Employment Protection and Business Cycles in Emerging Economies

> Ruy Lama Carlos Urrutia IMF ITAM

> > August, 2011

Lama and Urrutia ()

Employment Protection

August, 2011 1 / 38

3

-

• • • • • • • • • • • •

Business cycles in emerging economies display substantial differences with the pattern observed in developed economies.

• Higher GDP volatility.

< ロ > < 同 > < 三 > < 三

Business cycles in emerging economies display substantial differences with the pattern observed in developed economies.

- Higher GDP volatility.
- Higher consumption volatility.

Business cycles in emerging economies display substantial differences with the pattern observed in developed economies.

- Higher GDP volatility.
- Higher consumption volatility.
- Higher countercyclicality of trade balance.

Lama and Urrutia ()

イロン イヨン イヨン イヨン

Lama and Urrutia ()

3 August, 2011 4 / 38

3

• • • • • • • • • • • •

Lama and Urrutia ()

August, 2011 5 / 38

Lama and Urrutia ()

August, 2011 6 / 38

 Different stochastic processes of TFP for emerging economies. Aguiar and Gopinath (2007).

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

- Different stochastic processes of TFP for emerging economies. Aguiar and Gopinath (2007).
- Different shocks to external financing conditions. Neumeyer and Perri (2005).

< ロト < 同ト < ヨト < ヨト

• We evaluate the role of **employment protection** in shaping business cycles in emerging economies.

イロト イ団ト イヨト イヨト

	s.d.(y)	s.d.(I) /s.d.(y)	Employment Protection (weeks)	
	(percent)		DBI	H&P
Argentina	4.19	0.59	23	12
Brazil	1.76	0.62	9	7
Chile	1.79	0.62	12	14
Colombia	1.74	0.88	19	14
Mexico	2.17	0.53	22	13
Average Emerging	2.33	0.65	17	12
Australia	1.10	1.08	8	2
Canada	1.28	0.67	5	2
Norway	1.35	0.66	0	4
New Zealand	1.39	0.92	0	1
United Kingdom	1.15	0.89	3	6
Average Developed	1.25	0.84	3	3

Table 1: Business cycles Properties and Employment Protection Across Countries

Lama and Urrutia ()

・ロト ・ 日 ト ・ ヨ ト ・ ヨ ト

• A canonical small open economy model calibrated to Mexico.

3

- A canonical small open economy model calibrated to Mexico.
- Search frictions and endogenous separation.

Image: A match a ma

- A canonical small open economy model calibrated to Mexico.
- Search frictions and endogenous separation.
- Key Mechanism: Selection Effect.

э

Image: A match a ma

- A canonical small open economy model calibrated to Mexico.
- Search frictions and endogenous separation.
- Key Mechanism: Selection Effect.
- Over the cycle least productive workers are dismissed first, raising average productivity of firms.

- A canonical small open economy model calibrated to Mexico.
- Search frictions and endogenous separation.
- Key Mechanism: Selection Effect.
- Over the cycle least productive workers are dismissed first, raising average productivity of firms.
- Employment protection limits the selection effect, resulting in lower productivity during recessions.

- A canonical small open economy model calibrated to Mexico.
- Search frictions and endogenous separation.
- Key Mechanism: Selection Effect.
- Over the cycle least productive workers are dismissed first, raising average productivity of firms.
- Employment protection limits the selection effect, resulting in lower productivity during recessions.
- We evaluate the role of employment protection in exacerbating business cycles in emerging economies.

- A canonical small open economy model calibrated to Mexico.
- Search frictions and endogenous separation.
- Key Mechanism: Selection Effect.
- Over the cycle least productive workers are dismissed first, raising average productivity of firms.
- Employment protection limits the selection effect, resulting in lower productivity during recessions.
- We evaluate the role of employment protection in exacerbating business cycles in emerging economies.
- What would happen if firing costs in Mexico are reduced to level observed in Canada?

2

• Explains 1/3 of the discrepancy between volatility in emerging and developed economies (2.17 in Mexico vs. 1.28 in Canada).

- Explains 1/3 of the discrepancy between volatility in emerging and developed economies (2.17 in Mexico vs. 1.28 in Canada).
- Lower output decline of 1.3 percentage points during the Great Recession.

- Explains 1/3 of the discrepancy between volatility in emerging and developed economies (2.17 in Mexico vs. 1.28 in Canada).
- Over output decline of 1.3 percentage points during the Great Recession.
 - Decline of 7.6 percent instead of the actual 8.9 percent.

