Neural Architecture and Hyperparameter Optimization of Time Series Forecasting Models with Tree Parzen Estimators

Andrew Garcia, PhD; Marco Vega, PhD

@ XLII ENCUENTRO DE ECONOMISTAS DEL BANCO CENTRAL DE RESERVA DEL PERÚ October 21, 2024

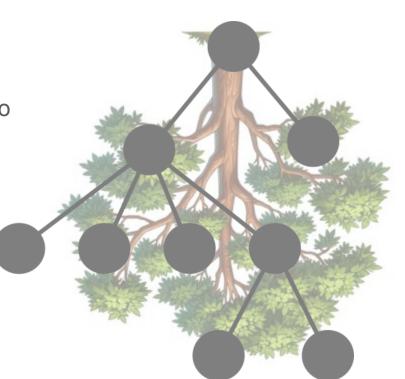
Trees in Computing

What is a Tree?

A Root: The starting point of the tree.

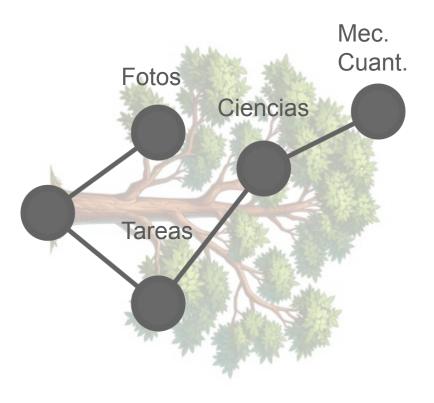
 Branches: Lines that connect the root to other points, like the branches of a real tree.

 Nodes: The points or "endpoints" connected by branches. They can connect to other nodes.

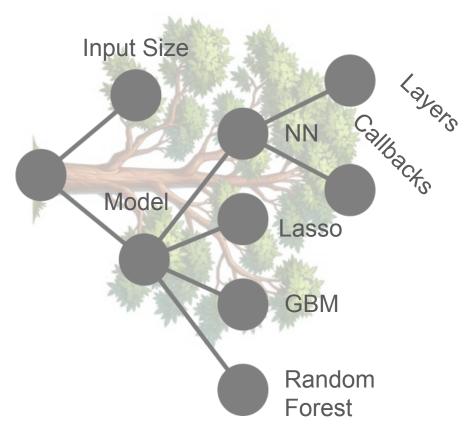


Trees in Computing Folder Structure





Trees in Computing Hyperparameter Search Space



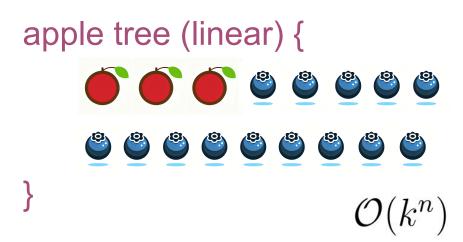
```
search space {
  input size: range(10,50)
  model: CHOOSE [
   { Random Forest (RF),
     RF depth: range(10,30)
     RF ests: range (10,1000)
   { Neural Network (NN),
     Layers: CHOOSE [
     { Layer A, ... }
     { Layer Z, ... }
```

Why Tree Structured? Hyperparameter Search Space

- Reduces the search space to meaningful models.
- Why look for berries in an apple tree?
 - The choice of a particular parameter can determine the relevance of another (dependency)

Why Tree Structured? Hyperparameter Search Space

- Reduces the search space to meaningful models.
- Why look for berries in an apple tree?
 - The choice of a particular parameter can determine the relevance of another (dependency)
- Less number of trials to reach an optimum



