE	Coffee, commodity price index (2000=100), Brazil	121
WHEAT	Wheat, commodity price index (2000=100), US Gulf	122
MAIZE	Maize, commodity price index (2000=100), US Gulf	123
RICE	Rice, commodity price index (2000=100), Bangkok	124
SOYBEANS	Soybeans, commodity price index (2000=100), US Gulf	125
SB MEAL	SB meal, commodity price index (2000=100), US Gulf	126
SB OIL	SB oil, commodity price index (2000=100), US Gulf	127
FISHMEAL	Fishmeal, commodity price index (2000=100)	128
MEAT	Meat commodities, commodity price index (2000=100)	129
SUGAR11	Sugar, commodity price index (2000=100), Caribean	130
SUGER14	Sugar, commodity price index (2000=100), US Gulf	131
IRON	Iron, commodity price index (2000=100)	132
COPPER	Copper, commodity price index (2000=100), UK London	133
GOLD	Gold, commodity price index (2000=100), UK London	134
LEAD	Lead, commodity price index (2000=100), UK London	135
NICKEL	Nickel, commodity price index (2000=100), Canada	136
COMB_WTI	WTI, commodity price index (2000=100)	137
SILVER	Silver, commodity price index (2000=100)	138
TIN	Tin, commodity price index (2000=100), UK London	139
ZINC	Zinc, commodity price index (2000=100), UK London	140
CSDPRMN	Crédito de Sociedades de depósito al S. Privado en S/.	141
CSDPRME\$	Crédito de Sociedades de depósito al S. Privado en US\$	142
LQSDMN	Liquidez en Sociedades de depósito en S/.	143
LQSDME\$	Liquidez en Sociedades de depósito en US\$	144
REREU	European Union Real effective exchange rate	145
USPREAD	3-year Treasury spread	146
GASO84	Gasolina 84 (precio doméstico final del combustible)	147
GASO90	Gasolina 90 (precio doméstico final del combustible)	148
GASO95	Gasolina 95 (precio doméstico final del combustible)	149
GASO97	Gasolina 97 (precio doméstico final del combustible)	150
KEROS	Kerosene (precio doméstico final del combustible)	151
DIESEL2	Diesel 2 (precio doméstico final del combustible)	152
RES6	Residual 6 (precio doméstico final del combustible)	153
RES500	Residual 500 (precio doméstico final del combustible)	154
GLP	Gas licuado de petróleo (precio doméstico final del combustible)	155
COMB	Indice promedio de combustibles (precios domésticos finales de combustibles)	156
PXT	Exportaciones tradicionales (índice de precios 1994=100)	157
QXT	Exportaciones tradicionales (índice de volumen 1994=100)	158
PXNT	Exportaciones no tradicionales (índice de precios 1994=100)	159
QXNT	Exportaciones no tradicionales (índice de volumen 1994=100)	160
QXNTAGR	Agropecuarias, exportaciones no tradicionales (índice de volumen 1994=100)	161
QXNTEXT	Textiles, exportaciones no tradicionales (índice de volumen 1994=100)	162
QXNTPES	Pesqueras, exportaciones no tradicionales (índice de volumen 1994=100)	163
QXNTQUIM	Químicas, exportaciones no tradicionales (índice de volumen 1994=100)	164
QXNTSIDE	Sidero-metalúrgicas, exportaciones no tradicionales (índice de volumen 1994–100)	165
ISOC	Indice prod. manufacturera, principales socios comerciales de Perú (s/ajuste x estacional.)	166
1000	Poultry commodities, commodity price index (2000=100; iced ready-to-cook whole chicken)	167

ANEXO B: Proyecciones de la probabilidad de aceleración en π de los diferentes grupos de modelos

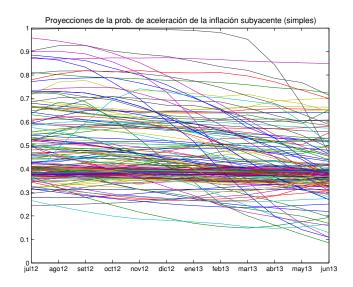


Gráfico No. 15: $Pr(\text{aceleración de }\pi)$ proyectadas con modelos estáticos simples

