How Does Monetary Policy Affect the Fiscal Multipliers in a Small and Open Economy? The Peruvian Case

Alexander Meléndez Holguín

Banco Central de Reserva del Perú

XLII Encuentro de Economistas del BCRP

October 21, 2024

Introduction

Motivation

There is a lack of studies for Peru (and other Latin American countries) that investigate fiscal multipliers incorporating monetary policy, potentially leading to biased results. Moreover, during the COVID-19 crisis, the reference rate dropped to its lowest historical value, allowing for the study of fiscal multipliers in a zero lower bound context.

Methodology

I employ a time-varying parameter vector autoregressive model with stochastic volatility (TVP-VAR-SV) with specific constraints on parameter variation. This hybrid model, known as TVP-VAR-R1-SV, was proposed by Chan and Eisenstat (2018).

Results

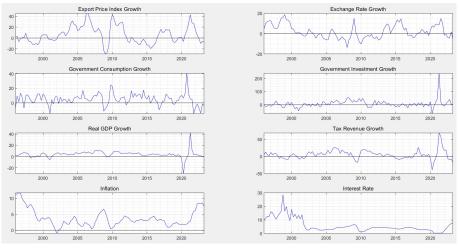
Monetary policy negatively impacts fiscal multipliers, while the government investment multiplier increases in a zero lower bound context.

- Belinga, V., and Lonkeng Ngouana, C. A. (2015). (Not) Dancing Together: Monetary Policy Stance and the Government Spending Multiplier.
- Christiano, L. J., Eichenbaum, M., & Rebelo, S. (2011). When Is the Government Spending Multiplier Large?
- Ilzetzki, E., Mendoza, E. G., & Végh, C. A. (2013). How Big (Small?) are Fiscal Multipliers?
- Meléndez Holguín, A., & Rodríguez, G. (2023). Evolution over Time of the Effects of Fiscal Shocks in the Peruvian Economy: Empirical Application Using TVP-VAR-SV Models.
- Vtyurina, S., and Leal, Z. (2016). Fiscal Multipliers and Institutions in Peru: Getting the Largest Bang for the Sol.
- Pyun, J. H., & Rhee, D. (2014). Fiscal Multipliers during the Global Financial Crisis: Fiscal and Monetary Interaction Matters.

Methodology

 Meléndez Holguín, A., & Rodríguez, G. (2023) and Pérez Rojo, F., & Rodríguez, G. (2023) find that the best model to study fiscal and monetary policy, respectively, is the TVP-VAR-R1-SV model:

$$B_{0,t}y_t = \mu + \sum_{i=1}^{p} B_i y_{t-i} + \epsilon_t, \ \epsilon_t \sim N(0, \Sigma_t), t = 1, 2..., T$$


- y_t is an n×1 vector of dependent variables; μ is an n×1 vector of intercepts.
- B_{0,t} is an n×n triangular inferior matrix containing the coefficients of contemporaneous effects, with diagonal elements equal to one.
- B_i is an n×n matrix containing the parameters of the lagged variables; ε_t is the heteroscedastic innovation.

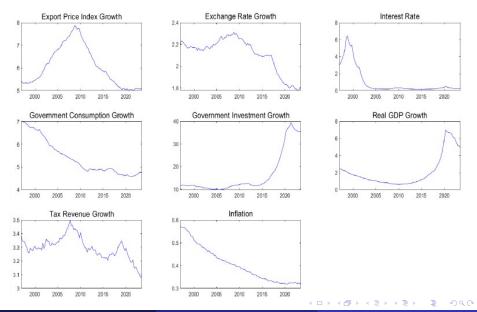
•
$$\Sigma_t = diag(exp(h_{1t}), exp(h_{2t}), ..., exp(h_{nt})).$$

 $h_t = h_{t-1} + \zeta_t, \quad \zeta_t \sim N(0, \Sigma_h)$

• Order: $y_t = (XPI_t, e_t, GC_t, GK_t, GDP_t, TR_t, \pi_t, i_t)$ '

Sample: 1996Q1-2023Q3

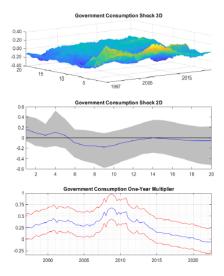
Source: Central Reserve Bank of Peru


Alexander Meléndez Holguín (BCRP)

XLII Encuentro de Economistas del BCRP

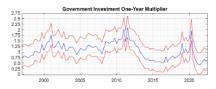
э

5/12


Stochastic Volatility in each Equation

Alexander Meléndez Holguín (BCRP)

XLII Encuentro de Economistas del BCRP


Impulse Response Functions and Fiscal Multipliers

1.00 0.50 0.00 -0.50 20 15 2015 10 2005 1997

Government Investment Shock 3D

Government Investment Shock 2D 1.6 1.2 0.8 0.4 0 -0.4 -0.8

Alexander Meléndez Holguín (BCRP)