apple tree (tree) {

 $\mathcal{O}(k^d)$

k:= choices per parameter n:= number of parameters d:= depth of search tree

(1) ML Regression Models

Hyperparameter	Feature value search space	
Input Size	DiscreteRange (3, 108, 3)	
Model*	{Random Forest, Gradient Boosting, Lasso	
Rand	om Forest**	
Number of Estimators	DiscreteRange (10, 1000, 10)	
Max Depth	{None, 10, 20, 30, 40, 50}	
Min Samples Split	DiscreteRange (2, 20, 1)	
Min Samples Leaf	DiscreteRange (1, 10, 1)	
Max Features	{None, sqrt, log2}	
Bootstrap	{True, False}	
Gradie	nt Boosting**	
Number of Estimators	DiscreteRange (10, 1000, 10)	
Learning Rate	LogRange $(-5, 0)$	
Max Depth	{None, 3, 5, 7, 9}	
Min Samples Split	DiscreteRange (2, 10, 1)	
Min Samples Leaf	DiscreteRange (1, 5, 1)	
Subsample	Range (0.5, 1.0)	
I	Lasso**	
Alpha	LogRange (-7, 2)	

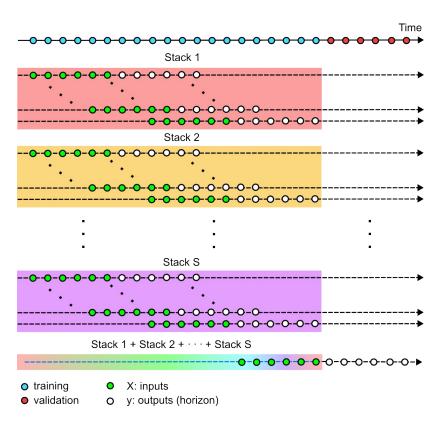
- Tree structured on the model type.
 - Each model is a separate node
 - If chosen, its
 hyperparameters
 may be chosen
 within the specified
 ranges
- Optimizes for the best ML regression model

Source: Forecasting inflation with a framework for model and neural architecture search with tree-structured search spaces (Garcia and Vega 2024)

(2) NeuralForecast Models

Hyperparameter	Feature value search space	
Input-to-Output Size Input Size (Input-to-Output Size)† Max Steps Model*	Range (1.0, 3.5) DiscreteRange (60, 210) DiscreteRange (50, 200, 10) {NHITS, NBEATS}	
	NBEATS**	
Number of Polynomials Number of Harmonics	{2, 3, 4} {1, 2}	

- Suite of NBEATS and NHITS models
- Using <u>neuralforecast</u> package.
 - Source code left untouched
 - Handles data processing internally through <u>BaseWindows</u>



Source: Forecasting inflation with a framework for model and neural architecture search with

tree-structured search spaces (Garcia and Vega 2024)

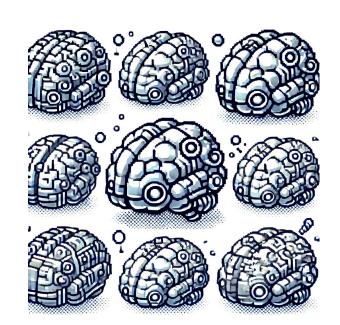
(3) Neural Architecture Search (NAS) Models

- Topology: Connectivity. What it takes to build a neural network
 - Layers
 - Network Components
- Functional: How a neural network should learn
 - Optimizers
 - Learning Rates
 - Callbacks

Hyperparameter	Detail	Feature value search space
	Global	
Random Seed for Initialization		DiscreteRange(1,100)
	Learning Rate	LogRange(-4, -2)
Adam Optimizer	β_1	Range(0.85, 0.95)
	β_2	Range(0.995, 0.999)
F. J. C	Patience	DiscreteRange(20, 100, 5)
EarlyStopping Callback	Restore Best Weights	True
	Factor	0.5
ReduceLROnPlateau Callback	Patience	DiscreteRange(5, 20, 5)
	Min LR	0.0001
	Network-Specific	
Batch Size		DiscreteRange(1,10)
Input Size		DiscreteRange(3,40)
Activation Function		{None, ReLU, LeakyReLU, Swish}
L2 Layer Weight Regularization*		{False, True}
Neural Network Topology*		$\{\tau_1, \tau_2, \tau_3, \tau_4, \tau_5\}$
Non-Local Blocks, Pre-MLP*		{False, True}
Non-Local Blocks, Post-MLP*		{False, True}
Time2Vec*		{False, True}
Scalers		{False, True}

