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Abstract

In this paper we extend the model of Kato and Nishiyama (2005) by introduc-
ing fat-tailed shocks in a simple new Keynesian framework where the central bank
explicitly considers the zero lower-bound constraint on interest rates. We find that
shocks with ‘excess kurtosis’ make monetary policy relatively more aggressive far
away from the zero lower bound region though, this difference reverts as the econ-
omy gets closer to the constrained region. From a quantitative point of view, our
findings suggest that variance-preserving shifts in kurtosis, in the shape of Laplace
distributed shocks, do not produce significant effects on the optimal reaction of the
central bank.

Resumen

En este documento extendemos el modelo de Kato y Nishiyama (2005) al in-
troducir choques de ‘colas altas’ en un marco Neo-Keynesiano simple en el que el
banco central considera en forma expĺıcita la restricción de no-negatividad de las
tasas de interés. Hallamos que choques con ‘curtosis excesiva’ hacen que la poĺıtica
monetaria sea más agresiva lejos de la región restringida, sin embargo, esta difer-
encia se revierte a medida que la economı́a se aproxima a la región restringida.
Desde un punto de vista cuantitativo, nuestros resultados sugieren que cambios de
curtosis que preservan la varianza constante, en la forma de choques Laplacianos,
no producen efectos significativos en la reacción óptima del banco central.
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”[...] we would expect policy-makers to take action when the mean and variance of fore-
cast distributions are likely to stay the same, while the probability of some extreme bad
event increases. [...] even if the variance is unchanged, an increase in the possibility of
a severe economic downturn is likely to prompt action.”
Cecchetti (2000).

1 Introduction

According to Mishkin (2011), one of the main lessons from the financial crisis is that
key elements in the “science of monetary policy” need to be revisited. In particular those
related to the non-linearities emerging in presence of the zero lower bound (ZLB), tail risk,
and non-standard utility functions - such as agents’ aversion to very negative outcomes.
As the author points out, previous to the 2008 financial crisis, economists were aware of
the presence of potential negative shocks with ‘excess kurtosis’ hitting the economy with
a higher tail risk probability than the one implied by a Gaussian distribution.1 In spite
of acknowledging the presence of these shocks, little was done to study the importance
of excess kurtosis in monetary policy design.

The presence of non-linearities is obvious when monetary policy is affected by the
non-negativity constraint on nominal interest rates. If the policy rate falls below zero,
agents will prefer to keep their resources in cash, which pays a zero interest rate. For this
reason, the space for the policy interest rate is bounded from below, with consequences
for the policy decisions. Moreover, Kato and Nishiyama (2005) and Adam and Billi
(2007) show how the presence of the zero lower bound makes the (discretionary) optimal
monetary policy reaction to be non-linear outside of the constrained region as well. In
particular, central banks should become more expansionary and more aggressive as they
approach the ZLB, compared to what a linear Taylor rule type of policy predicts. This
result is in line with the suggestions in Blinder (2000):

“... make the response function non-linear. In particular, the coefficient a [the coef-
ficient in the Taylor rule that controls the response of the policy rate to inflation] - and
perhaps b [the coefficient in the Taylor rule that controls the response of the policy rate to
the output gap] as well - could be higher when inflation is low. (...) such a modification
would make monetary policy looser whenever inflation was very low, thus buying more
insurance against getting stuck in the liquidity trap at i = 0.”

Central to the non-linearities generated outside of the ZLB region is the hazard of
falling in it. For this reason, when the economy faces shocks from a fat-tailed distribution
or increased kurtosis, the reaction should be more aggressive. However, it is not clear how
this excess kurtosis impacts optimal policy rules. The present document tackles this ques-
tion by introducing fat-tailed shocks in the model of Kato and Nishiyama (2005). This
is a simple Neo-Keynesian model where the central bank reacts in a “pre-emptive” man-
ner as the probability of falling into the ZLB increases, generating non-linear responses
outside of the zero lower bound region.2

1A fact reflecting this concern was the emergence of Financial Stability Reports as a regular publi-
cation by Central Banks where the risks that the financial system put into the economy were discussed,
see Mishkin (2011).