- Explains 1/3 of the discrepancy between volatility in emerging and developed economies (2.17 in Mexico vs. 1.28 in Canada).
- Output decline of 1.3 percentage points during the Great Recession.
 - Decline of 7.6 percent instead of the actual 8.9 percent.
- Search and endogenous separation explains 30 percent of total labor frictions (Labor Wedge).

3

・ロト ・ 日 ト ・ ヨ ト ・ ヨ ト

Related Literature

Small Open Economy Model with Labor Market Frictions

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

- Related Literature
- Small Open Economy Model with Labor Market Frictions
- Quantitative Analysis:

3

< ロ > < 同 > < 三 > < 三

- Related Literature
- Small Open Economy Model with Labor Market Frictions
- Quantitative Analysis:
 - 3.a. Business Cycle Properties

< ロ > < 同 > < 三 > < 三

- Related Literature
- Small Open Economy Model with Labor Market Frictions
- Quantitative Analysis:
 - 3.a. Business Cycle Properties
 - 3.b. Firing Costs and Business Cycles

- **(())) (())) ())**

- Related Literature
- Small Open Economy Model with Labor Market Frictions
- Quantitative Analysis:
 - 3.a. Business Cycle Properties
 - 3.b. Firing Costs and Business Cycles
 - 3.c. The Great Recession

- Related Literature
- Small Open Economy Model with Labor Market Frictions
- Quantitative Analysis:
 - 3.a. Business Cycle Properties
 - 3.b. Firing Costs and Business Cycles
 - 3.c. The Great Recession
- Oncluding Remarks

- ∢ ∃ ▶

1. Related Literature

 Closed Economy Models: Andolfatto (1996), Den Haan et al. (2000), Lagos (2006), Merz (1995), and Mortensen and Pissarides (1994).

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

- Closed Economy Models: Andolfatto (1996), Den Haan et al. (2000), Lagos (2006), Merz (1995), and Mortensen and Pissarides (1994).
- Open Economy Models: Boz et al. (2009), Christiano (2007), Gourinchas (1998). Hairault (2002).

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

2. Small Open Economy Model with Labor Market Frictions

• Canonical Small Open Economy Model following Mendoza (1991).

3

2. Small Open Economy Model with Labor Market Frictions

- Canonical Small Open Economy Model following Mendoza (1991).
- Labor market frictions: Search, endogenous separation, firing and hiring costs.

2. Small Open Economy Model with Labor Market Frictions

- Canonical Small Open Economy Model following Mendoza (1991).
- Labor market frictions: Search, endogenous separation, firing and hiring costs.
- Representative household: Pool income of members and thus provide insurance against unemployment.
2. Small Open Economy Model with Labor Market Frictions

- Canonical Small Open Economy Model following Mendoza (1991).
- Labor market frictions: Search, endogenous separation, firing and hiring costs.
- Representative household: Pool income of members and thus provide insurance against unemployment.
- Focus on the extensive margin.

2. Small Open Economy Model with Labor Market Frictions

- Canonical Small Open Economy Model following Mendoza (1991).
- Labor market frictions: Search, endogenous separation, firing and hiring costs.
- Representative household: Pool income of members and thus provide insurance against unemployment.
- Focus on the extensive margin.
- Social Planner Solution: Abstract from the wage setting process.

2. Small Open Economy Model with Labor Market Frictions

- Canonical Small Open Economy Model following Mendoza (1991).
- Labor market frictions: Search, endogenous separation, firing and hiring costs.
- Representative household: Pool income of members and thus provide insurance against unemployment.
- Focus on the extensive margin.
- Social Planner Solution: Abstract from the wage setting process.
- Shocks: Technology and Interest Rates.

Households

$$E_0 \sum_{t=0}^{\infty} \beta^t \frac{\left[C_t - \varphi \frac{L_t^{1+\nu}}{1+\nu}\right]^{1-\sigma}}{1-\sigma}$$

• Non-separability between consumption and leisure.

August, 2011 15 / 38

3

<ロ> (日) (日) (日) (日) (日)

Households

$$E_0 \sum_{t=0}^{\infty} \beta^t \frac{\left[C_t - \varphi \frac{L_t^{1+\nu}}{1+\nu}\right]^{1-\sigma}}{1-\sigma}$$

- Non-separability between consumption and leisure.
- No wealth effects on labor supply.

