Banks, Dollar Liquidity, and Exchange Rates

by Bianchi (MPLS FED) Bigio (UCLA) Engel (UW) on October 23, 2020

Intro

UIP Deviation

UIP Deviation

* Why relevant?

 $* \ \mathcal{L} > 0$ and increases in global recession

UIP Deviation

* Why relevant?

- $* \ \mathcal{L} > 0$ and increases in global recession
- * \mathcal{L} varies with MP | Fama FX puzzle
 - * Alvarez-Atkeson-Kehoe

UIP Deviation

* Why relevant?

- $* \ \mathcal{L} > 0$ and increases in global recession
- * \mathcal{L} varies with MP | Fama FX puzzle
 - * Alvarez-Atkeson-Kehoe
- * FX disconnect
 - * Gabaix-Maggiori | Itshoki-Muhkin

UIP Deviation

* Why relevant?

- $* \ \mathcal{L} > 0$ and increases in global recession
- * \mathcal{L} varies with MP | Fama FX puzzle
 - * Alvarez-Atkeson-Kehoe
- * FX disconnect
 - * Gabaix-Maggiori | Itshoki-Muhkin
- * ...but what's behind \mathcal{L} ?

> Contribution

* Literature: risk premium

- * habits: Verdelhan 2010
- * long-run risk: Colacito & Croce 2013
- * tail risk: Farhi & Gabaix 2016
- * information+behavioral: Bacchetta & van Wincoop '06 | Gourinchas & Tornell '04

> Contribution

* Literature: risk premium

- * habits: Verdelhan 2010
- * long-run risk: Colacito & Croce 2013
- * tail risk: Farhi & Gabaix 2016
- * information+behavioral: Bacchetta & van Wincoop '06 | Gourinchas & Tornell '04

* Literature: financial frictions

- \ast segmented markets: Alavarez, Atkeson, Kehoe 2009 | Itskhoki & Mukhin 2019
- * limited capital: Gabaix & Maggiori 2015 | Amador-Bianchi-Bocola-Perri 2019

> Contribution

Literature: risk premium

- * habits: Verdelhan 2010
- * long-run risk: Colacito & Croce 2013
- * tail risk: Farhi & Gabaix 2016
- $\ast~$ information+behavioral: Bacchetta & van Wincoop '06 | Gourinchas & Tornell '04

* Literature: financial frictions

- \ast segmented markets: Alavarez, Atkeson, Kehoe 2009 | Itskhoki & Mukhin 2019
- * limited capital: Gabaix & Maggiori 2015 | Amador-Bianchi-Bocola-Perri 2019

* Paper: settlement frictions

- * \$ deposits are international medium of exchange
- * settlements frictions
- * \$ reserve assets ease settlement friction
- \ast "scramble for dollars" rather than "flight to safety"

> Main Feature | UIP and FX

Deviations from UIP

$$\mathcal{L}\underbrace{(\boldsymbol{\mu}, \boldsymbol{\mu}^{*}, \Theta)}_{\$ \text{ LP}} = \mathbb{E}\left[\frac{1+i^{m}}{1+\pi}\right] - \mathbb{E}\left[\frac{1+i^{*,m}}{1+\pi} \cdot \frac{e^{i}}{e}\right]$$

- $\mu = \in$ reserve asset $/ \in$ deposit ratio
- μ^* = \$ reserve asset/ \$ deposit ratio
- Θ = transactions, technology, policy shocks

* \mathcal{L} : encodes frictions

> Talk

\star Evidence

- * financial sector μ correlates w/ e
- * dispersion in interbank rates correlate w/ e

> Talk

\star Evidence

- * financial sector μ correlates w/ e
- * dispersion in interbank rates correlate w/ e

★ Theory:

- * principle: interbank market unsecured
- $* \hspace{0.1in} {\rm frictions} \Rrightarrow {\rm deviations} \hspace{0.1in} {\rm UIP}$
- * FX determination

> Talk

\star Evidence

- * financial sector μ correlates w/ e
- * dispersion in interbank rates correlate w/ e