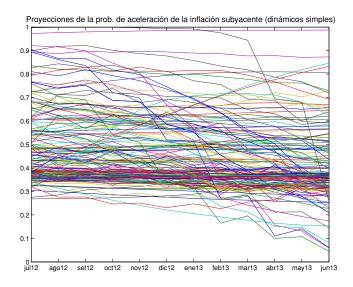


Gráfico No. 16: $Pr(aceleración de \pi)$ proyectadas con modelos auto-regresivos simples

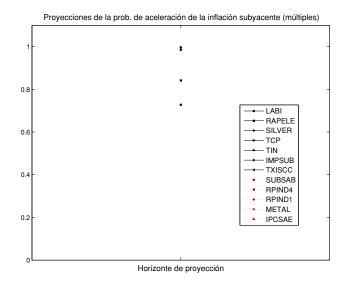


Gráfico No. 17: $Pr(\text{aceleración de }\pi)$ proyectadas con modelos estáticos simples

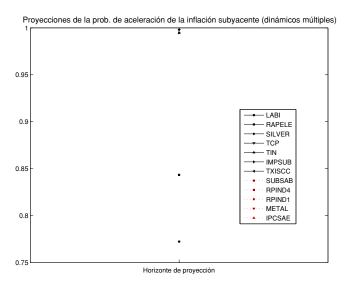


Gráfico No. 18: $Pr(\text{aceleración de }\pi)$ proyectadas con modelos auto-regresivos simples

ANEXO C: Estimados de los efectos marginales: modelos múltiples autoregresivos para π

	,	100	1111111	0.000	100	100	01130841	- Alcoc	000000	Politica	Politica de		100001	40(4)	/#/4/4/	
	۲.	ľ	NAPELE	SILVER	1		IIMPSOB	TORIVI	SUBSAB	WIND4	TONIAN	MEIAL	PCSAE	(T)WY	/ (T)W	1
AB	-0.14620													0.04467	0.0337	AB
	1.08682	1.14777												1.01191		
RAPELE	0.00385	0.03060	-0.03887											0.01637	0.0201	RAPELE
	0.28406	1.04418	1.07780											0.51016		
SILVER	-0.00057	0.00006	-0.00023	0.00008										0.00063	0.0125	SILVER
	0.77658	0.55710	0.79717	0.96889										0.84777		
TCP	-0.00058	0.00006	-0.00023	0.00008	0.00000									0.00067	0.0125	TCP
	0.77031	0.53855	0.79390	0.97869	0.12198									0.85051		
TIN	-0.00045	-0.00003	-0.00072	0.00013	0.00014	0.00007								0.00144	0.0129	NIT
	0.51382	0.27845	0.76318	0.99702	0.64607	0.72761								0.85396		
IMPSUB			-0.00010 -0.00119	0.00013	0.00010	0.0000	0.00030							0.00137	0.0128	IMPSUB
	0.31766	0.53691	0.77899	0.97571	0.57991	0.74642	0.72534							0.85504		
TXISCC	0.00302	-0.00079	-0.00304	0.0000	0.00046	0.00020	0.00089	-0.00016						-0.00007	0.0122	TXISCC
	0.78446	0.83685	0.80988	0.88048	0.78248	0.78971	0.81252	0.76852						0.25541		
SUBSAB	0.00513	-0.00106	-0.00554	0.00011	0.00133	0.00036	-0.00023	-0.00025	0.00161					-0.00001	0.0122	SUBSAB
	0.77437	0.85058	0.79472	0.92350	0.73272	0.77692	0.30819	0.75721	0.65735					0.05822		
RPIND4	0.00395	-0.00046	-0.00311	0.0000	0.00049	0.00015	0.00076	-0.00016	-0.00146	0.00157				0.00021	0.0123	RPIND4
	0.77617	0.81926	0.77593	0.92842	0.65317	0.73815	0.69058	0.75306	0.80997 0.80703	0.80703				0.45768		
RPIND1	0.19651	-0.02946	-0.12602	-0.00203	0.01558	0.00662	0.01144	-0.00593	-0.02902	0.07416	-0.03553			-0.00050	0.0119	RPIND1
	0.80492	0.85323	0.80917	0.58099	0.66681	0.77107	0.50078	0.81884	0.75037	0.80641	0.75661			0.13464		
METAL	0.27375	0.35814	-0.46926	-0.46926 -0.01458	0.03502	0.04349	0.31364	-0.03666	-0.03666 -0.36444 0.42106	0.42106	-0.16516 -0.47623	-0.47623		-0.04790	-0.0109	METAL
	0.83366	0.82371	0.84616	0.73309	0.65649	0.82784	0.89792	0.85341	0.89256	0.84497	0.80522	0.83898		0.77996		
IPCSAE	0.01549	0.15853	-0.34852	-0.00392	0.01033	0.01913	0.07250	-0.00565	-0.48147 0.33919	0.33919	-0.15998	-0.15998 -0.22097	0.40759	-0.01948	0.0028	IPCSAE
	0.38008	0.71237	0.75118	0.54228	0.46583	0.71575	0.72/110	0.65370	70705	0 75/150	0 72757	0 72330	0 76971	0 57754		