3

< ロ > < 同 > < 三 > < 三

Households

$$E_0 \sum_{t=0}^{\infty} \beta^t \frac{\left[C_t - \varphi \frac{L_t^{1+\nu}}{1+\nu}\right]^{1-\sigma}}{1-\sigma}$$

- Non-separability between consumption and leisure.
- No wealth effects on labor supply.
- Interpretation: home production.

3

• • • • • • • • • • • •

Production

Intermediate Good: Produced with Labor.

3

・ロト ・聞 ト ・ ヨト ・ ヨト

Production

- Intermediate Good: Produced with Labor.
- Final Good: Produced with Capital and Intermediate Goods with a Technology A_t.

(日) (同) (三) (三)

Continuum of jobs or matches between one firm and one worker.

3

(日) (同) (三) (三)

- **(**) Continuum of *jobs* or matches between one firm and one worker.
- Obs are indexed by a labor efficiency shock ω, hence each job produces ω units of output.

Image: Image:

- **O** Continuum of *jobs* or matches between one firm and one worker.
- **②** Jobs are indexed by a labor efficiency shock ω , hence each job produces ω units of output.
 - 2.a. ω is a random variable independently distributed over time with distribution function *G*.

- Ontinuum of jobs or matches between one firm and one worker.
- Obs are indexed by a labor efficiency shock ω, hence each job produces ω units of output.
 - 2.a. ω is a random variable independently distributed over time with distribution function *G*.
 - 2.b. We assume a Pareto distribution for idiosyncratic shocks: $G\left(\omega\right)=1-\left(\frac{\bar{\omega}}{\omega}\right)^{\sigma_{\omega}}$.

(日) (同) (三) (三)

- Continuum of jobs or matches between one firm and one worker.
- Obs are indexed by a labor efficiency shock ω, hence each job produces ω units of output.
 - 2.a. ω is a random variable independently distributed over time with distribution function *G*.
 - 2.b. We assume a Pareto distribution for idiosyncratic shocks: $G\left(\omega\right)=1-\left(\frac{\bar{\omega}}{\omega}\right)^{\sigma_{\omega}}$.
- After observing the shocks at the beginning of the period, the planner can decide to destroy a job if the labor efficiency is *too low*.

(日) (同) (三) (三)

- Continuum of jobs or matches between one firm and one worker.
- Obs are indexed by a labor efficiency shock ω, hence each job produces ω units of output.
 - 2.a. ω is a random variable independently distributed over time with distribution function *G*.
 - 2.b. We assume a Pareto distribution for idiosyncratic shocks: $G\left(\omega\right)=1-\left(rac{\omega}{\omega}
 ight)^{\sigma_{\omega}}$.
- After observing the shocks at the beginning of the period, the planner can decide to destroy a job if the labor efficiency is *too low.*
 - 3.a. Endogenous threshold level $\hat{\omega}_t$ depending on the aggregate state of the economy.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

ama	and		rrutia (n	N
Lanna	ana	<u> </u>	in a cia		

August, 2011 18 / 38

$$M_{t} = L_{t} \int_{\hat{\omega}_{t}}^{\infty} \frac{dG(\omega_{t})}{1 - G(\hat{\omega}_{t})} d\omega_{t} = \left[\frac{\Gamma(\hat{\omega}_{t})}{1 - G(\hat{\omega}_{t})}\right] L_{t}$$

• The higher the cut-off $\hat{\omega}_t$.

2

イロト イヨト イヨト イヨト

$$M_{t} = L_{t} \int_{\hat{\omega}_{t}}^{\infty} \frac{dG(\omega_{t})}{1 - G(\hat{\omega}_{t})} d\omega_{t} = \left[\frac{\Gamma(\hat{\omega}_{t})}{1 - G(\hat{\omega}_{t})}\right] L_{t}$$

- The higher the cut-off $\hat{\omega}_t$.
 - the higher the level of job destruction.

3

< ロ > < 同 > < 三 > < 三

$$M_{t} = L_{t} \int_{\hat{\omega}_{t}}^{\infty} \frac{dG(\omega_{t})}{1 - G(\hat{\omega}_{t})} d\omega_{t} = \left[\frac{\Gamma(\hat{\omega}_{t})}{1 - G(\hat{\omega}_{t})}\right] L_{t}$$

- The higher the cut-off $\hat{\omega}_t$.
 - the higher the level of job destruction.
 - the higher the average productivity in the production of intermediate inputs.