2In this model the rest of the economy is characterized by a set of linear equations. Introducing agents



We perform this exercise to gauge the extent to which excess kurtosis affects the
optimal behaviour of central banks outside the zero lower bound and, if this effect is
significant, analyse to what extent excess kurtosis may be behind the reported change in
the behaviour of central banks before and during the crisis.3

We focus exclusively in the role of excess kurtosis, assuming a time-invariant distri-
bution of shocks. Our main findings are as follows: (1) under fat-tailed shocks, monetary
policy becomes more aggressive further away from the zero lower bound region, com-
pared to the model under Gaussian shocks. (2) As the economy approaches the ZLB,
this pattern reverts and monetary policy is relatively less aggressive under shocks with
excess kurtosis. (3) Quantitatively, these differences are not very significant as the largest
differential between the optimal rates, under our baseline calibration, is lower than 10
basis points.

There is a small but growing literature related to the presence of fat-tailed shocks in
macroeconomics. Fagiolo et al. (2008) pursue the hypothesis of non-normal shocks and
fit via maximum likelihood the growth rate distributions for a series of OECD countries
to the exponential-power (EP) family of densities, rejecting the hypothesis of normality
in these series. In related work, Ascari et al. (2012) show that non-normality and fat tails
characterize not only the time-series properties for GDP in the U.S, but also those for
consumption, investment, employment, inflation and real wage.

By contrast, the literature on liquidity traps and the optimal policy at ZLB is exten-
sive. The theoretical question regarding the effectiveness of monetary policy at low rates
can be found in Keynes (1936). More recently, the subject received a lot of attention from
policy-makers and academics as the lower inflation experienced during the early 1990s
in advanced economies brought with it episodes of near-zero interest rates.4 In October
1995, the Bank of Japan (BOJ) set its policy interest rates at 50 basis points in the midst
of a deflationary crisis. A few years later, the federal funds rate in the US experienced a
sharp fall, going from 6.50 percent in November 2000 to only one percent on July 2003.
To date, both the Federal Reserve and the Bank of Japan maintain their policy interest
rates effectively at zero.

Fuhrer and Madigan (1997) constitute one of the first efforts to analyse the dynamics
of the economy in a model with forward looking agents and an explicit ZLB constraint.
The authors find that after a negative shock to the economy, the recovery of the inflation
rate and output takes longer when monetary policy becomes ineffective due to the ZLB.
Regarding the optimal policy under the ZLB, Reifschneider and Williams (1999) find
that the standard Taylor rule is suboptimal in this scenario. Orphanides and Wieland
(2000) add to this result by showing that the optimal policy under the ZLB constraint
will become a non-linear function of the inflation rate. The literature considers as well the
idea of monetary policy being affected by the ZLB before the constraint becomes bind-

that change their behaviour in the presence of the zero lower bound increases greatly the computational
costs. See Fernández-Villaverde et al. (2012).

3Authors such as Taylor (2007) and Calani et al. (2010) estimate Taylor rules type of policies for
the pre-crisis period and simulate the paths of interests rates provided those rules would have continued
during the years of turmoil, finding very large differences between the actual path of interest rates and
the projected paths. They conclude that the cuts in rates represent “deviations” from the pre-crises
Taylor rules.

4In the advanced economies, the median inflation rate fell from 7% in the 1980s to 2% in the 1990s.
See Kroszner (2007).
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ing (Hunt and Laxton (2004), Goodfriend (2001)). More recently, Kato and Nishiyama
(2005) studied the importance of this pre-emptive motive, showing how optimal monetary
policy should become more aggressive and expansionary as the economy approaches the
ZLB. Nakov (2006) relaxes the assumption of perfect foresight in the Kato and Nishiyama
(2005) and studies an optimal ”censoredÂ´Â´ Taylor rule, which is the best lineal re-
sponse conditional on the presence of the ZLB. Eggertsson and Woodford (2003) study
the implications of the ZLB for monetary policy in a model that assumes a 2-state Markov
chain for an exogenous disturbance. They find support for a price-level targeting type of
policy, though lose the pre-emptive motive that emerges under a more general distribu-
tion for the exogenous disturbance. Finally, Fernández-Villaverde et al. (2012) adopt a
fully non-linear approach in a New Keynesian model with an explicit ZLB and explore the
role of fiscal policy when the economy hits the constraint. Authors relax the assumption
of a time-invariant distribution and study the role of skewness and time-varying volatility
for endogenous variables when the economy hits the ZLB.

