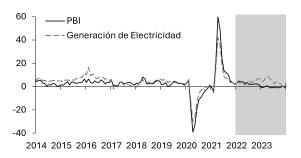
La temperatura como corrector de la relación entre Electricidad y PBI

Lopez, L.

Banco Central de Reserva del Perú

Los puntos de vista expresados en este documento de trabajo corresponden al autor y no reflejan necesariamente la posición del Banco Central de Reserva del Perú.

21 de octubre de 2024


- 1 Introducción
- 2 Antecedentes
- 3 Metodología
- 4 Resultados
- **5** Conclusiones
- 6 Anexos

- 1 Introducción
- 2 Antecedentes
- Metodología
- 4 Resultados
- 6 Conclusiones
- 6 Anexos

Motivación

En vista del aparente debilitamiento de la capacidad de la generación eléctrica como indicador coincidente del PBI entre el 2022 y 2023¹, el artículo propone usar la temperatura ambiental como corrector de dicha relación.

Figura 1: Evolución del PBI y generación de electricidad

¹Correlación: -13,3 por ciento

Principales resultados

- El indicador obtenido para el PBI muestra una correlación de 92,4 % para el periodo 2022-2023 y de 95,1 % con el PBI no primario.
- De emplearse este indicador para predecir la actividad desde el segundo trimestre del 2022 hasta el 2023, se hubiera alcanzado un RECM de 1,0 punto porcentual para el PBI y PBI no primario.
- Por tanto, hay evidencia de que la generación eléctrica persiste como un indicador coincidente del desempeño de la actividad económica al incorporar variables ambientales en la relación.
- Variables ambientales deben ser incorporadas en modelos de nowcasting, forecasting e indicadores compuestos del PBI.

- 1 Introducción
- 2 Antecedentes
- 3 Metodología
- 4 Resultados
- 6 Conclusiones
- 6 Anexos

Electricidad: indicador coincidente

En el Perú, el uso de la generación eléctrica como un indicador coincidente de la actividad económica se sostiene al cumplir lo siguiente:

- Conexión teórica interpretable: hipótesis del crecimiento, conservación, retroalimentación y neutralidad (Bazán et al. 2023)
- Viabilidad técnica: adecuada temporalidad y calidad de la información.

Revisiones previas del uso de la generación eléctrica: Flores y Montoya (2013), Pérez, Ghurra y Grandez (2017) y Quineche y Martinez (2015).

Electricidad: indicador coincidente

Para el Perú, el uso de la generación eléctrica parecía correcto hasta el 2021, con una correlación mayor a 78,0 por ciento la mayoría de los años entre 2014 y 2021. No obstante, esta disminuyó a -13,3 por ciento entre 2022 y 2023.

Figura 1: Evolución del PBI y generación de electricidad

Electricidad, Temperatura y PBI

- La relación entre electricidad y PBI se da a través de usos productivos.
- El consumo residencial (no productivo) representa más del 30 % por ciento de la demanda total de las principales empresas de distribución en el Perú²

Figura 2: Electricidad y PBI

Electricidad, Temperatura y PBI

Variables climáticas (temperatura y humedad) surgen como posibles correctores:

- La temperatura se relaciona con una mayor demanda de energía eléctrica residencial (Liu et al. 2021; Yao 2021).
- El 2022 fue el más frío en 13 años y el 2023 el más caluroso en 59 años (SENAMHI 2024).
- La temperatura posee una relación directa con el PBI a través del sector agrícola³.
- La información de temperatura es publicada en frecuencia diaria y horaria a nivel de estaciones por el SENAMHI.

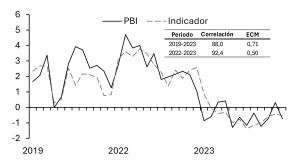
³Chang, Mi y Wei (2023) explora otros canales de esta relación → ⟨፮→ ፮ •੭००

- 1 Introducción
- 2 Antecedentes
- 3 Metodología
- 4 Resultados
- 6 Conclusiones
- 6 Anexos

Metodología

Se evaluó una serie de modelos (Lasso, Ridge, Elastic Net, Random Forest, Mutual Information, entre otros) bajo el criterio de minimización del ECM en predicciones sucesivas:

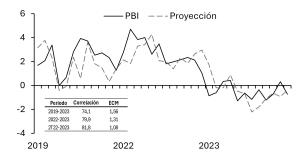
$$Y_{j (1)$$


$$\hat{Y}_i = \hat{f}_{j < i}(GE_i, T_i, X_i) \tag{2}$$

Donde Y es el PBI; GE, generación eléctrica; T, mediciones de temperatura y humedad a nivel de estaciones, y X, un vector de controles: rezagos de PBI y generación eléctrica y tendenciales pre y post-pandemia.

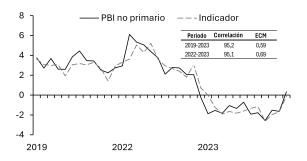
- 1 Introducción
- 2 Antecedentes
- Metodología
- 4 Resultados
- 6 Conclusiones
- 6 Anexos

El modelo seleccionado fue el generado bajo el criterio de Mutual Information (MI)⁴.


