The Credit-Output Relationship: Evidence from Peru Erick Lahura

This Paper / Contribution

Results

Data analysis

Cointegration analysis

Conclusions

Possible extensions

An Empirical Analysis of the Credit-Output Relationship: Evidence from Peru

Erick Lahura

XXIX Encuentro de Economistas BCRP, Lima - Peru

14 de octubre de 2011

Motivation

The Credit-Output Relationship: Evidence from Peru

Erick Lahura

Motivation

This Paper / Contribution Methodology Results Data analysis Cointegration analysis

Conclusions

Possible extensions • The recent international financial crisis has motivated the debate about the role of quantities in the economy, with particular emphasis on money and credit.

Thomas Sargent (2011):

For most of the last 25 years, the quantity theory of money has been sleeping, but during the last year, unprecedented growth in leading central banks' balance sheets has prompted some of us to worry because the quantity theory has slept before, only to reawaken

Motivation

The Credit-Output Relationship: Evidence from Peru

Erick Lahura

Motivation

This Paper / Contribution Methodology Results Data analysis Cointegration analysis

Possible extension

- The question of monitoring credit aggregates as a means of predicting/explaining future output downturns and financial crises has become increasingly relevant for policymakers.
- For most central banks, credit and money aggregates are important variables (availability, reliability), and potentially good candidates as information variables for monetary/macroeconomic policy.
- Do credit/money aggregates contain any useful information for understanding the evolution of key macroeconomic variables (output, inflation, employment, etc.)?

This Paper / Contribution

The Credit-Output Relationship: Evidence from Peru

Erick Lahura

Motivation

This Paper / Contribution

Methodology Results Data analysi Cointegratio

analysis

Conclusions

Possible extensions This paper investigates empirically whether credit aggregates contain any useful information for understanding the evolution of output.

Is there a stable credit-output relationship?

Is there evidence of an empirical causality useful for forecasting?

Is it possible to quantify the effect of credit on output?

 Empirical results might be used in a DSGE model that focuses on credit market conditions.

Methodology

The Credit-Output Relationship: Evidence from Peru

Erick Lahura

Motivation

This Paper / Contribution

Methodology

- Results
- Data analysis
- Cointegratior analysis
- Conclusions

Possible extensions

- Extends Lahura and Vega (2010) in several dimensions.
- Main features:
 - Empirical model is a vector error correction (VEC) model.
 - Identification of the structural shocks based on common stochastic trends.
 - Inclusion of terms of trade variable (Castillo and Salas, 2008).
 - Quarterly data for Peru, period 1993-2011.

Results

The Credit-Output Relationship: Evidence from Peru

Erick Lahura

Motivation

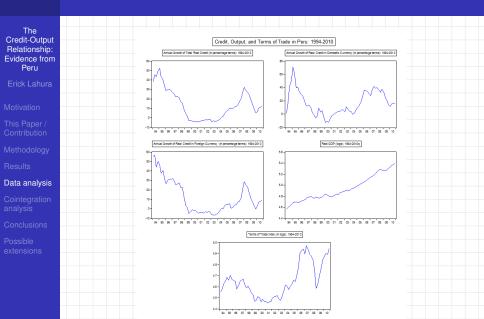
This Paper / Contributior

Methodolog

Results

Data analysis

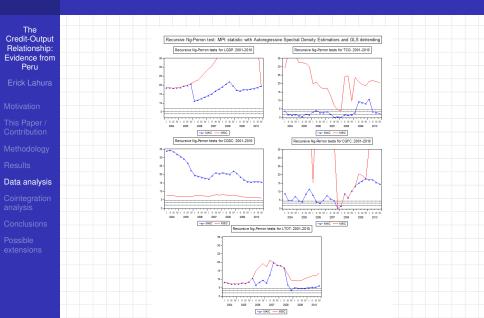
Cointegratior analysis


Conclusions

Possible extensions

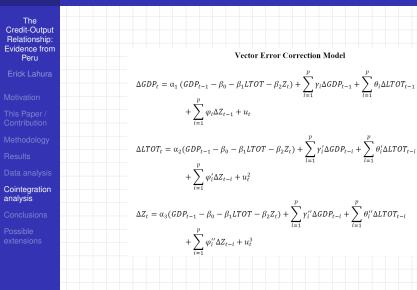
Three main results:

- There is a stable long-run relationship between real credit growth and output (and terms of trade).
- Real credit growth (in both currencies) is useful in forecasting output in the long-run, whereas credit impulse (the change in credit growth) in domestic currency helps forecasting output growth in the short run.
- A structural permanent shock in real credit has positive effects on output.
- Therefore, information contained in credit aggregates could be useful for policymakers.