The present document is structured as follows: Section 2 reviews the model of Kato
and Nishiyama (2005) and explains the mechanism behind the results. In the next section,
we discuss the computational strategy. Section 4 discusses the calibration of parameters
and presents the results. Section 5 concludes.

2 The Model

In the current section we review the model of Kato and Nishiyama (2005). We assume
the Central Bank minimizes a loss function in the spirit of Svensson (1997), Svensson
(2002) and Ball (1999), namely:

Lt =
1

2
{y2t + λ(πt − π∗t )2}; (1)

here π stands for inflation; y for the output gap and π∗ the inflation target, which we
assume constant. The parameter λ controls the relative importance that the central bank
puts on the inflation rate deviations from the target, relative to the output gap. Following
Woodford (2003), the economy is described by the following IS-AS framework:

yt+1 = ρyt − δ(it − Etπt+1) + νt+1 (2)

πt+1 = πt + αyt + εt+1 (3)

where ν and ε are random disturbances. ρ stands for the degree of inertia over the
business cycle. δ is a parameter reflecting the impact of real interest rates on the next
period output - thus monetary policy affects the economy with a lag. Finally, α represents
the impact of the output gap on future inflation.

Equations (2) and (3) represent the investment-savings (IS) and aggregate supply
(AS) equations respectively. We substitute the expectation of inflation by a combination
of the current inflation rate and the output gap, namely:

Etπt+1 = πt + αyt. (4)
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The inter-temporal problem of the monetary authority will be given by:

min
{it+j}∞j=0

Et

∞∑
j=0

βjLt+j, (5)

subject to the laws of motion for inflation and output gap given by equations (3) and
(2), and an explicit zero lower constraint on the interest rate introduced through the
Karush-Kuhn-Tucker approach. β reflects the time-preference of the central banker, or
equivalently, the importance they assign to future losses relative to losses in the current
period. This framework allows us to set up a Bellman equation with three Lagrange
multipliers:

V (yt, πt) = min
it

[
1

2
{y2t + λ(πt − π∗)2} − Etφt+1{(ρ+ αδ)yt − δit + δπt − yt+1}

− Etµt+1(πt + αyt − πt+1)− ψtit + βEtV (yt+1, πt+1)]. (6)

where ψt is the Lagrange multiplier in the non-negativity constraint for the policy interest
rate. The first order condition with respect to the interest rate yields:

Etφt+1δ = ψt; (7)

which measures the “shadow cost” produced by monetary policy ineffectiveness at the
zero lower bound. The first order conditions with respect to inflation and the output gap
are given by the following two equations:

Etµt+1 = −β [λEt(πt+1 − π∗)− δEtφt+2 − Etµt+2] (8)

Etφt+1 = −β [Etyt+1 − (ρ+ αδ)Etφt+2 − αEtµt+2] , (9)

By combining equations (7), (8), and (9). It is possible to get some intuition about
the restrictions for monetary policy that the ZLB imposes. In the case the ZLB is not
binding we know that ψt = 0. This means, , from Equation (7), that φt+1, the Lagrange
multiplier associated with Equation (2) - the IS equation - is zero as well. Thus, the only
restriction that matters for the central bank will be the one associated with Equation (3),
which represents the trade-off between stabilizing the inflation rate deviations and the
output gap. In other words, the bank can fully neutralize the shocks coming from the IS
equation. However, when the ZLB is binding, then Etφt+1 > 0, meaning that the central
bank can no longer offset the shocks coming from the IS equation. In this scenario, the
central bank needs to balance the need of offsetting both the AS and IS shocks.

Kato and Nishiyama (2005) obtain an analytical derivation of the optimal interest
rate.5

i∗(πt, yt) = πt +

(
α +

ρθ1 + θ1 − 1

δθ1

)
yt +

(
θ1 − 1

αδθ1

)
(πt − π∗) +

(
1

δθ1

) ∞∑
i=0

θi2Etψt+i

(10)

Equation (10) represents the optimal reaction function outside of the zero lower bound
region. The values of θ1 and θ2 are combinations of the “deep parameters” α, β, and λ.

5We refer the reader to the paper for the derivations.
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The first three terms of this expression are linear in the output gap and the inflation rate.
The last term is the one generating the non-linearities, which stem from the shadow cost
represented by the sequence of Lagrange multipliers associated with the non-negativity
restriction {Etψt+i}∞i=0. As we already mentioned, Equation (7) tells us that when the
value of this multiplier is different from zero, the central bank is unable to offset the
shocks coming from the IS equation.6 In other words, the non-linearities are associated
with the probability that the ZLB restriction becomes binding in the future. Given the
difficulty of obtaining a closed-form solution for the optimal policy as a function of the
inflation rate deviations and the output gap, the solution is obtained through a numerical
procedure.