★ Theory:

- * principle: interbank market unsecured
- $* \hspace{0.1in} {\rm frictions} \Rrightarrow {\rm deviations} \hspace{0.1in} {\rm UIP}$
- * FX determination

★ Fit regressions with shocks to:

- * payment (volatility)
- * US interest rate shocks

Empirical Evidence

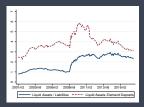
> Empirical Result: \mathcal{L} and Fed Funds dispersion

- * Exchange rates
 - * G10 currencies, 2001:m1- 2018:m1
- * Regression:
 - * Δe vs. interest differential
 - * + bank liquid-asset/short-term fund ratio:

```
Liquid Assets \equiv Reserves + US Treasury
```

and

Short-Term Fund \equiv Demand Desposits + Fin. Commercial Paper



\$ Liquidity Ratio

> Empirical Result: \mathcal{L} and Liquidity Ratio

* Baseline regression

 $\Delta \boldsymbol{e}_t = \alpha + \beta_1 \Delta \left(\boldsymbol{\mu}_t^* \right) + \beta_2 (\boldsymbol{\pi}_t - \boldsymbol{\pi}_t^*) + \beta_3 \boldsymbol{\mu}_{t-1} + \boldsymbol{\epsilon}_t$

where

$$\mu \equiv \frac{\text{liquid assets}}{\text{short-term funds}}$$

BASELINE REGRESSION

	EU	AU	CA	YL	NZ	NK	SK	SW	UK
$\Delta\left(\mu_{t}\right)$	0.23***	0.24***	0.13***		0.30***	0.19***	0.21***	0.15***	0.17***
$\pi_t - \pi_t^*$	-0.54***	-0.42**	-0.41*	0.01	-0.71***	-0.11	-0.49**	-0.67***	-0.39**
μ_{t-1}	0.01**	0.01	0.01	0.00	0.01	0.01*	0.01	0.01	0.01*
cons	-0.01***	-0.00	-0.01*	-0.00	-0.01**	-0.01*	-0.01**	-0.02***	-0.01
N	234	232	234	234	232	234	234	234	234
adj. R^2	0.11	0.05	0.03	0.03	0.10	0.03	0.05	0.04	0.04

t statistics in parentheses.

* p < 0.1, ** p < 0.05, *** p < 0.01

> Empirical Result: \mathcal{L} and Settlement Frictions

* Evidence of settlement frictions

 $\Delta \boldsymbol{e}_{t} = \alpha + \beta_{1} \Delta \left(\sigma_{t} \right) + \beta_{2} \left(\pi_{t} - \pi_{t}^{*} \right) + \epsilon_{t}$

where

 $\sigma_t \equiv \mathsf{US} \ \mathsf{LIBOR} \mid \mathsf{Average} \ \mathsf{Monthly} \ \mathsf{Bid}\operatorname{\mathsf{-Ask}} \ \mathsf{Spread}$

BASELINE REGRESSION

	EU	AU	CA	YL	NZ	NK	SK	SW	UK
$\Delta\left(\sigma_{t}\right)$	0.02**	0.06***	0.03***	-0.03***	0.04***	0.04***	0.04***	0.01***	0.03***
$\pi_t - \pi_t^*$	-0.38***	-0.11**	-0.12*	0.02	-0.38***	-0.05	-0.47**	-0.542***	-0.13**
cons	-0.01***	-0.00	-0.01*	-0.00	-0.01**	-0.01***	-0.01**	-0.02***	-0.01**
N	226	226	226	226	226	226	226	226	226

t statistics in parentheses.