October 21, 2024

Comparison of One Year Fiscal Multipliers

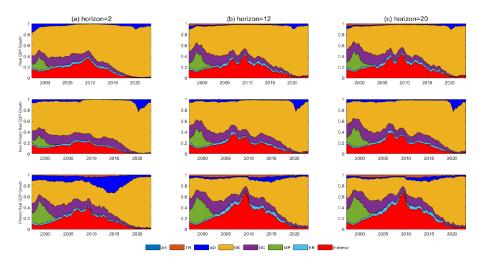
Source	$\operatorname{Cicle}/\operatorname{Model}$	GC Multiplier GK Multiplier	
BBVA Research (2014)	Lineal	0.30	1.50
MEF (2015)	Expansion	0.82	1.74
	Recession	0.95	1.69
BCRP (2012-2015)	Expansion	0.28	0.73
	Recession	0.93	1.42
Vtyurina and Leal (2016)	Expansion	0.05	0.40
	Recession	0.10	0.60
Consejo Fiscal (2018)	Lineal	0.96	1.08
Jiménez et al. (2023)	Time-varying	0.44	0.89
Meléndez Holguín and Rodríguez (2023)) Time-varying	0.34	0.44
Meléndez Holguín (2024)	TVP-VAR-R1-SV	0.28	1.06

Table 1. Comparison of One Year Fiscal Multipliers

 Incorporating monetary policy into the model allows for the capture of market expectations and policy credibility. A predictable and credible monetary policy can strengthen the effectiveness of fiscal policy.

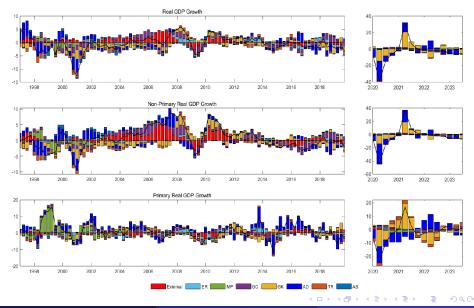
Determinants of the GC and GK Multipliers

Table 2. Determinants of the Variation of Fiscal Multipliers						
	1999Q2-2022Q4		2003Q4-2022Q4			
VARIABLES	GC Multiplier	GK Multiplier	GC Multiplier	GK Multiplier		
Interest rate (-1)	-0.0035	-0.0108	-0.0243***	-0.0617**		
	(0.0024)	(0.0101)	(0.0080)	(0.0304)		
Debt/GDP (-1)	-0.0084***	-0.0091**	-0.0116***	-0.0160***		
	(0.0010)	(0.0041)	(0.0013)	(0.0050)		
Trade openness (-1)	0.0080***	0.0152***	0.0116***	0.0246***		
	(0.0013)	(0.0052)	(0.0018)	(0.0069)		
ZLB	0.0772^{*}	0.5212***	0.0711	0.5699***		
	(0.0437)	(0.1809)	(0.0505)	(0.1921)		
Constant	0.6884***	1.4498***	0.7242***	1.4251***		
	(0.0836)	(0.3454)	(0.1022)	(0.3884)		
Trend	-0.0091***	-0.0138***	-0.0098***	-0.0149***		
	(0.0004)	(0.0017)	(0.0005)	(0.0019)		
Observations	95	95	77	77		
R-squared	0.6709	0.4268	0.7371	0.4486		


Note: Robust standard errors are in parentheses.

***p < 0.01, **p < 0.05, *p < 0.1.

In 2003Q4 the BCRP started controlling the reference rate.


э

Other Results: Forecast Error Variance Decomposition

Non-Primary GDP: Electricity and water, Construction, Commerce, Services, Non-Primary Primary Manufacturing.
Primary Real GDP: Agriculture and Livestock, Fishing, Mining and fuel, Primary Manufacturing.

Other Results: Historical Decomposition

Alexander Meléndez Holguín (BCRP)

XLII Encuentro de Economistas del BCRP

October 21, 2024

- The analysis delineates a discernible negative impact of monetary policy on both GC and GK multipliers, particularly pronounced post the implementation of interest rate control by the BCRP.
- In a scenario approximating the ZLB notably during the COVID-19 crisis the GK multiplier is observed to increase substantially.
- The IRFs reveal that GK shocks exert a significant and positive impact on GDP. Additionally, the GC and GK shocks are substantial contributors to the FEVD of GDP, specially the latter.
- The GC multiplier peaked in 2008Q4, thereafter exhibiting a declining trend. The GK multiplier, on the other hand, exhibits greater volatility but reaches its zenith in 2011Q1 and 2011Q3, and again in 2020Q2.
- The incorporation of monetary policy considerations into the analysis significantly amplifies the GK multiplier.