3 Computational strategy

The numerical strategy follows Kato and Nishiyama (2005). It is based on collocation
methods.7 The Bellman equation in (6) imposes a series of restrictions that must hold in
every point of the state-space. This defines an infinite-dimensional fixed-point problem
that can be discretized by approximating the value function as the sum of a finite set
of basis functions. Since it is important to capture the non-linear behaviour of optimal
rates, the value function is approximated through cubic splines. Obtaining the value
function involves the calculation of expectations, for which we use numerical integration
techniques. In particular, a Gaussian quadrature technique is used to approximate the
integrals.8 For the case of Gaussian shocks, we use the Gaussian-Hermite quadrature
method, for which tables with the values of nodes and abscissas are easily found.

For the case of fat-tailed shocks we need the use of a distribution exhibiting “excess
kurtosis”.9 Additionally, this distribution must exhibit finite moments (at least up to the
4th order) that are stable functions of the distribution parameters, such that we are able
to control the lower moments. For this purpose, we use the Exponential Power family
of distributions, attributed to Subbotin (1923). The functional form of this distribution
reads:10

f(x; b, a,m) =
1

2ab
1
bΓ
(
1 + 1

b

)e− 1
b
|x−m
a
|b (11)

where the kurtosis depends on a shape parameter (b). An interesting feature of this
family of distributions is that it encompasses both the Gaussian distribution (b = 2)
and the Laplace distribution (b = 1). Whenever b < 2 the distribution will exhibit tails
fatter than the Gaussian ones (or “super-Normal” tails).11 Due to the numerical solution

6It is important to mention that it is possible to express
∑∞
i=0 θ

i
2Etψt+i as a function of the states

(πt, yt). This means that we can still characterize the optimal response as a (potentially non-linear)
function of these two variables.

7See Judd (1998).
8See Press et al. (1992) for a detailed description of this procedure.
9The “excess kurtosis” refers to the case when a distribution exhibits a kurtosis higher than 3, which

is the kurtosis of the normal distribution.
10For instance, a problem we would faced using a t-student distribution is that the one period forward

variables with t-distributed shocks will not follow a t-distribution, due to the non-zero mean. In addition,
low degrees of freedom generate unbounded moments.

11For a detailed discussion of the properties of this family of distributions, see Fagiolo et al. (2008).
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followed in the present paper, the use of Gaussian quadrature for approximating the
distribution of shocks would require the calculation of quadrature weights and abscissas
for each value of the shape parameter. In our case, we decided to focus on Laplace shocks,
which exhibit an excess kurtosis of 3, for the following two reasons. First, Fagiolo et al.
(2008) find strong support for this distribution when analysing the distribution of a set of
macroeconomic series in OECD economies. Second, quadrature rules can be calculated
for Laplace distribution weights through a modification of the Laguerre-Quadrature rules.

4 Calibration and Results

4.1 Calibration

Before moving forward with the numerical exercises, we need to set values for the
model parameters. Table 1 shows the baseline calibration, based in Woodford (2003).
From there we take values for ρ, δ and α. The parameters for the standard deviations
are taken from Adam and Billi (2007), who estimate these parameters following the ap-
proach of Rotemberg and Woodford (1998). We keep the value of the time-preference
parameter relatively low, at 0.6, for the baseline calibration. This value comes from Kato
and Nishiyama (2005), who find that a lower value of β is needed in order to guarantee
the existence of a stationary optimal policy reaction function. We set the inflation rate
target at 0%. The value of λ is set at 20 which is taken from Rotemberg and Woodford
(1998). We perform robustness exercises on this value since it has been documented that
monetary policy becomes more dovish during periods of low inflation, which is the region
of the state-space associated with the ZLB.12 We perform robustness exercises for the
slope of the Phillips curve (α), the real rate elasticity of output (δ), the central banker’s
time-preference parameter (β), and the standard deviations of the AS and IS shocks (σν
and σε). The results are reported in Section 4.4.