Machine Learning (ML)

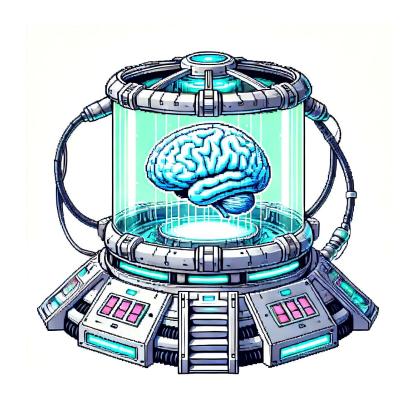
- Computers learn from data to make predictions or decisions
 - Use models based on
 - Mathematics
 - Statistics
- Typically, ML models are pre-determined by humans (should I use linear regression, or a neural network with 5 layers and ReLU functions?)



Automated Machine Learning (AutoML)

- A computer's build-your-own-ML feat.
- Here, we humans build the process to automate the selection and construction of the best ML model to solve the problem.

(should I include GBM and linear regression in the candidates to allow the computer to choose?)



TPE-Guided Hyperparameter Optimization Can be Generalized to a Bi-Level Optimization Problem

Let a model == a set of λ hyperparameters

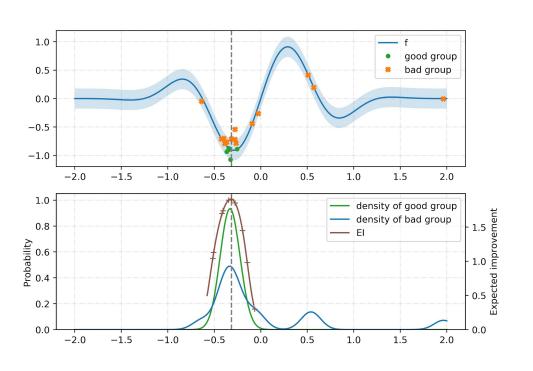
$$\hat{\lambda} = \arg\min_{\lambda} \mathcal{L}^{\text{val}}(\mathcal{D}; \hat{\theta}, \lambda)$$

Minimize the forecasting loss wrt all models

s.t.:
$$\hat{\theta} = \arg\min_{\theta} \mathcal{L}^{\text{train}}(\mathcal{D}; \theta, \lambda)$$

Train a ML model

The Method Tree-structured Parzen Estimators (TPE)



$$p(x|y) = \begin{cases} \ell(x) & \text{if } y < y^* \\ g(x) & \text{if } y \ge y^* \end{cases}$$

$$EI_{y^*}(x) = \int_{-\infty}^{y^*} (y^* - y)p(y|x)dy$$

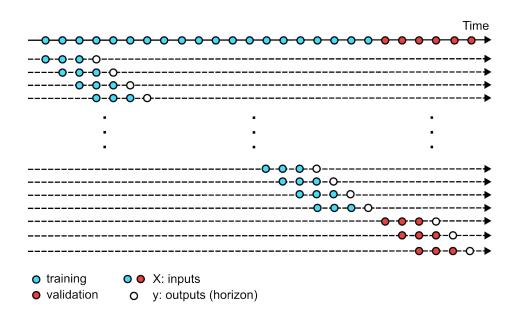
$$\propto \left(\gamma + \frac{g(x)}{\ell(x)}(1-\gamma)\right)^{-1}$$

Source: <u>Hyper-parameter optimization algorithms: a short review</u>

Forecasting Data Preparation for Model Training

$$\begin{split} \hat{\lambda} &= \arg\min_{\lambda} \mathcal{L}^{\text{val}}(\mathcal{D}; \hat{\theta}, \lambda) \\ \text{s.t.:} \quad \hat{\theta} &= \arg\min_{\lambda} \mathcal{L}^{\text{train}}(\mathcal{D}; \theta, \lambda) \end{split}$$

- Split the time series into a training and a validation set.
- Each set is then further split into X-y samples
 - X: autoregressive inputs
 - y: horizon output
- Model search optimized by validation set.