* p < 0.1, ** p < 0.05, *** p < 0.01

> Remarks

* Additional Regressions:

- * add VIX index | effect still there
- \ast adding rates to regression
- * Liquidity Ratio
 - $\ast~$ endogenous as result from demand|supply
 - \ast ...but correlated with e
 - * model: changes payments risk drive correlation

* Regressions

* quantity variable: not return vs. return

Dynamic Two-Currency World

> Features

- * Open-economy model related to Bianchi-Bigio (2020) closed economy
 - * stochastic GE, infinite horizon, discrete time
 - * 2-country: Euro | US foreign

> Features

- * Open-economy model related to Bianchi-Bigio (2020) closed economy
 - * stochastic GE, infinite horizon, discrete time
 - * 2-country: Euro | US foreign
- * Action: "global banks"
 - * assets: b real loans | m reserves in \$ and \in
 - * liabilities: d liabilities in \$ and \in
 - * payment shocks settlement friction

> Features

- * Open-economy model related to Bianchi-Bigio (2020) closed economy
 - * stochastic GE, infinite horizon, discrete time
 - * 2-country: Euro | US foreign
- * Action: "global banks"
 - * assets: b real loans | m reserves in \$ and \in
 - * liabilities: d liabilities in \$ and \in
 - * payment shocks | settlement friction
- * Preferences & Tech
 - * Microfoundation by design: static loan demand and deposit supply
 - * firms: working capital loans
 - * consume | work | CIA in two currencies | risk neutral
- Kentral bank
 - * set policy rates | reserve supply | transfers
- * Aggregate shocks
 - * payment volatility
 - * policy

> Environment

- * Time: t, discrete, infinite horizon
- * X_t vector of aggregate shocks

> Environment

- * Time: t, discrete, infinite horizon
- $* X_t$ vector of aggregate shocks
- * P_t denominated in €, P^{*}_t denominated in \$
 * dollar denominated
- * One good (LOP)

$$P_t = P_t^* e_t$$

* Real Expected Returns:

$$R^{\mathsf{x}} = \mathbb{E}\left[\frac{1+i^{\mathsf{x}}}{1+\pi}\right], \ R^{\mathsf{*},\mathsf{x}} = \mathbb{E}\left[\frac{1+i^{\mathsf{*},\mathsf{x}}}{1+\pi^{\mathsf{*}}}\right]$$

* Bank maximizes:

$$\mathbf{v}(\mathbf{n}, \mathbf{X}) = \max_{\{\tilde{\mathbf{b}}, \tilde{m}^*, \tilde{d}^*, \tilde{d}, \tilde{m}\} \ge 0} Di\mathbf{v} + \beta \mathbb{E}\left[\mathbf{v}\left(\mathbf{n}', \mathbf{X}'\right) | \mathbf{X}\right]$$

w/ budget

$$Div+b+m^*+m=n+d+d^*$$

* Bank maximizes:

$$\mathbf{v}(\mathbf{n}, \mathbf{X}) = \max_{\{\tilde{b}, \tilde{m}^*, \tilde{d}^*, \tilde{d}, \tilde{m}\} \ge 0} Di\mathbf{v} + \beta \mathbb{E}\left[\mathbf{v}\left(\mathbf{n}', \mathbf{X}'\right) | \mathbf{X}\right]$$

w/ budget

$$Div+b+m^*+m=n+d+d^*$$

* No equity frictions so:

v(n, X) = n.

* Bank maximizes:

$$n = \max_{\{\tilde{b}, \tilde{m}^*, \tilde{d}^*, \tilde{d}, \tilde{m}\} \ge 0} Div + \beta \mathbb{E}\left[n' | X\right]$$

w/ budget

$$Div+b+m^*+m=n+d+d^*$$

* Bank maximizes:

$$n = \max_{\{\tilde{b}, \tilde{m}^*, \tilde{d}^*, \tilde{d}, \tilde{m}\} \ge 0} Div + \beta \mathbb{E}\left[n' | X\right]$$

w/ budget

$$Div+b+m^*+m=n+d+d^*$$

* Expected net-worth:

$$\mathbb{E}\left[n'|X\right] = \underbrace{R^{b}b + R^{m}m + R^{m,*}m^{*} - R^{d}d - R^{*,d}d^{*}}_{(m,m)}$$