3

< ロ > < 同 > < 三 > < 三

$$M_{t} = L_{t} \int_{\hat{\omega}_{t}}^{\infty} \frac{dG(\omega_{t})}{1 - G(\hat{\omega}_{t})} d\omega_{t} = \left[\frac{\Gamma(\hat{\omega}_{t})}{1 - G(\hat{\omega}_{t})}\right] L_{t}$$

- The higher the cut-off $\hat{\omega}_t$.
 - the higher the level of job destruction.
 - the higher the average productivity in the production of intermediate inputs.
- This will typically occur in a recession.

Final Goods

• Combines capital and intermediate good with a technology level A_t

$$Y_t = A_t \left(K_t \right)^{\alpha} \left(M_t \right)^{1-\alpha}$$

• Aggregate production function can be rewritten

$$\underbrace{Y_{t}}_{GDP} = \underbrace{\left[A_{t}\left(\frac{\Gamma\left(\hat{\omega}_{t}\right)}{1-G\left(\hat{\omega}_{t}\right)}\right)^{1-\alpha}\right]}_{TFP}\left(K_{t}\right)^{\alpha}\left(L_{t}\right)^{1-\alpha}$$

Higher job destruction is associated with higher measured TFP.

Lama and Urrutia ()

(日) (同) (三) (三)

Labor Markets

• Labor flows:

$$L_t = L_{t-1} + H_t - S_t$$

• Matching function (Hirings):

$$H_t = D\left(U_t\right)^{\theta} (V_t)^{1-\theta}$$

• Separations:

$$S_t = G\left(\hat{\omega}_t\right)\left[L_{t-1} + H_t\right]$$

Lama and Urrutia ()

3

< ロ > < 同 > < 三 > < 三

Closing the Model

• Feasibility:

$$egin{aligned} Y_t &= C_t + I_t + NX_t + \eta V_t + \kappa S_t \ B_{t+1} &= (1+r_t^*) \ B_t - NX_t \end{aligned}$$

- Posting a Vacancy (V_t) entails a cost η, while a separation (S_t) a cost κ.
- Law of motion of capital:

$$\mathcal{K}_{t+1} = (1-\delta) \mathcal{K}_t + \mathcal{I}_t - \frac{\vartheta}{2} \left(\frac{\mathcal{I}_t}{\mathcal{K}_t} - \delta\right)^2 \mathcal{K}_t$$

Labor endowment allocation:

$$L_t + U_t = 1$$

Lama and Urrutia ()

Employment Protection

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

$$\begin{array}{lll} \log \left(A_{t} \right) & = & \rho_{A} \log \left(A_{t-1} \right) + \varepsilon_{t}^{A}, \\ \log \left(1 + i_{t}^{*} \right) & = & \rho_{i} \log \left(1 + i_{t-1}^{*} \right) + (1 - \rho_{i}) \log \left(1 + i^{*} \right) + \varepsilon_{t}^{i}. \end{array}$$

Lama and Urrutia ()

Employment Protection

August, 2011 23 / 38

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

$$\pi_{t}(\omega) = p_{t}^{M}\omega - \varphi L_{t}^{\nu} - \lambda_{t}^{U}/\lambda_{t}^{C} +\beta E_{t}\left(\lambda_{t+1}^{C}/\lambda_{t}^{C}\right)\int \max\left\{\pi_{t+1}\left(\omega'\right), -\kappa\right\} dG\left(\omega'\right).$$

• Social value of a standing job: expected present value of the output generated by the job net of the shadow price of an unmatched worker

$$\pi_{t}(\omega) = p_{t}^{M}\omega - \varphi L_{t}^{\nu} - \lambda_{t}^{U}/\lambda_{t}^{C} +\beta E_{t}\left(\lambda_{t+1}^{C}/\lambda_{t}^{C}\right)\int \max\left\{\pi_{t+1}\left(\omega'\right), -\kappa\right\} dG\left(\omega'\right).$$

- Social value of a standing job: expected present value of the output generated by the job net of the shadow price of an unmatched worker
- The planner destroys jobs such that $\pi_t(\omega) < -\kappa$.

$$\pi_{t}(\omega) = p_{t}^{M}\omega - \varphi L_{t}^{\nu} - \lambda_{t}^{U}/\lambda_{t}^{C} +\beta E_{t}\left(\lambda_{t+1}^{C}/\lambda_{t}^{C}\right)\int \max\left\{\pi_{t+1}\left(\omega'\right), -\kappa\right\} dG\left(\omega'\right).$$

- **Social value of a standing job:** expected present value of the output generated by the job net of the shadow price of an unmatched worker
- The planner destroys jobs such that $\pi_t(\omega) < -\kappa$.
- Monotonicity of π_t in ω implies that the optimal rule is to shred jobs with $\omega < \hat{\omega}_t$, where $\hat{\omega}_t$ satisfies $\pi_t (\hat{\omega}_t) = -\kappa$.