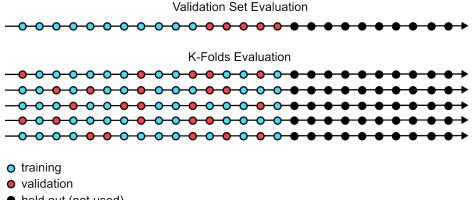
Source: Forecasting inflation with a framework for model and neural architecture search with tree-structured search spaces (Garcia and Vega 2024)

Forecasting Data Preparation for Model Training

$$\hat{\lambda} = \arg\min_{\lambda} \mathcal{L}^{val}(\mathcal{D}; \hat{\theta}, \lambda)$$

s.t.: $\hat{\theta} = \arg\min_{\theta} \mathcal{L}^{train}(\mathcal{D}; \theta, \lambda)$

- Is there a better manifestation. of validation for ML forecasting?
- Aside from the former strategy, we also consider K-Fold sets for validation.

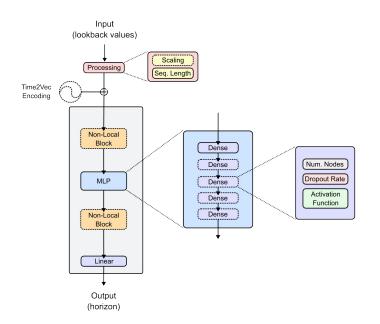


- held out (not used)

The Models

- Three model collections are evaluated in isolation between each other through this methodology
 - ML Regression Model Collection
 - Model Selection
 - NeuralForecast Model Collection
 - Model Selection
 - Neural Network Topology and Functional Hyperparameters
 - Neural Architecture Search (NAS)

Neural Network Topology and Functional Hyperparameters (NAS) - Let's Go Deeper



Detail	Feature value search space	
M	LP Layer Features	
Activation Function	{None, ReLU, LeakyReLU, Swish}	
L2 Layer Weight Regularization*	{False, True}	
L2 Strength**	LogRange(-5, -1)	
Neural Network Topology*	$\{ au_1, au_2, au_3, au_4, au_5\}$	
For each Layer $i \in \{1, \dots$	$\{i,j\}$, for each τ_i Neural Network Topology	
Number of Nodes in Layer i^{**}	DiscreteRange(1, 50)	
N	Ion-Local Blocks	
Non-Local Blocks, Pre-MLP*	{False, True}	
Compression Rate**	Range(0, 1)	
Non-Local Blocks, Post-MLP*	{False, True}	
Compression Rate**	Range(0, 1)	
Tin	ne2Vec (t2v) Layer	
Time2Vec Layer*	{False, True}	
Number of Trend Terms**	1	
Number of Periodic Terms**	DiscreteRange(4, 100, 2)	

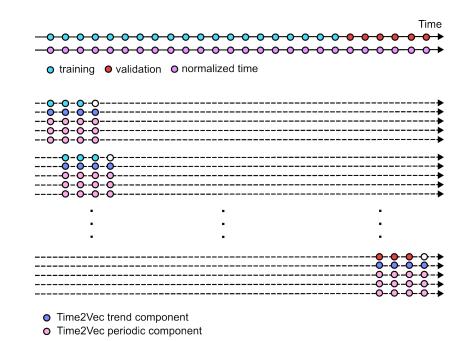
Source: Forecasting inflation with a framework for model and neural architecture search with tree-structured search spaces (Garcia and Vega 2024)

^{*} Hyperparameters with an asterisk have additional hyperparameters.
*** Hyperparameters or sets with double asterisks are the children of said hyperparameters or children sets thereof.

Time2Vec

$$\mathbf{t2v}(au)[i] = egin{cases} \omega_i au + \phi_i, & ext{if} & i = 0. \ \mathcal{F}(\omega_i au + \phi_i), & ext{if} & 1 \leq i \leq k. \end{cases}$$

- When Time2Vec is selected, the time series is tagged with a normalized time vector prior to any splitting.
 - A record of the relative location of each sample
- As it passes through the network, normalized time vector is encoded into Time2Vec components with weights to be learned by the NN.