Expected Portfolio Returns

* Bank maximizes:

$$n = \max_{\{\tilde{b}, \tilde{m}^*, \tilde{d}^*, \tilde{d}, \tilde{m}\} \ge 0} Div + \beta \mathbb{E}\left[n' | X\right]$$

w/ budget

$$Div+b+m^*+m=n+d+d^*$$

* Expected net-worth:

$$\mathbb{E}\left[n'|X\right] = \underbrace{\mathbb{R}^{b}b + \mathbb{R}^{m}m + \mathbb{R}^{m,*}m^{*} - \mathbb{R}^{d}d - \mathbb{R}^{*,d}d^{*}}_{=}$$

Expected Portfolio Returns

* Without frictions

$$\frac{1}{\beta} = \mathsf{R}^{\mathsf{b}} = \mathsf{R}^{\mathsf{m}} = \mathsf{R}^{\mathsf{m},*} = \mathsf{R}^{\mathsf{d}} = \mathsf{R}^{*,\mathsf{d}}$$

and

 $\mathcal{L} = 0$

> Bank's Problem w/ Settlement Frictions

* Net-worth

$$\mathbb{E}\left[n'|X\right] = \underbrace{R^{b}b + R^{m}m + R^{m,*}m^{*} - R^{d}d - R^{*,d}d^{*}}_{\mathbf{V}}$$

Expected Portfolio Returns

$$+\underbrace{\mathbb{E}\left[\chi^*(s^*|\theta^*)\right] + \mathbb{E}\left[\chi(s|\theta)\right]}_{}$$

Expected Settlement Costs

> Bank's Problem w/ Settlement Frictions

* Net-worth

$$\mathbb{E}\left[n'|X\right] = \underbrace{R^{b}b + R^{m}m + R^{m,*}m^{*} - R^{d}d - R^{*,d}d^{*}}_{\text{Four examples}}$$

Expected Portfolio Returns

+
$$\underbrace{\mathbb{E}\left[\chi^*(s^*|\theta^*)\right]}_{\text{Eurosted Settlement Costs}} + \underbrace{\mathbb{E}\left[\chi(s|\theta)\right]}_{\text{Eurosted Settlement Costs}}$$

Background: *b* is illiquid | *d* circulates | *m* settles

* Settlement balance:

$$s = \begin{cases} m + \delta d \text{ pr. } 1/2 \\ m - \delta d \text{ pr. } 1/2 \end{cases} \text{ and } s^* = \begin{cases} m + \delta d \text{ pr. } 1/2 \\ m - \delta d \text{ pr. } 1/2 \end{cases}$$

 $* \ \chi$ capture settlement costs

> Bank's Problem

* Replace *b* from budget constraint:

 $\mathbb{E}\left[n'|X\right] = R^{b}(n - Div) + \underbrace{\left(R^{b} - R^{d}\right)d - \left(R^{b} - R^{m}\right)m + \mathbb{E}\left[\chi(s|\theta)\right]}_{\in \text{ return}} + \underbrace{\left(R^{b} - R^{*,d}\right)d^{*} - \left(R^{b} - R^{*,m}\right)m^{*} + \mathbb{E}\left[\chi(s^{*}|\theta)\right]}_{\text{$$ return}}$

> Portfolio w/ Settlement Frictions

Portfolio Separation

- * Indeterminate Div
- * $R^b = 1/\beta$ = Return on Equity
- * Portfolio: $\{m, d\}$ and $\{m^*, d^*\}$ solved separately

> Portfolio w/ Settlement Frictions

* Bank Objective

$$\Pi = \max_{\{m,d\}} \underbrace{\left(\frac{R^b - R^d}{Arbitrage} \cdot d - \underbrace{\left(\frac{R^b - R^m}{Liq. Insurance} \cdot m + \underbrace{\mathbb{E}\left[\chi(s) | \theta \right]}_{\text{Settlement}} \right)}_{\text{Cost}}$$

* Settlement balance:

$$s = \begin{cases} m + \delta d \text{ pr. } 1/2 \\ m - \delta d \text{ pr. } 1/2 \end{cases}$$

