De la Formación de Expectativas a la Dinámica del Consumo en una Economía Pequeña y Abierta

César Carrera

Miguel Puch

XXXVI Encuentro de Economistas del BCRP

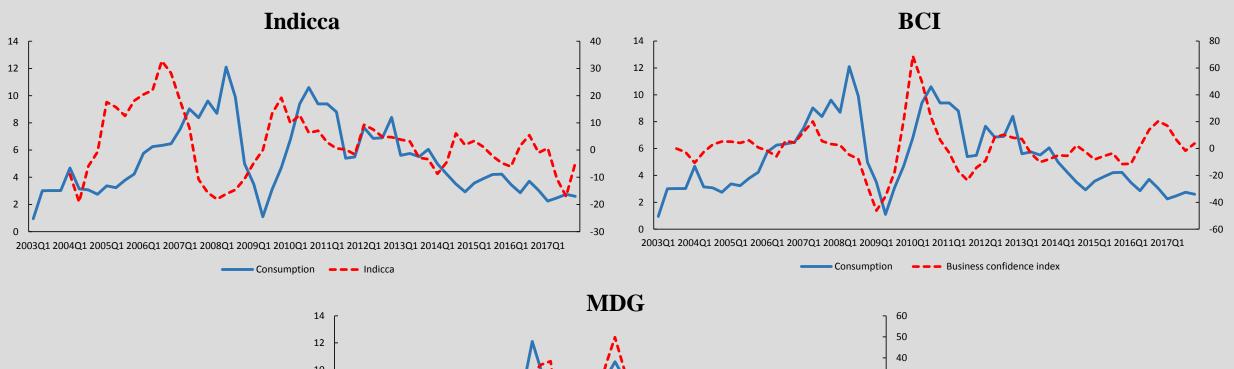
Octubre 2018

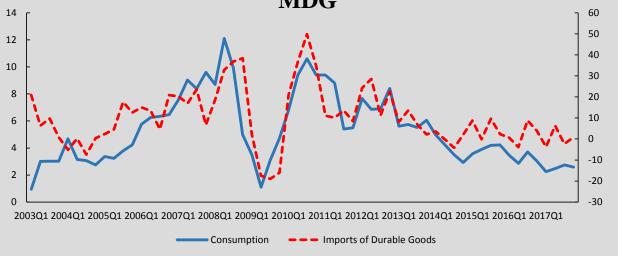
Contenido

- 1. Motivación
- 2. Objetivos de la investigación
- 3. Medidas de expectativas
- 4. Características de los datos
- 5. Metodología
- 6. Umbrales en las expectativas
- 7. Conclusiones

Motivación

- ✓ Teóricamente, el canal de las expectativas puede aportar en la explicación del comportamiento del consumo (Katona, 1968; Leland, 1968; Acemoglu y Scott, 1994).
- ✓ Las expectativas de consumo se convierten en un *driver* importante del consumo privado en épocas de crisis, en comparación a los fundamentales tradicionales (Dees y Soares, 2011).
- ✓ Las encuestas a consumidores no son la única manera de capturar las expectativas de consumo (Carroll *et al.*, 1994).


Objetivos de la investigación


- ✓ Evaluar el rol de las expectativas para explicar el comportamiento presente del consumo privado.
- ✓ Caracterizar la relación entre las expectativas y el consumo para ejercicios de predicción de este último.
- ✓ Explorar medidas alternativas que capturen las expectativas de consumo.

Medidas de expectativas

- 1. Indicador de Confianza del Consumidor (Indicca): Busca capturar la percepción de los consumidores sobre su situación económica y capacidad de consumo.
- 2. Índice de Expectativas del Sector a 3 meses (BCI): Captura la percepción de los gerentes generales con respecto a la demanda futura de sus productos.
- 3. Importaciones de Bienes de Consumo Duradero (MDG): Captura la confianza o incertidumbre (la compra de este tipo de bienes tiende a ser pospuesta en coyunturas adversas).

Medidas de expectativas

Características de los datos

- ✓ Período de análisis: 2002T1-2017T4.
- ✓ Variables:
- \circ Consumo privado: C_t
- \circ Medidas de expectativas: $Indicca_t$, BCI_t , MDG_t
- o Producto Bruto Interno: Y_t
- \circ Tasa de desempleo: u_t
- \circ Riqueza del hogar: W_t
- \circ Precios inmobiliarios: q_t
- \circ Tasa de interés interbancaria: i_t
- o Precio de exportación del cobre: *cp_t*
- \circ Indicador de confianza externa: $Expectation_t^*$