Results

Forecasting Performance

- For all trainings, the validation window ends in January 2019
- Two POOS testing windows are reserved
 - Jan 2019 to Dec 2023 (60 months)
 - Jan 2022 to Dec 2023(24 months)

ML Methods	Total CPI Annual Var	Out-of-San	Out-of-Sample RMSE	
	Dec-23	Jan-22 to	Jan-19 to	
	Bee 25	Dec-23	Dec-23	
Single Ta	sk (Univariate) Mod	lels - Π_t		
NeuralForecast, Validation Vector	2.857	0.393	0.393	
ML Regressor, Validation Set	3.126	0.442	0.401	
ML Regressor, K-fold	3.045	0.423	0.391	
NAS-UV, Validation Set	3.093	0.457	0.418	
NAS-UV, K-fold	3.128	0.420	0.382	
NAS-UV (shuffled), Validation Set	3.167	0.497	0.425	
NAS-UV (shuffled), K-fold	2.951	0.545	0.413	
Dual Task (Compo	onent-Based) Model	s - Π_t^{sae} and Π_t^{ae}		
NeuralForecast, Validation Vector	2.921	0.374	0.369	
ML Regressors, Validation Set	2.807	0.478	0.414	
ML Regressors, K-fold	2.964	0.478	0.397	
NAS-CB, Validation Set	3.055	0.409	0.370	
NAS-CB, K-fold	3.061	0.454	0.380	
NAS-CB (shuffled), Validation Set	3.060	0.406	0.358	
NAS-CB (shuffled), K-fold	3.038	0.428	0.379	
Expe	cted Value (Benchm	ark)		
Ground-Truth	3.237	E	-	
AR(2)	3.405	0.483	0.450	
AR(1)	3.638	0.559	0.470	
Random Walk	3.638	0.559	0.463	

NAS = "neural architecture search", UV = "univariate model", CB = "component-based model".

Forecasting Performance

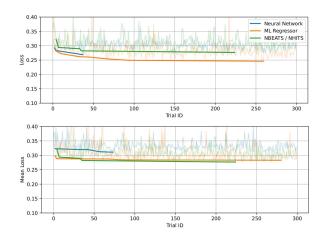
- NeuralForecast models overall the best performing.
- For univariate (single task) case
 - Models optimized through K-fold validation better than standard.
- For component-based (dual task)
 case
 - NAS outperforms ML regressors
 - Standard validation > K-fold

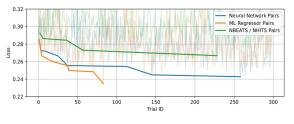
ML Methods	Total CPI	Out-of-Sample RMSE	
	Annual Var Dec-23	Jan-22 to Dec-23	Jan-19 to Dec-23
Single Ta	sk (Univariate) Mod	lels - Π_t	
NeuralForecast, Validation Vector	2.857	0.393	0.393
ML Regressor, Validation Set	3.126	0.442	0.401
ML Regressor, K-fold	3.045	0.423	0.391
NAS-UV, Validation Set	3.093	0.457	0.418
NAS-UV, K-fold	3.128	0.420	0.382
NAS-UV (shuffled), Validation Set	3.167	0.497	0.425
NAS-UV (shuffled), K-fold	2.951	0.545	0.413
Dual Task (Compo	onent-Based) Model	s - Π_t^{sae} and Π_t^{ae}	
NeuralForecast, Validation Vector	2.921	0.374	0.369
ML Regressors, Validation Set	2.807	0.478	0.414
ML Regressors, K-fold	2.964	0.478	0.397
NAS-CB, Validation Set	3.055	0.409	0.370
NAS-CB, K-fold	3.061	0.454	0.380
NAS-CB (shuffled), Validation Set	3.060	0.406	0.358
NAS-CB (shuffled), K-fold	3.038	0.428	0.379
Exped	cted Value (Benchm	ark)	
Ground-Truth	3.237	Ξ.	-
AR(2)	3.405	0.483	0.450
AR(1)	3.638	0.559	0.470
Random Walk	3.638	0.559	0.463

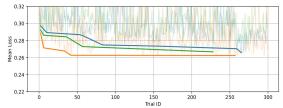
NAS = "neural architecture search", UV = "univariate model", CB = "component-based model".