* χ average settlement cost * source of curvature

> Microfoundation - Intermediation Cost

- * Bianchi and Bigio (17): OTC Fed Funds
 - * Alfonso and Lagos ('15) + Atkeson et al. ('15)
 - * Dynamic search for reserves:

$$\theta \equiv \frac{S^-}{S^+} = \underbrace{-\frac{\delta - \mu}{\delta + \mu}}_{\text{Tightness}}$$

> Microfoundation - Intermediation Cost

- * Bianchi and Bigio (17): OTC Fed Funds
 - * Alfonso and Lagos ('15) + Atkeson et al. ('15)
 - * Dynamic search for reserves:

$$\theta \equiv \frac{S^-}{S^+} = \underbrace{-\frac{\delta - \mu}{\delta + \mu}}_{\text{Tightness}}$$

Matching:

- * borrow: probability $\psi^{-}(\theta)$, else discount window
- * lend: prob $\psi^+(\theta)$, else nothing

> Microfoundation - Intermediation Cost

- * Bianchi and Bigio (17): OTC Fed Funds
 - * Alfonso and Lagos ('15) + Atkeson et al. ('15)
 - * Dynamic search for reserves:

$$\theta \equiv \frac{S^{-}}{S^{+}} = \underbrace{-\frac{\delta - \mu}{\delta + \mu}}_{\text{Tightness}}$$

Matching:

- * borrow: probability $\psi^{-}(\theta)$, else discount window
- * lend: prob $\psi^+(\theta)$, else nothing

* Clearing:

$$\psi^{-}(\theta) \cdot S^{-} = \psi^{+}(\theta) \cdot S^{+}$$

> Microfoundation - Intermediation Cost

Liquidity Yields

Penalty

average liquidity yields:

$$\chi^+\equiv\psi^+(ar{
m extsf{R}}-
m extsf{R}^m)$$
 and $\chi^-\equiv\psi^-(ar{
m extsf{R}}-
m extsf{R}^m)+\Delta {
m R}ig(1-\psi^-)$

and

 $R \equiv$ endogenous interbank rate = $f(\theta)$.

* Function χ

$$\chi(\mathbf{s}) = \begin{cases} \chi^- \cdot \mathbf{s} & \text{if } \mathbf{s} \le 0\\\\ \chi^+ \cdot \mathbf{s} & \text{if } \mathbf{s} > 0 \end{cases}$$

> Portfolio w/ Settlement Frictions

* Simplified Objective

$$\Pi = \max_{\{m,d\}} \underbrace{\left(\begin{array}{c} R^{b} - R^{d} \\ \end{array}\right) \cdot d}_{\text{Arbitrage}} - \underbrace{\left(\begin{array}{c} R^{b} - R^{m} \\ \end{array}\right) \cdot m}_{\text{Liq. Insurance}} + \underbrace{\mathbb{E}\left[\chi(m,d) | \theta \right]}_{\text{Settlement}}$$

$$\chi(\mathbf{m}, \mathbf{d}) = \begin{cases} \chi^{-} \cdot (\mathbf{m} - \delta \mathbf{d}) & \text{pr. } 1/2 \\ \\ \chi^{+} \cdot (\mathbf{m} + \delta \mathbf{d}) & \text{pr. } 1/2 \end{cases}$$

> Yields Equilibrium Rates

Liquidity Premia

For reserves

reserve-LI

For liabilities

$$\mathcal{R}^{b} = \mathcal{R}^{d} + rac{\delta}{2} \underbrace{\left(\chi^{-} - \chi^{+}
ight)}_{ ext{dense}}$$

> Yields Equilibrium Rates

Liquidity Premia

For reserves

reserve-LF

For liabilities

$$\mathcal{R}^{b} = \mathcal{R}^{d} + rac{\delta}{2} \underbrace{\left(\chi^{-} - \chi^{+}
ight)}_{\text{dep-LP}}$$

