# Google Trends: predicción del nivel de Empleo Agregado en Perú usando datos en tiempo real, 2004-2011

Jillie Vanessa Chang Kcomt Andrea Katherine Del Río Lazo

### Contenido

- 1. Objetivo
- 2. Conceptos: ¿qué es Google Trends?
- 3. Literatura
- 4. Google Trends y el empleo
- 5. Metodología
- 6. Resultados
- 7. Conclusiones

### 1. Objetivo

Analizar si la utilización de los datos en tiempo real de Google Trends durante el periodo 2004-2011 mejora las predicciones del índice de empleo de Lima para empresas de 100 y más trabajadores (IE100).

### 2. ¿Qué es Google Trends?

 Servicio de Google que cuantifica las búsqueda que se realizan a través del buscador.

- Reporta un índice semanal del 0 al 100 que se obtiene después de dos procesos:
  - 1. Normalización
  - 2. Escalamiento

### 3. Literatura (1/2)

### Variables microeconómicas

- Varian y Choi (2009): ventas minoristas, ventas de autos, casas y viajes.
- □ Carriére-Swallow y Labbé (2010): ventas de autos
- □ Song y Pan (2010) : demanda por cuartos de hoteles

### 3. Literatura (2/2)

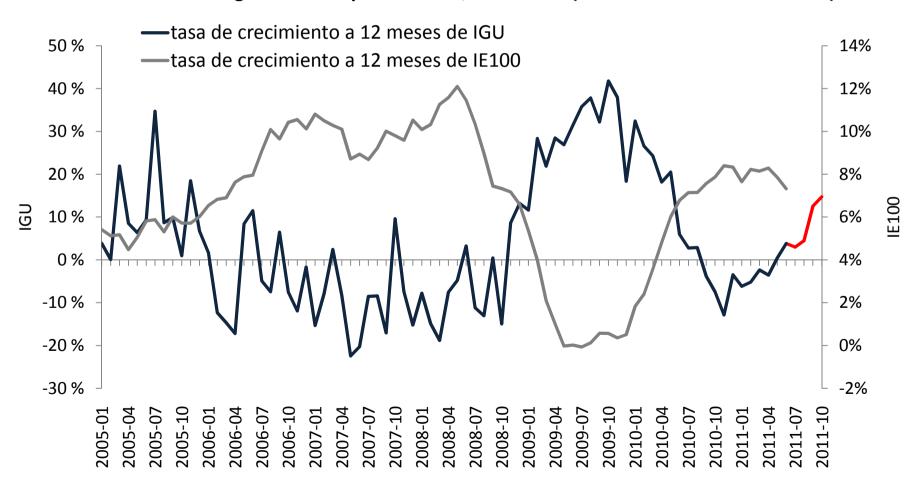
### Variables macroeconómicas

- □ Della Penna y Huang (2009) y Schmidt y Vosen (2009): índice de confianza del consumidor
- Bersier (2010), D'Amuri (2009), Askitas y
   Zimmermann (2009), Suhoy (2009) y Oleksandr (2010): desempleo

### 4. Google Trends y empleo (1/5)

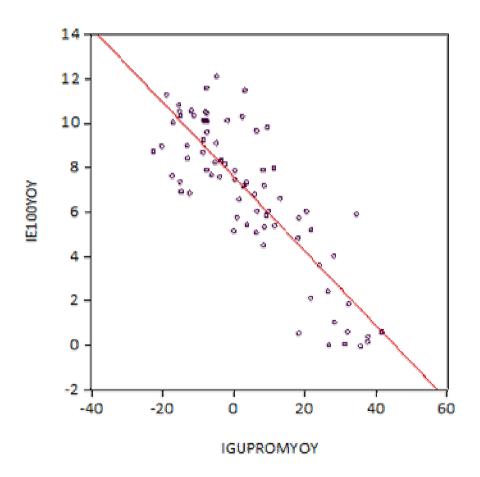
### <u>Índice de empleo para empresas de 100 y más trabajadores (IE100)</u>

- Se calcula a partir de la Encuesta Nacional de Variación Mensual de Empleo en Empresas de 10 y más Trabajadores (ENVME) y es elaborada por el MINTRA.
- □ La ENVME se aplica a empresas y establecimientos con trabajadores sujetos al régimen laboral.
- Rezago en la publicación: aproximadamente 3 meses.