Shapley Values Study with **SHAP**

- We have accumulated large amounts of models
 - 1,800 models for NAS
 - 1,800 models for ML
 - 900 models for NBEATS / NHITS
- Use their hyperparameter sets and corresponding forecasting errors for a Shapley values study.







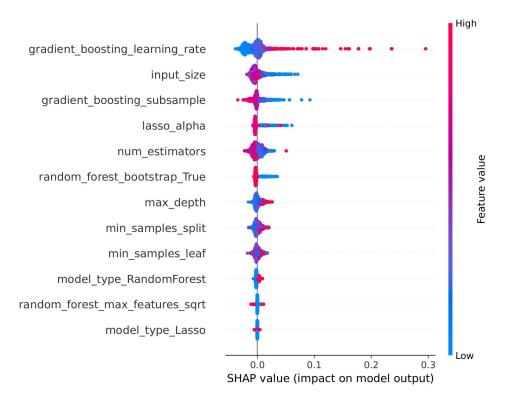
SHAP Study - ML Regressors

- ML Regressors dominate in performance for the univariate case.
- GBM models dominate as best over the other options.

B.3 MODELS OPTIMIZED WITH TESTING SET EVALUATION

Table 8: Univariate Machine Learning Regressor

Hyperparameter	Feature value
Input Size	57
Model Type	Gradient Boosting
Max Depth	9
Number of Estimators	790
Minimum Samples Split	10
Minimum Samples Leaf	5
Learning Rate	0.02165
Subsample	0.97788
Performance	
$\mathcal{L}^{val}(\mathcal{D};\Theta,\Lambda)$	0.24601

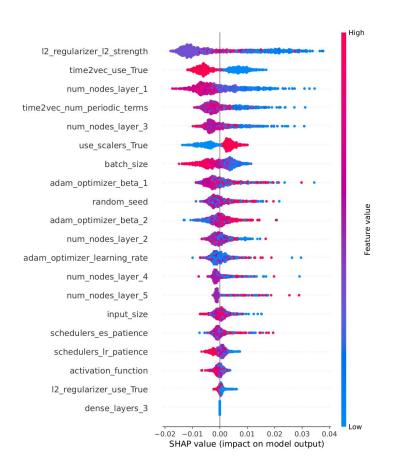


SHAP Study - NAS

- Best NAS model to forecast inflation is a component-based model.
- Both SAE and AE components have Time2Vec operations.
 - SAE modeled by a NN
 - AE by a non-NN model

Table 11: Component-Based Neural Architecture Search (NAS-CB) model

Hyperparameter	Feature value		
	SAE Model	AE Model	
Adam Learning Rate	0.0	0291	
Adam β_1	0.87802		
Adam β_2	0.99731		
ES Patience	55		
LR Patience	10		
Input Size	18		
Batch Size	5	10	
Number of Dense Layers	3	3	
Number of Layer Nodes	[36,13,16]	[29,12,25]	
Activation Function	ReLU	Linear (None)	
Pre-MLP NLB Compression L_{pool}	9	-	
Scalers, Use	False	False	
Number of Periodic Terms (Time2Vec)	48	40	
Performance			
$\mathcal{L}^{val}(\mathcal{D}; \Theta, \Lambda)$	0.2	4272	
$\mathcal{L}^{val,sae}(\mathcal{D}^{(1)};\Theta^{(1)},\Lambda^{(1)})$	0.1	3550	
$\mathcal{L}^{val,ae}(\mathcal{D}^{(2)}; \Theta^{(2)}, \Lambda^{(2)})$	0.5	0156	

