Sustainable Forestry Management Americas

Temperature Records

(Deviation from 1951-1980 mean)

Source: NASA Goddard Institute for Space Studies Surface Temperature Analysis at <u>data.giss.nasa.gov/gistemp/</u>

Ice Melt in Greenland

Source: http://cires.colorado.edu/science/groups/steffen/greenland/melt2005/

Andean Glaciers

Source: http://news.bbc.co.uk/1/shared/spl/hi/picture_gallery/05/sci_nat_how_the_world_is_changing/html/1.stm

Hurricane Trends

Source: Webster et al, SCIENCE 16 September 2005

...and temperature

Climate Sensitivity

- IPCC 2001 TAR: temperature increase from doubling of CO2 concentrations: 1.5 4.5°C
- New study (2006), to be included in AR4: 1.5 6.2°C.
 - 5–95 per cent range
 - Combines large ensemble energy balance modeling and simulations of the temperature response to past solar, volcanic and greenhouse gas forcing to determine which climate sensitivities yield simulations that are in agreement with proxy reconstructions.

Climate sensitivity constrained by temperature reconstructions over the past seven centuries, Gabriele C. Hegerl, Thomas J. Crowley, William T. Hyde and David J. Frame, *Nature*, 20 April 2006

The primary culprit is energy and CO₂

- Land use change and agriculture are a close second
- Only a few countries account for almost all emissions; it is not a "global" problem

GHG Flow Diagram: Global Emissions

Largest Emitters: Developed & Developing

The emissions space for stabilising CO₂ concentrations

WRE CO ₂ Stabilisation profiles	Year in which global emissions peak
450	
450	2005 – 2015
550	2020 – 2030
650	2030 – 2045
750	2040 – 2060
1000	2065 – 2090

Source: IPCC-TAR Synthesis Report

CO₂ Emissions Trends 2005 - 2030

Source: IEA WEO, 2006

Dealing with Climate Change

- Policies cover all gases and all sectors-- but emissions are not evenly divided among these
 - Energy and CO_2 are key
- Policy Choices:
 - Emit less (be more efficient)
 - Emit differently (switch fuels or processes)
 - Sequester
 - Do without (change behavior)
 - Adapt (learn to live with it)
- Policy actions include:
 - Market approaches (taxes, subsidies, cap-and-trade)
 - Regulations
 - R&D
 - Processes/outreach

EU emission market trends

Source:http://www.chicagoclimatex.com/mktdata_ccfe/sfi/historical/Historical_Prices.xls

Shares Transacted in the Carbon Market

(1/2005 - 9/2006)

Increasingly prominent private sector role

Source: IETA/World Bank 2006