### 4. Google Trends y empleo (2/5)

### <u>Índice de Google de desempleo (IGU)</u>

- Selección de palabras claves como: "busco trabajo", "laborum"
   "bolsa de trabajo", "aptitus", etc.
- Mensualización de cada serie semanal a través de promedios simples.
- Indexación de las series ponderado por desviación estándar.


### 4. Google Trends y empleo (4/5)

Índice de empleo de Lima para empresas de 100 y más trabajadores e Índice de Google de desempleo en Perú, 2004-2011 (tasa de variación a 12 meses)



### 4. Google Trends y empleo (5/5)

Gráfico de dispersión del Índice de empleo en Lima para empresas de 100 y más trabajadores e IGU en Perú, 2004-2011 (tasa de variación a 12 meses)



### 5. Metodología (1/4)

### Metodología 1:

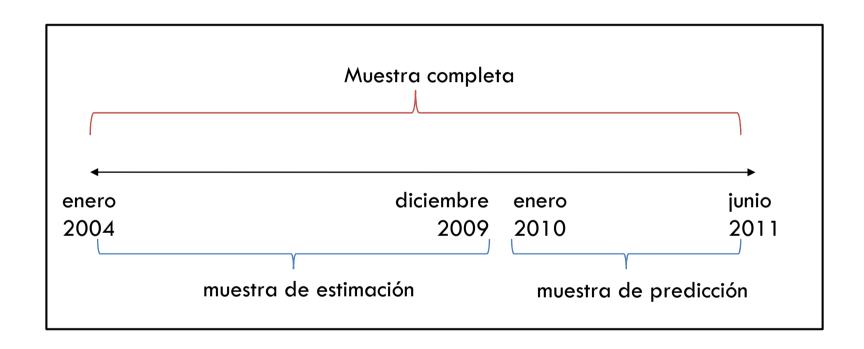
modelo autorregresivo de media móvil (ARMA) y modelo autorregresivo de razagos distribuidos (ARDL)

### Metodología 2:

Cointegración y modelo de correción de errores

### 5. Metodología (2/4)

### Modelos ARMA y ARDL


Modelo de referencia (ARMA):

$$y_{t} = \beta_{0} + \sum_{i=1}^{p} \beta_{i} y_{t-i} + \epsilon_{t}^{k} + \sum_{i=1}^{q} \alpha_{i} \epsilon_{t-i}$$

Modelo aumentado (ARDL):

$$y_t = \beta_0 + \sum_{i=1}^p \beta_i y_{t-i} + \epsilon_t + \sum_{i=1}^q \alpha_i \epsilon_{t-i} + \sum_{i=1}^T \gamma_{i,l} IGU_{t-i}$$

### 5. Metodología (3/4)



### Se evaluarán las predicciones dentro y fuera de la muestra. Las Pruebas utilizadas serán:

- -Raíz del Error Cuadrático Medio (RECM)
- -Error Absoluto Medio (EAM)
- -Prueba Diebold y Mariano(1995) prouesta por Clark y West (2007)

### 5. Metodología (4/4)

 Si las series cointegran, entonces es posible representar la relación como:

$$IE100_t = \beta IGU_t + v_t$$

 De acuerdo con el teorema de representación de Granger, es posible analizar la dinámica de corto plazo a través del siguiente MCE:

$$\begin{split} \Delta IE100_t &= \alpha[IE100_{t-1} - \beta IGU_{t-1}] + \sum_{t=1}^m \emptyset_i \Delta IE100_{t-j} + \sum_{t=1}^m \theta_j \Delta IGU_{t-j} + \varepsilon_t \\ \Delta IGU_t &= \alpha'[IE100_{t-1} - \beta IGU_{t-1}] + \sum_{t=1}^m \emptyset_i' \Delta IE100_{t-j} + \sum_{t=1}^m \theta_j' \Delta IGU_{t-j} + \varepsilon_t' \end{split}$$