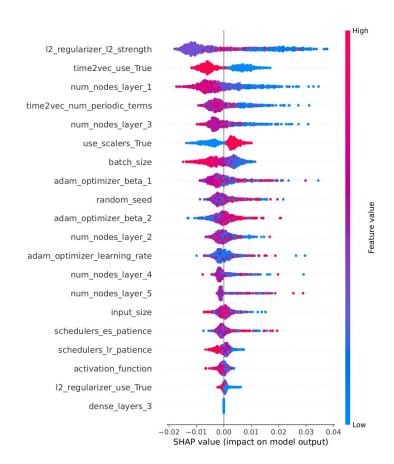


SHAP Study - NAS

- The presence of Time2Vec in neural networks reduces the forecasting loss for the given inflation data.
 - More periodic terms modeled by sin cos functions are preferred

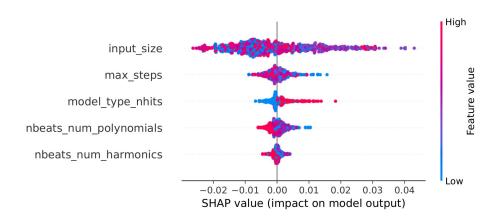
Table 11: Component-Based Neural Architecture Search (NAS-CB) model

Hyperparameter	Feature value		
	SAE Model	AE Model	
Adam Learning Rate	0.00291		
Adam β_1	0.87802		
Adam β_2	0.99731		
ES Patience	55		
LR Patience	10		
Input Size	18		
Batch Size	5	10	
Number of Dense Layers	3	3	
Number of Layer Nodes	[36,13,16]	[29,12,25]	
Activation Function	ReLU	Linear (None)	
Pre-MLP NLB Compression L_{pool}	9	-	
Scalers, Use	False	False	
Number of Periodic Terms (Time2Vec)	48	40	
Performance			
$\mathcal{L}^{val}(\mathcal{D}; \Theta, \Lambda)$	0.24272		
$\mathcal{L}^{val,sae}(\mathcal{D}^{(1)}; \Theta^{(1)}, \Lambda^{(1)})$	0.13550		
$\mathcal{L}^{val,ae}(\mathcal{D}^{(2)}; \Theta^{(2)}, \Lambda^{(2)})$	0.50156		



SHAP Study - NeuralForecast

- Input size affects forecasting loss, but in terms of direction it is a mixed bag.
- More training steps typically results in better forecasting.
- NBEATS models are favored over NHITS
- For NBEATS the following typically yield better forecasting
 - More polynomial vectors
 - More harmonic [periodic] vectors



Conclusions

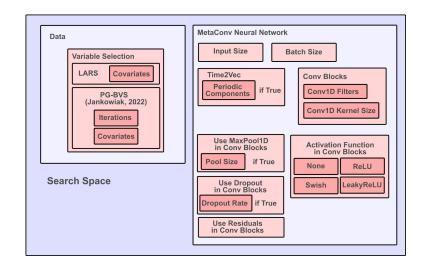
Conclusions

- 1. In neural networks, **preserving sequential memory** of input samples in time series through mechanisms like **Time2Vec** significantly improves forecast accuracy
- 2. NBEATS and NHITS models, have **built-in sequential analysis mechanisms**, and are consequently the best performing
- 3. Best practices
 - K-fold cross-validation for hyperparameter optimization in parsimonious univariate models
 - Standard validation for component-based models

Future Work Multivariate AutoML

- Use automated variable selection methods for macroeconomic variables to forecast inflation
- Apply the usage of CNN architectures in AutoML
 - Believed to be better suited for making inferences on multivariate data

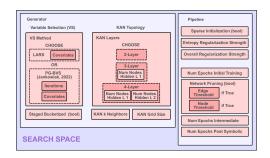
Convolutional Neural Networks (CNN)

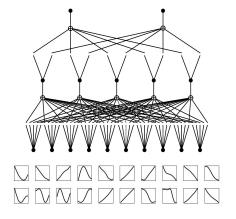


Future Work

NAS and Pipeline Optimization (AutoML) for Symbolic Representation of Inflation with Kolmogorov-Arnold Networks (KANs)

- Reverse-engineering the <u>pykan</u> repo to develop useful features to analyze inflation at a more granular level:
 - Selective input locking and
 - Input bypass
- New symbolic representations of headline inflation from macroeconomic variables and lags thereof with <u>KANs</u>





Gracias