Across currencies:

$$\boldsymbol{R}^{m} + \underbrace{\frac{1}{2} \begin{bmatrix} \boldsymbol{\chi}^{+} + \boldsymbol{\chi}^{-} \end{bmatrix}}_{\text{reserve-LP}} = \boldsymbol{R}^{*,m} + \underbrace{\frac{1}{2} \begin{bmatrix} \boldsymbol{\chi}^{*,+} + \boldsymbol{\chi}^{*,-} \end{bmatrix}}_{\text{reserve-LP}}$$

- * Liquidity premia: like "risk" premia
 - * NOT: risk aversion | not limited equity
 - * YES: currency payment size | settlement technology | monetary policy

> Global Asset Demand System

Asset Demand System

$$D = \Theta_t^D \left(R_{t+1}^D \right)^{\epsilon^D}$$
$$D^* = \Theta_t^{D,*} \left(R_{t+1}^{D,*} \right)^{\epsilon^{D,*}}$$

Real loan demand:

$$B^* = \Theta_t^{B,*} \left(R_{t+1}^{B,*} \right)^{\epsilon^{B,*}}$$

> Central Bank

* Instrument:

$$i^m \to R^m \equiv \frac{1+i^m}{1+\pi}$$

* Instrument:

Μ

> Central Bank

* Instrument:

$$i^m \to R^m \equiv \frac{1+i^m}{1+\pi}$$

М

* Instrument:

* CB budget:

 $T + \text{Discount Window} = M(1 + i^m) - M'$

* T residual transfers

Theoretical Results

> Equilibrium Determination

FX Determination

Reserve Tightness:

$$\Phi_{-}\equiv -rac{\delta-\mu}{\delta+\mu}$$
 and $heta^{*}=rac{\delta^{*}-\mu^{*}}{\mu^{*}+\delta^{*}}$

UIP deviation:

$$\mathcal{L} = \frac{1}{2} \left(\chi^{-} + \chi^{+} \right) - \frac{1}{2} \left(\chi^{*,-} + \chi^{*,+} \right) = \mathbb{E} \left[\frac{1 + i^{m}}{1 + \pi} \right] - \mathbb{E} \left[\frac{1 + i^{*,m}}{1 + \pi} \cdot \frac{e'}{e} \right]$$

> Equilibrium Determination

FX Determination

Reserve Tightness:

$$\Phi_{-}\equiv -rac{\delta-\mu}{\delta+\mu} ext{ and } extsf{ heta}^{*}=rac{\delta^{*}-\mu^{*}}{\mu^{*}+\delta^{*}}$$

UIP deviation:

$$\mathcal{L} = \frac{1}{2} \left(\chi^- + \chi^+ \right) - \frac{1}{2} \left(\chi^{*--} + \chi^{*++} \right) \quad = \quad \mathbb{E} \left[\frac{1+i^m}{1+\pi} \right] - \mathbb{E} \left[\frac{1+i^{*,m}}{1+\pi} \cdot \frac{e'}{e} \right]$$

Price Determination (like Lucas 78, not quite)

$$M^*/P^* = \mu^* \underbrace{D^*(\mu^*)}_{\text{Real Degosite}}$$

 and

$$e \equiv \frac{P}{P^*}$$

> Theorems | Special Case

* Following Propositions

- * deposit supplies perfectly inelastic
- * i.i.d shocks

* Then simulations

> Volatility

Dollar Payment Volatility

Let, δ_t^* be i.i.d. random variable

$$\omega^* = \begin{cases} \delta^*_t & \text{w prob}.1/2 \\ \\ -\delta^*_t & \text{w/ prob}.1/2 \end{cases}$$

Then

$$\frac{d\log e}{d\delta^*} = \frac{d\log\mu^*}{d\delta^*} \ge 0$$

 and

$$\frac{d\log\left(\mathcal{L}\right)}{d\delta^*} > 0.$$

and same direction if random walk.

* Takeaway:

 $\ast\,$ volatility: increases demand for dollars and appreciates FX

> Interest Rate

Effects of Policy Rates

Let, ΔR be fixed and i_t^m be i.i.d. Then,

$$\frac{d\log e}{d\log\left(1+i^{*,m}\right)} = \frac{d\log\mu^*}{d\log\left(1+i^{*,m}\right)} \in (0,1)$$

and

$$\frac{d\log\left(\mathcal{L}\right)}{d\log\left(1+i^{*,m}\right)} < 0.$$

and same direction if random walk.