Figura 3: Evolución del PBI y el indicador corregido (Var % 12 meses)

⁴Para mayor detalle ver Cover y Thomas (1991): $\int f(x,y) \log \frac{f(x,y)}{f(x)f(y)} dxdy = \sqrt{2}$

PBI real: Proyecciones sucesivas


Figura 4: Evolución del PBI observado e indicador corregido proyectado (Var % 12 meses)

PBI no primario: Indicador

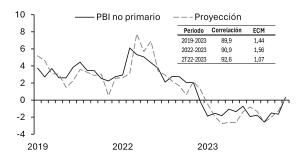

El modelo seleccionado fue el generado bajo el criterio de Mutual Information (MI) y Recursive Feature Elimination (RFE).

Figura 5: Evolución del PBI no primario y el indicador corregido (Var % 12 meses)

PBI no primario: Proyecciones sucesivas

Figura 6: Evolución del PBI no primario observado e indicador corregido proyectado (Var % 12 meses)

- 1 Introducción
- 2 Antecedentes
- 3 Metodología
- 4 Resultados
- **5** Conclusiones
- 6 Anexos

Conclusiones y recomendaciones

- Se encuentra evidencia a favor del uso de la temperatura y humedad como correctores de la relación entre electricidad y PBI para el periodo 2022-2023.
- Se sugiere la incorporación de variables ambientales en modelos de nowcasting, forecasting e indicadores compuestos de la actividad.

- 1 Introducción
- 2 Antecedentes
- Metodología
- 4 Resultados
- 6 Conclusiones
- 6 Anexos

Correlación PBI y Electricidad

Cuadro 1: PBI y Generación eléctrica

Año	Correlación
2014	90,9
2015	78,8
2016	50,6
2017	88,4
2018	53,9
2019	25,3
2020	99,1
2021	99,6
2022	-60,1

Importaciones y temperatura

Cuadro 2: Importaciones relacionadas a la temperatura

Año	Aire Ventiladores		Electrodomésticos	
2010	21,8	19,7	193,9	
2011	26,5	28,6	205,4	
2012	32,6	37,6	238,1	
2013	34,4	32,6	250,0	
2014	29,3	38,2	228,1	
2015	33,1	34,1	235,2	
2016	31,5	34,7	219,2	
2017	32,4	42,0	232,6	
2018	23,9	34,3	246,4	
2019	29,2	37,8	274,8	
2020	20,2	54,1	281,4	
2021	19,8	37,8	409,5	
2022	17,3	31,7	292,8	
2023	28,5	46,1	317,1	
2024	22,9	28,2	220,7	
2023 vs 2010	30,9	134,2	63,5	
2023 vs 2022	64,3	45,3	8,3	

Importaciones anuales en millones de dólares nominales. Comparaciones de últimas dos filas en variación porcentu

Demanda residencial

Cuadro 3: Demanda residencial por empresa distribuidora (%)

Empresa	Concesión 2023	2014	2023
Electro Dunas	Ica, Huancavelica y Ayacucho	35	40,6
Electro Oriente	Loreto, San Martín, Amazonas y Cajamarca	38,4	52,8
Hidroandina	Áncash, La Libertad y Cajamarca	35,1	40,7
Electro Centro	Ayacucho, Huancavelica, Pasco, Junín y Huánuco	49,6	51,4
Electro NorOeste	Piura y Tumbes	29,5	37,3*
Enel Distribución	Lima	37,4	35,9
Luz del Sur	Lima	38,3	31,2

Participación de la demanda residencial en las ventas de energía acorde a las memorias anuales. * 2022.

Predicción PBI

Cuadro 4: ECM Predicciones sucesivas de PBI

Periodo	Mutual Information	Lasso	Ridge	Elastic Net	RFE	Random Forest	Regresión F
2019-2023	1,6	1,8	2,1	2,4	3,5	2,1	1,8
2022-2023	1,3	1,7	1,6	2,6	3,3	2,2	2,1
2T22-2023	1,1	1,4	1,6	2,2	2,8	2,3	2,1

Elaboración propia. El cálculo del ECM se hace con base en los valores estimados en 2 y el observado. Los cálculos omiten el periodo 2020-2021.

Predicción PBI no primario

Cuadro 5: ECM Predicciones PBI no primario

Periodo	Mutual Information	Lasso	Ridge	Elastic Net	RFE	Random Forest	Regresión F	MI + RFE
2019-2023	2,0	3,0	1,9	3,5	4,4	1,4	2,1	1,4
2022-2023	2,0	3,9	2,1	4,8	5,0	1,7	2,6	1,6
2T22-2023	1,4	4,0	1,9	4,9	3,8	1,6	2,3	1,1

Elaboración propia. El cálculo del ECM se hace con base en los valores estimados en (2) y el observado. Los cálculos omiten el periodo 2020-2021. El valor de MI + RFE se calculó con base en el promedio de las predicciones de ambos modelos.