Cuadro No. 19: Efectos marginales en los modelos auto-regresivos

ANEXO D: Estimados de los efectos marginales: modelos múltiples estáticos para π

		Ē	ectos n	Efectos marginales y desviaciones estándar de cada ecuación logit	les y de	sviacio	ones es	tándar	de cad	a ecua	ción log	ηit		
	c ₁	LABI	RAPELE	SILVER	TCP	NIL	IMPSUB	TXISCC	SUBSAB	RPIND4	RPIND1	METAL	IPCSAE	
LABI	-0.25953	0.09978												LABI
	1.91748	2.69287												
RAPELE	0.00146	0.03725	-0.04646											RAPELE
	0.17187	1.71607	1.94864											
SILVER	-0.00191	0.00027	-0.00066	0.00023										SILVER
	0.87982	0.74161	0.85708	0.96251										
TCP	-0.00199	0.00028	-0.00069	0.00024	0.0000.0									TCP
	0.87141	0.74239	0.86155	0.96356	0.12536									
NIT	-0.00233	0.00020	-0.00316	0.00048	0.00061	0.00032								TIN
	0.72421	0.46809	0.84406	1.01900	0.76940	0.81782								
IMPSUB	-0.00126	-0,00006	-0.00462	0.00043	0,00040	0.00036	0.00114							IMPSUB
	0.54278	0.28211	0.85609	1.03692	0.70089	0.83340	0.81237							
TXISCC	0.00268	-0.00070	-0.00269	0.00008	0.00040	0.00018	0.00079	-0.00014						TXISCC
	0.80411	0.86784	0.82778	0.88803	0.80057	0.80868	0.83009	0.80523						
SUBSAB	0.00457	-0.00096	-0.00488	0.00010	0.00116	0.00032	-0.00012	-0.00022	0.00135					SUBSAB
	0.80196	0.90776	0.81715	0.94187	0.74590	0.80098	0.23903	0.80721	0.65407					
RPIND4	0.00412	-0.00049	-0.00300	0.00007	0.00047	0.00015	0.00083	-0.00016	-0.00016 -0.00143	0.00144				RPIND4
	0.78777	0.86192	0.78210	0.91807	0.67092	0.75856	0.78354	0.78716	0.83251	0.80110				
RPIND1	0.30774	-0.04645	-0.19748	-0.00375	0.02465	0.00959	0.01758	-0.00888	-0.04481	0.11531	-0.05557			RPIND1
	0.94657	1.01633	0.95748	0.69796	0.76413	0.90235	0.51585	0.98910	0.77343	0.94149	0.89317			
METAL	0.11050	0.34007	-0.34470	-0.34470 -0.01007 -0.00319 0.03613	-0.00319	0.03613	0.36242	-0.02743	-0.02743 -0.41917	0.38619	-0.15999	-0.42936		METAL
	0.75818	0.84930	0.87295	0.70048	0.25653	0.84867	0.93169	0.89344	0.92137	0.86859	0.81855	0.86736		
IPCSAE	-0.00543	-0.00543 0.10723	-0.27794	-0.27794 -0.00260	0.00975	0.01394	0.02745	-0.00095	-0.00095 -0.38448	0.26629	-0.13236	-0.15167	0.36223	IPCSAE
	0.24050	0.71409	0.75987	0.49493	0.46737	0.71730	0.56862	0.48954	0.80985	0.76307	0.73181	0.74546	0.77189	

Cuadro No. $\, 20 \colon \text{Efectos marginales en los modelos estáticos} \,$

ANEXO E: Proyecciones de la probabilidad de aceleración en g de los diferentes grupos de modelos