Prueba de causalidad de Granger

From\To	$\Delta \ln C_t$	Δ Indicc a_t	ΔBCI_t	$\Delta \ln MDG_t$
Δ Indicc a_t	0,43			
ΔBCI_t	0,06			
$\Delta \ln MDG_t$	0,80			
$\Delta \ln C_t$		0,56	0,00	0,00
$\Delta \ln Y_t$	0,04	0,35	0,00	0,00
$\Delta \ln W_t$	0,00	0,35	0,15	0,20
$\Delta \ln q_t$	0,25	0,17	0,74	0,31
Δi_t	0,17	0,57	0,05	0,91
Δu_t	0,59	0,23	0,52	0,20
$\Delta \ln c p_t$	0,48	0,91	0,00	0,02
$\Delta \ln Expectation_t^*$	0,71	0,09	0,02	0,33

Modelos uniecuacionales

(1)
$$\Delta \ln C_t = \alpha + \sum_{i=1}^4 \beta_i \Delta Expectation_{t-i} + \sum_{i=1}^4 \gamma_i Z_{t-i}^1 + \varepsilon_t$$

(2)
$$\Delta \ln C_t = \alpha + \sum_{i=1}^4 \beta_i \, \Delta \, Expectation_{t-i} + \sum_{i=1}^4 \gamma_i \, Z_{t-i}^2 + \varepsilon_t$$

(3)
$$\Delta \ln C_t = \alpha + \sum_{i=1}^4 \beta_i \Delta Expectation_{t-i} + \sum_{i=1}^4 \gamma_i Z_{t-i}^3 + \varepsilon_t$$

(4)
$$\Delta \ln C_t = \alpha + \sum_{i=1}^4 \beta_i \, \Delta \, Expectation_{t-i} + \sum_{i=1}^4 \gamma_i \, Z_{t-i}^3 + \sum_{i=1}^4 \theta_i \, \Delta \, Expectation_{t-i}^* + \, \varepsilon_t$$

$$Z_t^1 = (\Delta ln C_t, \Delta ln Y_t)$$

$$Z_t^2 = (Z_t^1, \Delta ln W_t)$$

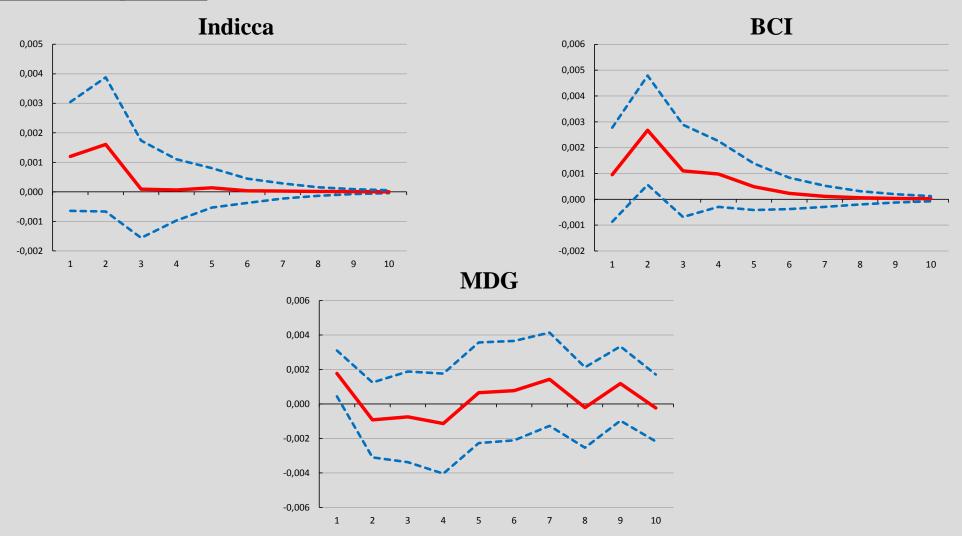
$$Z_t^3 = (Z_t^2, \Delta \ln q_t, \Delta i_t, \Delta u_t, \Delta \ln c p_t)$$

Modelos uniecuacionales

Equation		Adjusted R ²		
		Indicca _t	BCI_t	MDG_t
1	$C_t = f(Expectation_t)$	0,01	0,10	0,00
2	$C_t = f(Z_t^1)$	0,19	0,19	0,19
3	$C_t = f(Expectation_t, Z_t^1)$	0,23	0,29	0,16
4	$C_t = f(Z_t^2)$	0,33	0,33	0,33
5	$C_t = f(Expectation_t, Z_t^2)$	0,44	0,41	0,35
6	$C_t = f(Z_t^3)$	0,53	0,53	0,53
7	$C_t = f(Expectation_t, Z_t^3)$	0,61	0,54	0,53
8	$C_t = f(Expectation_t, Z_t^3, Expectation_t^*)$	0,72	0,56	0,58