- Policy effect: tighter US policy
 - * appreciates dollar
 - * Fama puzzle

> Other Theoretical results...

* Size:

- $\ast~$ i.i.d increase in \$ deposit demand: appreciates dollar, increase \$ liquidity premium and \$ dollar liquidity ratio
- \ast permanent shock: appreciates dollar, but irrelevant for premia

* Policy:

- * OMO different instruments than rates
- \ast FX Intervention interesting effects depending on country size
- * sterilized interventions

Producing the Data

> Calibration of Parameters

Calibration: match ratio levels and spreads

Exogenous Parameters

Parameter	Description	Target			
Fixed Parameters					
$i_t^m = 2.14\%$	EU Safe Asset Rate	data			
M* / M	Relative Supplies of Reserves	normalized to match average e			
$\Theta^{d,*} = \Theta^d = 40$	Deposit Demand Scales	Liquidity ratio of 20%			
	Deposit Demand elasticity	[?]			
$\sigma = 4\%$	EU withdrawal risk	$R^b - R^d = 2\%$			
$\lambda^* = \lambda = 3.1$	US interbank market matching efficiency	$\mathcal{EBP} = \mathcal{R}^b - \mathcal{R}^{*,m} = 1\%$			

> Moment Fit

Calibration: payment volatility process, to match FX

Calibrated Processes

Statistic	Data/Target	Model			
$\mathbb{E}\left(\sigma_{t}^{*}\right) = 4\%$	average US withdrawal risk	empirical average \mathcal{LP}			
std $\left(\sigma_{t}^{*}\right) = 0.12\%$	standard deviation	empirical std of <i>log</i> (<i>e</i>)			
$\rho\left(\sigma_t^*\right) = 0.98$	mean reversion coefficient	empirical auto-correlation of $\mathit{log}\left(e ight)$			
Process for US policy rate <i>i^{m,*}</i> (AR(1) process)					
$\mathbb{E}\left(i_t^{*,m}\right) = 1.95\%$	average annual US policy rate	data			
$std(i_t^{*,m}) = 2.1652\%$	std annual US policy rate	data			
$\rho\left(i_t^{*,m}\right) = 0.99$	auto-correlation annual US policy rate	data			

> Moment Fit

Model and Data Moments

Statistic	Data/Target	Model		
Targets				
$std(\log e)$	0.15	0.154		
$ ho\left(\log e ight)$	0.98	0.99		
$\mathbb{E}\left(\mathcal{LP} ight)$	20bps	19.8bps		
$\mathbb{E}\left(\mathcal{EBP} ight)$	100bps	100.1bps		
Non-Targeted				
$\mathit{std}(\log \mu^*)$	0.42	0.068		
$ ho\left(\log\mu ight)$	0.99	0.99		
$std(\pi_{eu}-\pi_{us})$	1.3	1.8		
$\rho\left(\pi_{eu}-\pi_{us} ight)$	0.93	0.98		

> Model Regressions

REGRESSION COEFFICIENTS WITH SIMULATED DATA

	δ^*- shocks only	<i>i</i> *, <i>m</i> -shocks only	both shocks
$\Delta(LiqRat_t)$	2.2**	1.1***	2.0***
$(LiqRat_{t-1})$	-0.001	-0.001	-0.004
$\Delta(i_t^m - i_t^{*,m})$		-42.5***	-14.5***
constant	-0.0	-0.02	-0.04
adj. <i>R</i> ²	0.99	0.99	0.99

t statistics in parentheses.

*** *p* < 0.01

Conclusion

> Conclusions

$\ast\,$ Recent work: convenience yield \mid liquidity yields \mid specialness of $\$\,$

- * source of convenience yield: liquidity of financial institutions
- * model: links liquidity | payment frictions | FX
- \ast empirically: evidence of correlation
- * Comments welcome!