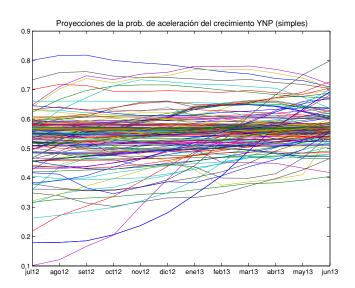


Gráfico No. 21: Pr(aceleración de g) proyectadas con modelos estáticos simples

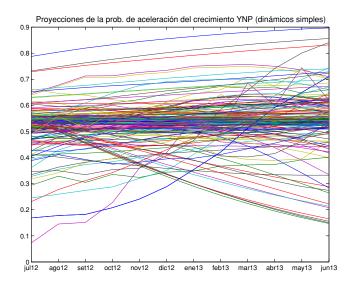


Gráfico No. 22: Pr(aceleración de g) proyectadas con modelos auto-regresivos simples

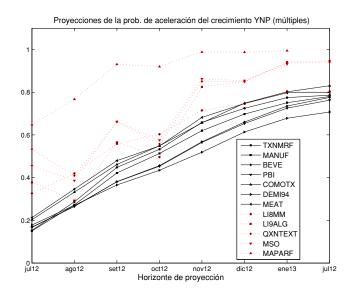


Gráfico No. 23: Pr(aceleración de g) proyectadas con modelos estáticos simples

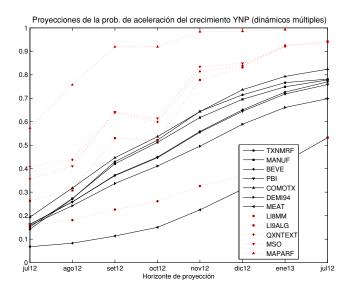


Gráfico No. 24: Pr(aceleración de g) proyectadas con modelos auto-regresivos simples

ANEXO F: Estimados de los efectos marginales: modelos múltiples autoregresivos para \boldsymbol{g}

	ర	TXNMRF	MANUF	BEVE	PBI	COMOTX DEMI94	DEMI94	MEAT	LI8MN	LI9ALG	QXNTEXT	MSO	MAPARF	AR(1)	AR(1)*/	
TXNMRF	0.10123	-0.01795												0.00506	0.01463 TXNMRF	TXNMR
	1.11268	1.13976												0.47748		
MANUF	0.14164	-0.01813	-0.00661											0.00045	0.01240 MANUF	MANUF
	1.07952	1.13975	0.91758											0.11898		
BEVE	0.13770	-0.01837	-0.00242	-0.00249										0.00588	0.01502	BEVE
	1.11916	1.19687	0.60112	1.01404										0.40237		
PBI	0.14162	-0.01854	-0.00111	-0.00235	-0.00209									0.00630	0.01522	PBI
	1.09237	1.18807	0.34082	0.99732	0.41314									0.41846		
COMOTX	0.17300	-0.02198	-0.00151	-0.00271	-0.02806	0.02543								0.00804	0.01606 COMOTX	COMOD
	1.09301	1.18275	0.36576	0.98569	0.80467	0.81469								0.45577		
DEMI94	0.17684	-0.01791	0.00040	-0.00189	-0.03741	0.00737	0.01800							0.01833	0.01833 0.02101 DEMI94	DEMI94
	1.13028	1.24092	0.19501	0.92946	0.89193	0.49133	0.93066							0.80582		
MEAT	0.00974	-0.00391	0.00311	-0.00047	0.00626	-0.00458	-0.00142	0.00236						0.02492	0.02418	MEAT
	0.57941	1.20014	0.79477	0.79594	0.70213	0.71032	0.44529	1.15538						1.26836		
LI8MN	0.02974	-0.00564	-0.00564 -0.00226 -0.00061	-0.00061	0.06378	-0.05045	0.00382	0.00487	-0.01169					09690.0	0.04568 LIBMN	LI8MN
	0.59442	0.93058	0.38922	0.58771	0.92611	0.92391	0.43488	1.10861	0.82521					1.25820		
LI9ALG	0.08048	-0.01023	0.00354	-0.00056	0.00073	-0.01077	0.00872	0.00640	0.00640 -0.03888	0.03539				0.00639	0.01526 LI9ALG	LI9ALG
	1.01087	1.11988	0.78333	0.80390	0.17004	0.68499	0.88308	1.06253	1.03097	1.06607				0.92407		
QXNTEXT	0.15960	-0.01831	0.01052	-0.00063	0.02485	-0.03634	0.00877	0.01187	-0.07684	0.06819	-0.00242			0.01320	0.01854 QXNTEXI	QXNTEX
	1.06663	1.19108	0.88358	0.63028	0.63374	0.82825	0.73133	1.12490	1.09090	1.12760	0.90925			0.94285		
MSO	0.13030	-0.01545	0.00669	-0.00050	0.02447	-0.03286	0.00109	0.00937	-0.05725	0.05171	-0.00215	0.00229		0.00948	0.01675	MSO
	1.02783	1.14748	0.78447	0.62414	0.67899	0.83999	0.28254	1.07120	1.07120 1.02612	1.06133	0.90875	0.89282		0.88349		
MAPARF	0.18865	-0.02701	0.03523	-0.00076	-0.01117	-0.00827	-0.01623	0.01250	-0.06489	0.07148	-0.00482	0.00574	-0.01043	0.00689	0.01550 MAPARF	MAPARI
	0.98331	1.06193	0.97754	0.67673	0.46186	0.43272	0.80135	1 01391	0 966/10	1 00271	0 97502	0 98772	0 94821	0.73910		