Data Analysis/Graphs

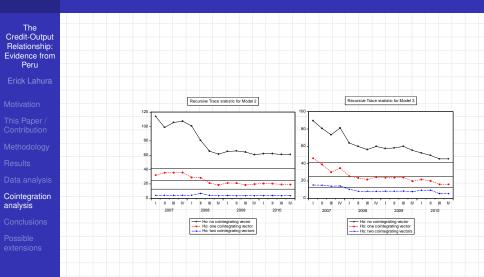
Data Analysis/Unit root test

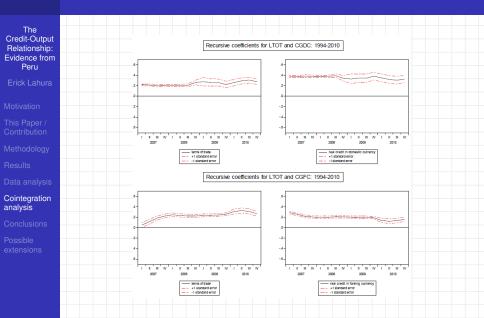
The Credit-Output Relationship: Evidence from Peru Erick Lahura	Ng-Perron tests: 1994-2010 (estimated statistics) Autoregressive spectral density estimator based on GLS detrending						
Motivation	Series	Lag-length criteria	MZa	MZt	MSB	МРТ	
This Paper / Contribution	GDP	MAIC	-4.46 -4.46	-1.36 -1.36	0.30	19.35	
Methodology	TCG	MAIC	-11.17 **	-2.34 **	0.21 **	2.30 **	
Results	100	MSIC	-1.02	-0.64	0.63	20.63	
Data analysis	CGDC	MAIC MSIC	-1.55 -4.01	-0.87 -1.41	0.56 0.35	15.44 6.12	
Cointegration analysis	CGFC	MAIC MSIC	-1.48 -0.33	-0.76 -0.27	0.52 0.82	14.47 36.83	
Conclusions	LTOT	MAIC MSIC	-4.29 -0.64	-1.17 -0.26	0.27 *** 0.40	6.14 13.47	
Possible extensions		instant and trend in the determi of unit root at 1%, 5% and 10% si			ind "***" indicat	e rejection of	


Data Analysis/Recursive Unit root test

Data Analysis/Recursive Unit root test

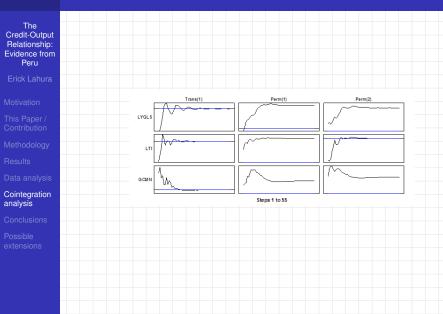
The Credit-Output Relationship: Evidence from Peru Erick Lahura	Cointeg	grating vectors (no (1994	rmalised with 1 1:1 - 2010:4)	respecto to GI)P)		
Motivation		Model 1	Model 2	Model 3	Model 4		
This Paper / Contribution	Number of cointegrating vectors	1	1	1	1		
Methodology	LTOT	0.93 * 5.41	0.28 * 5.34	0.32 * 10.62	0.41 * 7.74		
Results Data analysis	GCDC	5.41	0.33 * 4.80	10.62	-0.29 * -5.32		
Cointegration analysis	GCFC			0.22 * 9.44	0.22 * 4.48		
Conclusions	Lag length	8	10	9	2		
Possible extensions	The symbols "*", "**",	and "***" represent	t 1%, 5% and 10%	significance lev	el, respectively.		