(日) (周) (三) (三)

$$\pi_{t}(\omega) = p_{t}^{M}\omega - \varphi L_{t}^{\nu} - \lambda_{t}^{U}/\lambda_{t}^{C} +\beta E_{t}\left(\lambda_{t+1}^{C}/\lambda_{t}^{C}\right)\int \max\left\{\pi_{t+1}\left(\omega'\right), -\kappa\right\} dG\left(\omega'\right).$$

- Social value of a standing job: expected present value of the output generated by the job net of the shadow price of an unmatched worker
- The planner destroys jobs such that $\pi_t(\omega) < -\kappa$.
- Monotonicity of π_t in ω implies that the optimal rule is to shred jobs with $\omega < \hat{\omega}_t$, where $\hat{\omega}_t$ satisfies $\pi_t (\hat{\omega}_t) = -\kappa$.
- A higher firing cost will imply a lower cut-off $\hat{\omega}_t$, hence less job destruction and lower measured TFP.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Selection Effect: Labor Flows in Mexico.

Table 2: Transitions between Occupational Status and Selection Effect in Mexico

	Employed → Unemployed percent selection		Self-Employed \longrightarrow Unemployed		
			percent	selection	
1988-99	1.67	0.74	0.90	0.93	
1995	2.76	0.68	1.68	0.88	

	Employed $ ightarrow$ Out Labor Force		Self-Employed \longrightarrow Out Labor Force		
	percent	selection	percent	selection	
1988-99	7.06	0.32	10.31	0.41	
1995	7.48	0.30	9.91	0.41	

Source: Own elaboration using Encuesta Nacional de Empleo Urbano (ENEU), sample from 1988:Q1 to 1999:Q4.

Diagnostic of Labor Market Frictions

• TFP or productivity wedge:

$$TFP = rac{Y_t}{F\left(K_t, L_t
ight)}$$

- Can be interpreted as the level of technological efficiency in the use of inputs (Solow residual).
- Labor wedge:

$$Labor Wedge \equiv \frac{-U_{l}(C_{t}, L_{t}) / U_{c}(C_{t}, L_{t})}{A_{t}F_{L}(K_{t}, L_{t})}$$

• Can be interpreted as the size of the distortion in the labor market required for the optimality condition (consumption/leisure choice) to hold.

Lama and Urrutia ()

3. Quantitative Analysis: Calibration

Table 3: Parameters for the Baseline Economy

Parameter	Symbol	Value
From Outside the Model		
Discount Factor	β	0.99
World average Interest Rate	i*	$1/\beta - 1$
Depreciation Rate	δ	1.25%
Capital Share	α	0.3
Curvature Pareto Distribution	σ_{ω}	1.5
Persistence of Exogenous Productivity Shock	ρ_A	0.95
Frisch Elasticity of Labor Supply	$1/\nu$	2.65
Elasticity of Matching Function	θ	0.40
Hiring Cost	η	0.1

3. Quantitative Analysis: Calibration

Table 3: Parameters for the Baseline Economy

Parameter	Symbol	Value
Calibrated to Steady State Statistics		
Disutility of Labor	φ	6.39
Efficiency of Matching Function	D	0.67
Scale of Pareto Distribution	$\overline{\omega}$	0.99
Estimated from EMBI Data for Mexico		
S.D. of World Interest Rate	σ_i	1.37%
Persistence of World Interest Rate	$ ho_i$	0.96
Calibrated to Business Cycle Volatilities		
S.D. of Exogenous Productivity Shock	$\sigma_{\mathcal{A}}$	1.14%
Covariance Interest Rate and Productivity Shocks	$\sigma_{A,i}$	-0.038
Firing Cost	κ	3.90
Adjustment Cost of Capital	θ	65