Table 1: Baseline Calibration
Parameter V alue Description

λ 20 Relative weight on inflation-deviations variability.
β 0.6 Central banker’s time-preference parameter.
ρ 1 Persistence of output dynamics.
δ 0.5 Real rate elasticity of output.
α -0.02 Slope of the Phillips curve (negative).
σν 1.5 S.D of AS shock.
σε 0.15 S.D of IS shock.
π∗ 0 Target inflation rate.

4.2 Results under Gaussian shocks

We explore first the results under Gaussian shocks. As we can observe from Fig. 1, the
value function under the presence of the ZLB will not be quadratic. It can be noted that

12Orphanides and Wilcox (2002) calls this behaviour the opportunistic approach to monetary policy.
Martin and Milas (2007) provide empirical evidence supporting this hypothesis for the case of monetary
policy in the U.S. during the 1983 to 2004 period.
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when the inflation rate and output gap are negative, the loss for the central bank increases.
In other words, the cost of stabilization that the central bank faces increases sharply when
the economy is in this state, which the literature associates with a deflationary spiral.
The reason can be traced back to Equation (6). When the ZLB constraint is binding,
the hazard of remaining in the same region is high. Therefore, the slackness condition
over the non-negativity of interest rates restriction calls for an expected positive value
for ψ, the Lagrange multiplier associated with this constraint. Thus, inside the ZLB,
the central bank would not be able to offset the shocks coming from the IS equation.
Its ineffectiveness to stabilized the economy will be reflected in a higher variability of
aggregate output and inflation rate variations, and consequently, a higher welfare loss.13

The optimal reaction function ceases to be linear. As we can observe from Fig. 2,
the optimal reaction exhibits the pre-emptive motive. Now the interest rate outside of
the ZLB region is non-linear. In Figure 3 we can compare the reaction to inflation rate
deviations from the target and the output gap under a standard Taylor rule and when the
ZLB restriction is taken into consideration. Panels 4a to 4c show how the optimal policy
deviates from a linear policy rule as the economy approaches the ZLB region, becoming
concave. As the probability of being restricted by the ZLB in future periods increases, the
central bank becomes more aggressive in its response to inflation deviations. Panels 4d to
4f show how monetary policy becomes also more expansionary. As Kato and Nishiyama
(2005) explain, this effect is related to the threat of a deflationary spiral. Under this
threat, it is in the interest of the central bank to be more expansionary in comparison to
the standard Taylor rule.

13Woodford (2003) Ch. 6, explores the problem of monetary policy under the ZLB in a model where
the nonnegativity constraint is replaced by a constraint in the interest rate variability. The author results
follow the same intuition. The constraint (or the additional objective) makes the stabilization of the
inflation rate and the output gap harder to achieve, increasing their variability and, consequently, the
welfare losses.
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Figure 1: Value Function with Zero Lower Bound (baseline calibration)

Note: Value function for central bank under Gaussian shocks and baseline calibration. Approximation performed over 51 points for output
gap and 51 points for the inflation rate deviations. Calibration follows values in Table 1.
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Figure 2: Optimal Policy Reaction Function (baseline calibration)

Note: Optimal reaction for central bank under Gaussian shocks and baseline calibration. Approximation performed over 51 points for output
gap and 51 points for the inflation rate deviations. Calibration follows values in Table 1.
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(a) y − y∗ = −3%
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(b) y − y∗ = 0%
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(c) y − y∗ = 3%
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(e) π − π∗ = 0%
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Figure 3: Optimal reaction and Taylor rule under Gaussian and Laplace Shocks

Note: Upper row shows the interest rate for different the inflation rate, leaving the output gap constant. Lower row shows the interest rate
for different values of the output gap, leaving the inflation rate constant.
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4.3 The role of fat-tailed shocks

Now we study how the optimal monetary policy predicted by the model changes under
the presence of fat-tailed shocks. As previously discussed, we would like to assess how
excess kurtosis, which modifies the probabilities of falling into the ZLB region, affects the
optimal behaviour of central banks.
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Figure 4: Central Bank’s loss function, (Laplace - Gaussian)

Note: Figure shows the difference between the central bank’s loss function in Eq. 5 under
Laplacian and Gaussian-distributed shocks for different values of inflation deviations, keeping
the output gap constant.