### 5. Metodología (5/5)

$$\Delta IE100_{t} = \alpha [IE100_{t-1} - \beta IGU_{t-1}] + \sum_{t=1}^{m} \emptyset_{i} \Delta IE100_{t-j} + \sum_{t=1}^{m} \theta_{j} \Delta IGU_{t-j} + \varepsilon_{t}$$

$$\Delta IGU_{t} = \alpha' [IE100_{t-1} - \beta IGU_{t-1}] + \sum_{t=1}^{m} \emptyset'_{i} \Delta IE100_{t-j} + \sum_{t=1}^{m} \theta'_{j} \Delta IGU_{t-j} + \varepsilon'_{t}$$

□ IGU será un predictor insesgado si  $\beta = 1$ . Más aún, será útil como indicador líder si  $\alpha \neq 0$  pues su nivel precedería (causa en el sentido de Granger) a IE100. Finalmente, permitirá anticipar la senda futura de IE100 si IGU es fuertemente exógena, es decir, si

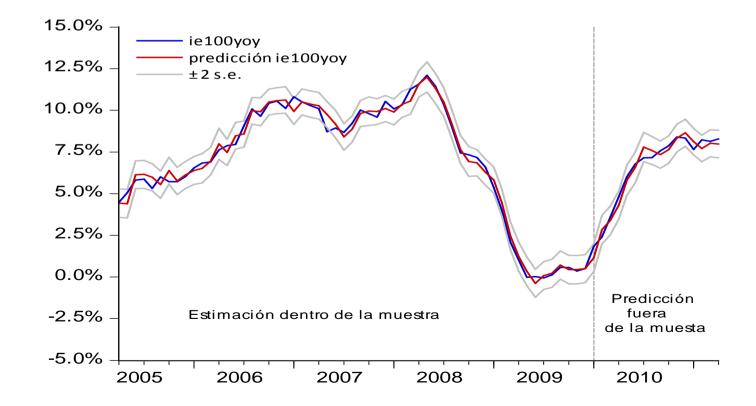
$$\alpha' = 0 = \emptyset_1' = \cdots = \emptyset_m'$$

# 6. Resultados

### ARMA: Predicción dentro de la muestra

### Parámetros estimados y coeficientes de capacidad predictiva para predicciones dentro de la muestra

| Variable   | ondhaon | a. diforo   | ncia do | $lIE100(v_{\star})$               |  |
|------------|---------|-------------|---------|-----------------------------------|--|
| v ai table | enuouen | u. uii ei e | нски ие | $\iota I L L L U U \iota V_{+} I$ |  |


| Variable exógena                   | Modelo de     | referencia | Modelo aumentado |        |
|------------------------------------|---------------|------------|------------------|--------|
|                                    | (1 <i>a</i> ) | (1b)       | (2 <i>a</i> )    | (2b)   |
| $y_{t-1}$                          | 0.95          | 1.22       | 0.87             | 1.14   |
|                                    | (0.03)        | (0.06)     | (0.04)           | (0.06) |
| $y_{t-3}$                          |               | -0.30      |                  | -0.32  |
|                                    |               | (0.06)     |                  | (0.05) |
| $DUM_t$                            | -0.39         | -0.38      | -0.34            | -0.34  |
|                                    | (0.17)        | (0.13)     | (0.17)           | (0.11) |
| MA(12)                             |               | -0.89      |                  | -0.89  |
|                                    |               | (0.04)     |                  | (0.03) |
| $IGU_t$                            |               |            | -0.02            | -0.02  |
|                                    |               |            | (0.01)           | (0.01) |
| Observaciones                      | 77            | 75         | 77               | 75     |
| $R_{ajustado}^2$                   | 0.956         | 0.98       | 0.958            | 0.99   |
| $RECM_{din \acute{a}mico}$         | 5.39          | 0.77       | 3.50             | 0.37   |
| $\mathit{EAM}_{din \acute{a}mico}$ | 5.14          | 0.66       | 3.34             | 0.31   |
| $RECM_{est\'atico}$                | 0.74          | 0.31       | 0.73             | 0.28   |
| EAM <sub>estático</sub>            | 0.63          | 0.24       | 0.62             | 0.23   |

### Notas

- Nivel de significancia al 0.05
- Todas las variables se encuentran en cambios porcentuales a 12 meses ("tasa YoY")
- Todos los modelos cuentan con constante

### Predicción fuera de la muestra (1/2)

### Predicción de IE100 usando el modelo (2b)



### ARMA: Predicción fuera de la muestra (2/2)

### Resultados de la prueba Diebold y Mariano

|               | (a)  | (b)  |
|---------------|------|------|
| Observaciones | 18   | 18   |
| Etadístico DM | 2.58 | 2.43 |
| P value       | 0.02 | 0.03 |