3

< ロ > < 同 > < 三 > < 三

3. Quantitative Analysis: Business Cycle Properties

Table 4: Business Cycle Statistics: Data and Model

	Data Mexico	Baseline Model	No <i>i</i> * shock
$\sigma(y)$	2.17	2.17	2.21
$\sigma(I)/\sigma(y)$	0.53	0.54	0.52
$\sigma(i)/\sigma(y)$	3.34	3.37	1.29
$Corr(1+i^*,y)$	-0.16	-0.17	-
$\sigma(c)/\sigma(y)$	1.15	1.46	0.89
Corr(nx/y, y)	-0.78	-0.14	0.80
$\sigma(tfp)$	1.98	1.36	1.41
Corr(tfp, y)	0.93	0.99	0.99
Corr(I, y)	0.40	0.99	0.99
$\sigma(\mathit{Iwedge})$	2.11	0.59	0.62
Corr(Iwedge, y)	-0.73	-0.96	-0.98

3. Quantitative Analysis: Firing Costs and Business Cycles

Lama and Urrutia ()

Employment Protection

August, 2011 31 / 38

3. Quantitative Analysis: Firing Costs and Business Cycles

Table 5: Separation Costs and Business Cycle Statistics

	Mexico	Model: $\kappa \approx 4$	Model: $\kappa pprox 1$
$\sigma(y)$	2.17	2.17	1.86
$\sigma(\textit{tfp})$	1.98	1.35	1.08
$\sigma(I)$	1.15	1.16	1.16
$\sigma(I)/\sigma(y)$	0.53	0.54	0.62
$\sigma(\mathit{lwedge})$	2.11	0.59	0.47
Corr(Iwedge, y)	-0.73	-0.96	-0.71
$\sigma(c)/\sigma(y)$	1.15	1.49	1.72
Corr(nx/y, y)	-0.78	-0.14	-0.12

3. Quantitative Analysis: Firing Costs and Business Cycles

Table 5: Separation Costs and Business Cycle Statistics

	Mexico	Model: $\kappa \approx 4$	Model: $\kappa pprox 1$	Canada
$\sigma(y)$	2.17	2.17	1.86	1.28
$\sigma(\textit{tfp})$	1.98	1.36	1.08	0.86
$\sigma(I)$	1.15	1.16	1.16	0.86
$\sigma(I)/\sigma(y)$	0.53	0.54	0.62	0.67
$\sigma(\mathit{lwedge})$	2.11	0.59	0.47	0.76
Corr(Iwedge, y)	-0.73	-0.96	-0.71	-0.42
$\sigma(c)/\sigma(y)$	1.15	1.46	1.72	0.86
Corr(nx/y, y)	-0.78	-0.14	-0.12	0.03
3. Quantitative Analysis: The Great Recession

Lama and Urrutia ()

Employment Protection

August, 2011 34 / 38

3. Quantitative Analysis: The Great Recession

Lama and Urrutia ()

Employment Protection

August, 2011 35 / 38

3

イロト イヨト イヨト イヨト

The Great Recession: Canada vs. Mexico.

Lama and Urrutia ()

Employment Protection

August, 2011 36 / 38

Table 6: Sensitivity Analysis for the Mexican 2008 Great Recession Episode

	Baseline model	Frisch Elasticity		Curvature Pareto	
	$(1/\nu \approx 2.6, \sigma_{\omega} = 1.5)$	$1/\nu = 1$	1/ u = 0.1	$\sigma_\omega = 1.1$	$\sigma_\omega = 2$
У	1.32	1.25	1.22	1.73	1.05
I	0.37	0.15	0.01	-0.09	0.44
tfp	1.06	1.14	1.21	1.78	0.74
	Baseline model	Matching Elasticity		Capital Share	
	$(\theta = 0.4, \alpha = 0.3)$	$\theta = 0.2$	heta= 0.6	$\alpha = 0.25$	$\alpha = 0.4$
У	1.32	1.70	0.59	1.44	1.10
	0.37	0.59	0.02	0.43	0.25
tfp	1.06	1.27	0.59	1.11	0.94

3

< ロ > < 同 > < 三 > < 三

4. Conclusions

• Labor market institutions account for differences in business cycles between developed and emerging economies.

3

Image: A match a ma

- Labor market institutions account for differences in business cycles between developed and emerging economies.
- Endogenous selection provides a mechanism that mitigates the impact of negative shocks on output and productivity. Employment protection works against this mechanism.

- Labor market institutions account for differences in business cycles between developed and emerging economies.
- Endogenous selection provides a mechanism that mitigates the impact of negative shocks on output and productivity. Employment protection works against this mechanism.
- Extensions: Tradable vs. Non-tradable, Europe vs. U.S.