Cuadro No. 25: Efectos marginales en los modelos auto-regresivos

ANEXO G: Estimados de los efectos marginales: modelos múltiples estáticos para \boldsymbol{g}

		í	France marginated J accordance comman as card conveying)			
	c ₁	TXNMRF MANUF	MANUF	BEVE	PBI	сомотх ремі94	DEMI94	MEAT	LI8MN	LI9ALG	QXNTEXT	MSO	MAPARF	
TXNMRF	0.11517	-0.02038												TXNMRF
	1.68427	1.86112												
MANUF	0.14131	-0.01811	-0.00657											MANUF
	1.66316	1.91886	1.13830											
BEVE	0.15149	-0.02002	-0.00289	-0.00267										BEVE
	1.72479	2.02610	0.69146	1.19654										
PBI	0.15774	-0.02040		-0.00127 -0.00252	-0.00263									PBI
	1.63875	2.00356	0.36451	1.13832	0.46890									
COMOTX	0.19748	-0.02475	-0.00175	-0.00298	-0.03293	0.02953								COMOTX
	1.56987	1.85434	0.38877	1.12461	0.92098	0.91968								
DEMI94	0.25076	-0.02441	0.00069	-0.00252	-0.05475	0.01132	0.02530							DEMI94
	1.58542	1.84409	0.24189	1.07053	1.08805	0.57887	1.12871							
MEAT	0.23766	-0.03206	0.01707	0.01707 -0.00236	-0.03019	0.00820	0.00285	0.01622						MEAT
	1.41724	1.62666	1.07035	1.01016	0.81561	0.49666	0.37342	1.45667						
LI8MN	0.41578	-0.04282	0.00761	-0.00205	0.04023	-0.06482	0.02338	0.02343	-0.02550					LI8MN
	1.34819	1.63690	0.58337	0.82247	0.65443	0.87080	0.80364	1.46635	0.95656					
LI9ALG	0.10711	-0.01398	0.00679	-0.00081	-0.01396 -0.00288	-0.00288	0.01020	0.00841	-0.05108	0.04957				LI9ALG
	1.04137	1.13869	1.06153	0.90042	0.82175	0.38904	0.90772	1.07927	1.05342	1.09647				
QXNTEXT	0.20606	-0.02410	0.01805	-0.00090	-0.00081	-0.02268	0.00912	0.01475	-0.09689	0.09244	-0.00321			QXNTEXT
	1.09316	1.20200	1.08978	0.74857	0.13350	0.71381	0.75104	1.13082	1.10466	1.15123	0.96540			
MSO	0.16170	0.16170 -0.01934	0.01119	-0.00064	0.00376	0.00376 -0.02222	0.00146		0.01100 -0.06803	0.06611	0.06611 -0.00255	0.00275		MSO
	1.04012	1.13947	0.97780	0.71347	0.31789	0.76120	0.33639	1.06727	1.03196	1.07453	0.93811	0.96334		
MAPARF	0.20031	-0.02964		0.03994 -0.00084 -0.02981	-0.02981	0.00535	-0.01883	0.01317	0.01317 -0.06830	0.07913	0.07913 -0.00510	0.00617	0.00617 -0.01142 MAPARF	MAPARF
	0.97811	1.04989	0.99243	0.72838	0.85914	0.40575	0.86019	1.00108		0.96109 1.00167	0.92696	0.99630	0.95783	

Cuadro No. 26: Efectos marginales en los modelos estáticos