Cointegration analysis/VEC Model


Cointegration analysis/Exogeneity

Credit-Output Relationship:	Speed-of-Adjustm	Speed-of-Adjustment coefficients in VEC models				
Evidence from		Model 1	Model 2	Model 3	Model 4	
Peru	Error correction equation for d(GDP)	-0.11 *	-0.43 *	-0.71 *	-0.02	
Erick Lahura		-3.76	-5.08	-4.12	-0.34	
LICK Latiura		0.02	0.11	0.24	0.19	
	Error correction equation for d(LTOT)	0.02	0.11	-0.24 -0.28	1.14	
lotivation		0.13	0.15	-0.20	1.14	
	Error correction equation for d(GCDC)		-0.22		-0.77 *	
This Paper / Contribution			-0.52		-4.37	
	Error correction equation for d(GCFC)			0.40	-0.26 **	
lethodology				0.93	-2.07	
Results	The symbols "*", "**", and "***" represent 1%,	5% and 10% si	gnificance level	, respectively.		
	Granger Causality test in the VEC models					
Data analysis	Granger Causa	lity test in th	e VEC models			
		lity test in th probabilities				
Cointegration				Model 3	Model 4	
Cointegration nalysis		probabilities)		Model 4	
Cointegration nalysis	(1	probabilities Model 1) Model 2	Model 3		
Cointegration Inalysis	dLTOT ~ Granger cause dGDP dGDP ~ Granger cause dLTOT	Model 1 0.16) Model 2 0.04 0.91	Model 3 0.16	0.03	
Contegration nalysis Conclusions	dLTOT ~ Granger cause dGDP dGDP ~ Granger cause dLTOT dCGDC ~ Granger cause dGDP	Model 1 0.16) Model 2 0.04 0.91 0.00	Model 3 0.16	0.03 0.16 0.15	
conclusions	dLTOT ~ Granger cause dGDP dGDP ~ Granger cause dLTOT	Model 1 0.16) Model 2 0.04 0.91	Model 3 0.16	0.03	
Cointegration nalysis	dLTOT ~ Granger cause dGDP dGDP ~ Granger cause dLTOT dCGDC ~ Granger cause dGDP	Model 1 0.16) Model 2 0.04 0.91 0.00	Model 3 0.16	0.03 0.16 0.15	

Cointegration analysis/Stability


Cointegration analysis/Stability

Cointegration analysis/Structural VEC model

The Credit-Output Relationship: Evidence from Peru							
Erick Lahura	Structural estimates from the VEC model						
Motivation		Output	Terms of trade	Real Credit Growth in Domestic			
This Paper / Contribution	Long-run effect (normalis						
Methodology	Permanent Shock 1 Permanent Shock 2	0.30 0.44	1.00 0.00	0.45			
Results	Contemporaneous effect						
Data analysis	Permanent Shock 1 Permanent Shock 2	-0.23 0.39	3.26 -1.36	1.81 2.80			
Cointegration analysis	Effect after 55 periods						
Conclusions	Permanent Shock 1 Permanent Shock 2	1.81 1.17	6.00 0.00	2.71 2.63			
Possible extensions							

Cointegration analysis/Structural IRFs

Conclusions

The Credit-Output Relationship: Evidence from Peru

Erick Lahura

Motivation This Paper / Contribution Methodology Results Data analysis

Cointegratior analysis

Conclusions

Possible extensions Three main results:

- There is a stable long-run relationship between real credit growth and output (and terms of trade).
- Real credit growth (in both currencies) is useful in forecasting output in the long-run, whereas credit impulse (the change in credit growth) in domestic currency helps forecasting output growth in the short run.
- A structural permanent shock in real credit has positive effects on output.
- Therefore, information contained in credit aggregates could be useful for policymakers.

Possible extensions

The Credit-Output Relationship: Evidence from Peru

Erick Lahura

Motivation

This Paper / Contribution

Methodolog

Results

Data analysis

Cointegration analysis

Conclusions

Possible extensions

Inclusion of real public expenditure in the cointegrating vector.

 Construction of a simple theoretical model based on the empirical results.