Since we use a global solution method we can obtain the solution to the problem
for the central banker at different points of the state-space. In Figure 4 we show the
differences between the loss of the central bank under both assumed distributions for
different values for the inflation deviations, keeping the output gap constant. We find
that, away from the zero lower bound region, the loss under fat-tailed shocks is higher.
As the economy approaches the ZLB, this pattern first increases and then reverts. Inside
the constrained region the difference turns negative, which means that the central bank
is worse off under Gaussian shocks. Notice that when for lower values of the output gap,
the difference between value functions reverts faster. In order to explain this result we
make use of Figure 5, which presents a simple case of how fat tails interact with the
hazard of falling or staying in the ZLB in the following period.
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(a) Case A (b) Case B (c) Case C

Figure 5: Distribution of shocks and the ZLB

Note: Diagram shows how fat-tails affect the hazard of being in the ZLB under shocks following two different distributions. As the economy
gets closer to the ZLB from high values of the inflation rate (Case A), the hazard of falling into the ZLB is higher under the relative heavy-
tailed distribution (PB). In Case B, the probability of being in the ZLB in the next period is the same under both distributions. Finally,
Case C shows that when the economy gets inside the ZLB, fat-tailed distributions might imply a higher probability of leaving the constrained
region.
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From the viewpoint of the central bank there is a reason to become more aggressive
under Laplace shocks far away from the ZLB. As the economy approaches this region, this
result reverts, as the central bank anticipates that getting near to the ZLB will be more
costly under Gaussian shocks. We observe this pattern holds for the optimal interest
rates, presented in Figure 6.
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Figure 6: Difference in optimal monetary policy, (Laplace - Gaussian)

Note: Figure shows the difference between the optimal interest rates of the problem in Eq.
5 under Laplacian and Gaussian-distributed shocks for different values of inflation deviations,
keeping the output gap constant.

The introduction of super-normal tails generates an interesting result as monetary
policy will become relatively less aggressive under fat-tailed shocks near the ZLB. From
a quantitative point of view, the difference between both cases is not significant. Figure
3, suggests that the optimal central bank’s reaction is almost unaffected by the change
in the assumed distribution of the shocks. Figure 6, shows that the difference between
interest rates, for the cases considered, ranges between 0 and 6 basis points, far from
the 25 basis point step central banks use when monetary policy changes are announced.
Clearly we would require higher excess kurtosis in order to generate effects of a significant
magnitude.14

4.4 Robustness

Alternative parameterizations are considered. Table 2 reports the maximum differ-
ences found between the optimal (discretionary) monetary policy under Gaussian and

14Due to the complexity in the construction of quadrature rules for distributions with higher excess
kurtosis we leave these exercises for future research.
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Table 2: Robustness to alternative parameterisations

Parameter V alue Max | i∗Laplace − i∗Gauss |
0.01 6.13

α 0.02 (baseline) 7.27
0.03 10.54
0.10 34.44

δ 0.25 13.08
0.5 (baseline) 7.27

5 6.29
λ 10 6.78

20 (baseline) 7.27
0.5 6.37

β 0.55 6.05
0.6 (baseline) 7.27

0.5 1.60
σν 1 4.17

1.5 (baseline) 7.27
0.1 7.47

σε 0.15 (baseline) 7.27
0.5 6.02

Note: Table shows the maximum distance between discretionary optimal policies under Gaussian and
Laplace-distributed shocks. Values are reported in basis points. In each exercise the indicated parameter
value is changed, keeping the rest at the baseline calibration values in Table 1. Optimal interest rates are
calculated for values of inflation and output gap in the range [−15, 15] for both variables. Approximation
is performed for 31 points for the output gap and 31 points for the inflation rate. α stands for slope of
the Phillips curve (negative). δ is the real rate elasticity of output. λ represents the relative weight on
inflation-deviations variability. β is the central banker’s time-preference parameter. Finally, σν and σε
are the standard deviations of the AS and IS shocks, respectively.