### Notas:

- Ho: modelos 1 y 2 son similares en términos de predicción
- Ha: el modelo 2 predice mejor que el modelo 1

## Cointegración y modelo de corrección de errores (1/4)

### ADF a residuos de Largo plazo

| ADF sobre los residuos de $IE100_t = \beta IGU_t +$ | $\overline{arepsilon_t}$ |
|-----------------------------------------------------|--------------------------|
| Con constante                                       | 0.00                     |
| Estadístico t (Ho: intercepto nulo)                 | 0.94                     |
| Sin constante ni tendencia                          | 0.00                     |

### Notas:

- -Nivel de significancia al 0.05
- Los valores mostrados son las probabilidades asociadas

### Metodología de Johansen

| Estadístico Traza                 | Probabilidad |
|-----------------------------------|--------------|
| No existe vector de cointegración | 0.00         |
| Hasta 1 vector de cointegración   | 0.15         |
| Estadístico Valor propio máximo   |              |
| No existe vector de cointegración | 0.00         |
| Hasta 1 vector de cointegración   | 0.15         |
| ¿Cointegran?                      | <b>S</b> í   |

Notas: Solo intercepto en la ecuación de cointegración y no tendencia en el VAR

# Cointegración y modelo de corrección de errores (2/4)

### Relación de cointegración:

$$IE100_t = 104.11 - 1.03 IGU$$

$$(4.32) \quad (0.09)$$

### ¿IGU es un predictor insesgado de la tendencia?

| Restricción: $B(1,1) = 1, B(1,2) = 1$ | Probablidad |
|---------------------------------------|-------------|
| Chi — square                          | 0.09        |
| Probabilidad                          | 0.77        |

# Cointegración y modelo de corrección de errores (3/4)

### Exogeneidad débil (metodología de Johansen)

|                     | Ecuación de IE100              | Ecuación de IGU |  |
|---------------------|--------------------------------|-----------------|--|
| Velocidad de ajuste | -0.15                          | -0.34           |  |
| Estadístico t       | -2.48                          | -2.16           |  |
| Conclusión          | IE100 no es Débilmente exógena |                 |  |

### Modelo VEC con restricción

| Restricción: $B(1,1) = 1, B(1,2) = 1$ | Probablidad |
|---------------------------------------|-------------|
| ,A(2,1)=0                             |             |
| Chi — square                          | 6.05        |
| Probabilidad                          | 0.05        |

## Cointegración y modelo de corrección de errores (4/4)

■ En este contexto, la prueba de causalidad en el sentido de Granger indica que IE100 no causa en el sentido de Granger a IGU. Por lo cual se puede asumir que IGU es fuertemente exógena y, por tanto, un buen predictor de IE100.

### Causalidad a lo Granger

| Hipótesis nula       | Probablidad |
|----------------------|-------------|
| IGU no causa a IE100 | 0.02        |
| IE100 no causa a IGU | 0.17        |

# 7. Conclusiones

# Google Trends: predicción del nivel de Empleo Agregado en Perú usando datos en tiempo real, 2004-2011

Jillie Vanessa Chang Kcomt Andrea Katherine Del Río Lazo

### Ejemplo de indexación para IGU

| fecha                                  | promedio mensual de | promedio mensual de |  |
|----------------------------------------|---------------------|---------------------|--|
| Геспа                                  | "busco trabajo"     | "bolsa de trabajo"  |  |
| 2011-04                                | 16.5                | 49.5                |  |
| 2011-05                                | 17.2                | 50.8                |  |
| Promedio (A)                           | 16.85               | 50.15               |  |
| Desviación Estándar (B)                | 0.49                | 0.92                |  |
| 1/Desviación Estándar (C)              | 2.02                | 1.09                |  |
| Suma de la inversa de las desviaciones | 3.11                |                     |  |
| estándar (2.02+1.09) (D)               | 5.11                |                     |  |
| ponderadores (C/D)                     | 0.65                | 0.35                |  |

IGU(indexado) para el mes 04 =  $\sum \alpha_i x_{i,t=4}$ =16.5\*0.65+49.5\*0.35