Vectores autorregresivos

✓ Se estima un modelo VAR para evaluar un choque de expectativas sobre el consumo. Se utiliza la totalidad de fundamentales económicos (Z_t^3) .


$$y_{t} = \sum_{i=1}^{q} A_{i} y_{t-i} + u_{i}$$

$$y_t = \begin{pmatrix} \Delta ln \ C_t \\ \Delta \ Expectation_t \\ Z_t^3 \end{pmatrix}$$

Vectores autorregresivos

- ✓Se sigue a Bram y Ludvigson (1998) y Dees y Soares (2011) para la ortogonalización, de acuerdo a la identificación de Choleski.
- ✓El ordenamiento es el siguiente: expectativas, variables financieras, tasa de interés, riqueza, consumo e ingreso. El indicador de confianza externa es considerada como exógena en el sistema.
- ✓ Los rezagos óptimos (de acuerdo al criterio de Schwarz) son 1 para Indicca y 4 para BCI y MDG.

Vectores autorregresivos

- ✓Se busca aislar los períodos en que las expectativas realmente afectan al consumo de una forma importante.
- ✓ La regla para remover las observaciones es la siguiente:

$$\Delta \, Expectation_t^C = \begin{cases} 0 \, \text{ si } |\Delta \, Expectation_t| < \theta \\ \Delta \, Expectation_t \,, \, \text{de otra forma} \end{cases}$$

- ✓ Este criterio produce un set de posibles valores para el vector Δ $Expectation_t^C$, cada uno para un valor de θ que va de 0 hasta Mάx | Δ $Expectation_t |$.
- ✓ Todos los vectores son muy parecidos, con la única que diferencia de que algunas observaciones son fijadas en 0.