Laplace-distributed shocks. Results are not particularly sensitive to changes in most pa-
rameters. For the case of δ, which is associated with the impact monetary policy has
on aggregate demand, we find a maximum difference between optimal polices of 34 basis
points. When δ is low, it is harder for monetary policy to steer the economy away from
the constrained region. For this reason the level of pre-emptive behaviour will be stronger
and the interest rate will be more sensitive to the distribution of shocks. We confirm that
loss functions follow the same pattern observed in Figure 4. Similarly, the results found
in Figure 3 hold under the parameter values considered in the robustness exercises, this
is, the optimal reaction is barely affected by the change in the assumed distribution of
shocks.
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5 Conclusions

We introduce shocks with ‘super-normal tails’ into the simple NK model with a mon-
etary authority that explicitly considers the ZLB in their optimal policy design, as in
Kato and Nishiyama (2005). When the central bank considers this restriction explicitly,
the optimal policy ceases to be linear outside of the ZLB. These non-linearities represent
a pre-emptive motive, as the central bank becomes more aggressive, in an attempt to
avoid falling into a region in which monetary policy becomes ineffective. Central to this
decision is the hazard of falling into the ZLB region, which is affected by the distribution
of the shocks hitting the economy.

Under shocks with higher kurtosis, non-linearities in the reaction function will emerge
further away from the zero interest rate region, relative to the Gaussian shocks case.
However, as the economy approaches the ZLB region, this pattern reverts, as the central
bank anticipates that under Gaussian shocks, it will be harder to leave the ZLB region,
once the economy is inside it. This means monetary policy would actually be relatively
less aggressive near the ZLB under fat-tailed shocks. Nonetheless, the effects of excess
kurtosis are quantitatively very limited as the largest difference in optimal interest rates
found is of 34 basis points. Changes in the baseline calibration confirm results are robust
to variations in parameter values.

Our findings suggest that, in the current setup, the presence of fat-tailed shocks do
not produce significant effects on the optimal monetary policy design.
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A. Numerical Algorithm

For the numerical solution we followed Kato and Nishiyama (2005), using a collocation
method for solving the Bellman equation problem. The Bellman equation, given by
Equation (6) follows:

V (π, y) = min
i
{f(π, y) + βEV (g(π, y, i, ν, ε))} (12)

where f(π, y) represents the instantaneous loss of the Central Bank. The function
g(π, y, x, ν, ε) represent the laws of motion for the state variables {π, y}, which are given
by equations (2) and (3).

g(π, y, i, ν, ε) =

[
ρ+ αδ δ
α 1

] [
y
π

]
+

[
δ
0

]
i+

[
ν
ε

]
(13)

After setting the Bellman equation we proceed with the discretization of the state space.
In this case we focus on the interval [−15, 15] for both state variables and set a number
interpolation nodes, which we choose to be equally distributed. We need to find approx-
imate the form of the value function on both sides, hence we will ask the algorithm to
hold the equality in equation (12) at every point of the grid. The LHS will be given by:

LHSnynπ(c) =
Nπ∑
i=1

Ny∑
j=1

cijγ
π
i (πnπ)γyj (yny ) for each (πnπ , yny ) ∈ Node. (14)

Here, the functions γπi (πnπ) and γyj (yny) form the basis for the splines. Hence we can form
a continuous function that is a piecewise polynomial, though, smooth over the connecting
points.15

Now, the RHS of the equation has a similar structure, however, the result is affected
by the shocks ν and ε, for which we assume a known distribution. As described above,
we follow two cases, in the first one we assume a Normal distribution for shocks, while in
the second, we follow a Laplace or double-exponential distribution. We follow Gaussian
Quadrature for the treatment of both shocks. In the first case, we use a Gaussian-Hermite
quadrature, which is associated with weights that are normally distributed. In the second,
we modify the Gaussian-Laguerre quadrature, used for exponential distributions. By re-
weighting the quadrature weights we can approximate an exponential distribution, for an
even number of abscissa. Hence, the RHS of equation (12), is given by:

RHSnynπ(c) = min
i≥0

[
f (πnπ , yny ) + β

Mν∑
hν=1

Mε∑
hε=1

Nπ∑
i=1

Ny∑
j=1

whνhεcijγij (g(π, y , i , ν, ε))

]
(15)

where the value function represented by b-splines is the same as in Equation (14), for
consistency. Now however, we evaluate its value at the abscissa and nodes generated by
the Gaussian quadrature. We perform a value function iteration looking for a fixed point.
Convergence is attained when:

max | Vk(πnπ , yny)− Vk+1(πnπ , yny) |< τ, (16)

15See Judd (1998), Ch 6 for a thorough description of the use of splines.
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where τ is the tolerance parameter, set at 1e − 4 in our exercise. With the values of i
that minimize the solution we construct a cubic spline approximation for the mapping
from the states to the control. This will yield the optimal policy function.
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