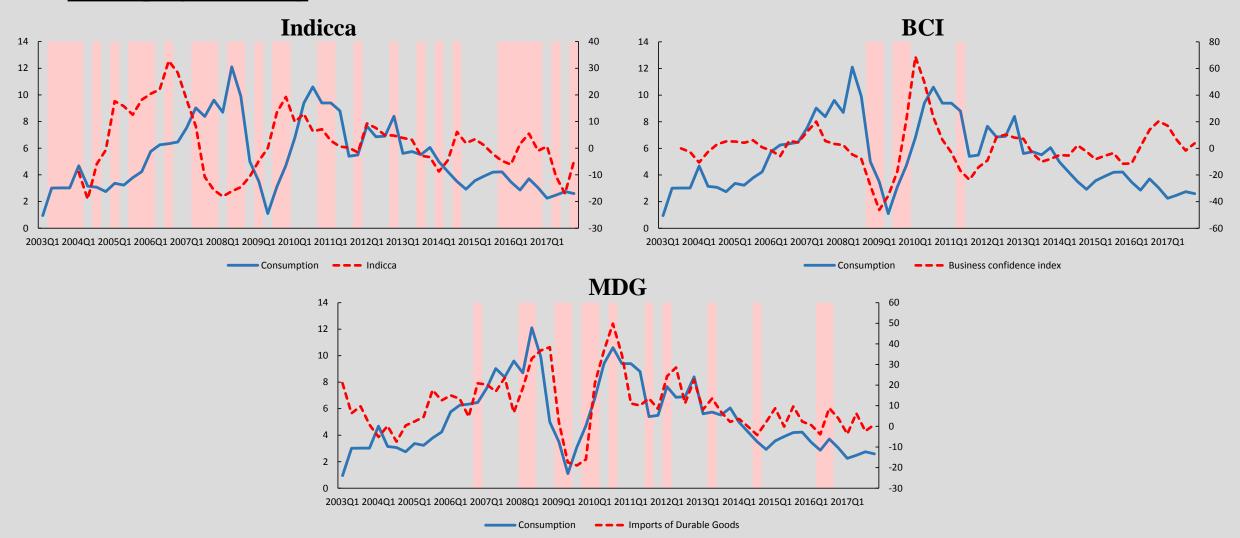
In-sample forecasting

Indicca

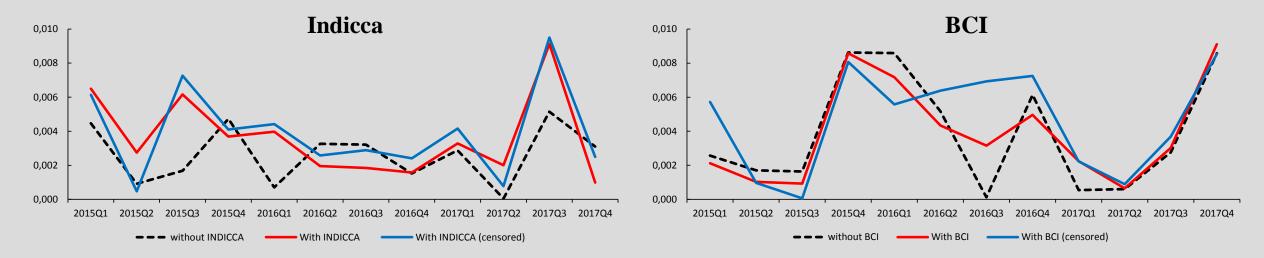
Models	Without Z_t^{3*}	With Z_t^{3*}	
Final Prediction Error (FPE)			
Without $INDICCA_t$ (1)	0,000070	0,000092	
With $INDICCA_t$ (2)	0,000071	0,000091	
With $INDICCA_t^C$ (3)	0,000070	0,000090	
(2) / (1) x 100	102,03	99,35	
(3) / (2) x 100	98,39	98,57	
Coefficients (δ)			
With INDICCA _t	0,000581	0.000689	
(t-stat)	(1,323972)	(1,633530)	
With INDICCAt	0,000742	0,000811*	
(t-stat)	(1,638226)	(1,788905)	
$ heta^*$	1,788507	1,788507	
censored observations for $ heta^*$	30	30	

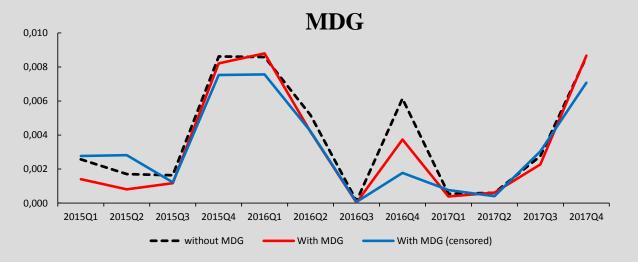
In-sample forecasting

BCI


Models	Without Z_t^{3*}	With Z_t^{3*}	
Final Prediction Error (FPE)			
Without BCI_t (1)	0,000074	0,000099	
With BCI_t (2)	0,000065	0,000105	
With BCI_t^C (3)	0,000065	0,000096	
(2) / (1) x 100	88,13	106,66	
(3) / (2) x 100	99,80	91,47	
Coefficients (δ)			
With BCI _t	0,00088***	0,000222	
(t-stat)	(3,224694)	(0,769778)	
With BCI_t^C	0,000885***	0,001145*	
(t-stat)	(3,244701)	(1,726467)	
$ heta^*$	1,113532	7,433120	
censored observations for $ heta^*$	15	58	

In-sample forecasting


MDG


Models	Without Z_t^{3*}	With Z_t^{3*}		
Final Prediction Error (FPE)				
Without MDG_t (1)	0,000074	0,000099		
With MDG_t (2)	0,000078	0,000103		
With MDG_t^C (3)	0,000077	0,000095		
(2) / (1) x 100	105,25	104,65		
(3) / (2) x 100	98,56	92,18		
Coefficients (δ)				
With MDG _t	-0,005437	0,019435		
(t-stat)	(-0,289160)	(1,040648)		
With MDG_t^C	-0,059678	0,035658*		
(t-stat)	(-0,925767)	(1,815662)		
θ^*	0,187243	0,070212		
censored observations for $ heta^*$	62	48		

In-sample forecasting

Out-sample forecasting

Out-sample forecasting

- ✓ Los modelos con expectativas presentan un menor RMSE que los modelos sin expectativas cuando se utiliza BCI y MDG.
- ✓El modelo con MDG presenta la mayor ganancia seguido del modelo con BCI.
- ✓El modelo con umbrales reporta el menor RMSE solo cuando se utiliza MDG.

Indicator	BCI_t	MDG_t	$INDICCA_t$
Equation	Root Mean Square Error		
Without indicator (1)	0,0051	0,0051	0,0031
With indicator (2)	0,0049	0,0047	0,0043
With censored indicator (3)	0,0055	0,0042	0,0047
(2) / (1)	0,9596	0,9232	1,4062
(3) / (1)	1,0886	0,8317	1,5151

Conclusiones

- ✓ Se encuentra una contribución pequeña (y de corto plazo) de las expectativas a comparación de otros fundamentales tradicionales.
- ✓ Sin embargo, existen períodos en los que tal contribución se vuelve relevante (por ejemplo, en el período de la crisis financiera internacional).
- ✓ Los indicadores propuestos (BCI y MDG) capturan marginalmente mejor el canal de expectativas.
- ✓BCI parece capturar mejor los choques de expectativas en la dinámica del consumo, mientras que MDG funciona mejor para predecir el consumo futuro.
- ✓Son las fluctuaciones "extremas" de MDG las que realmente importan para predecir el consumo futuro.