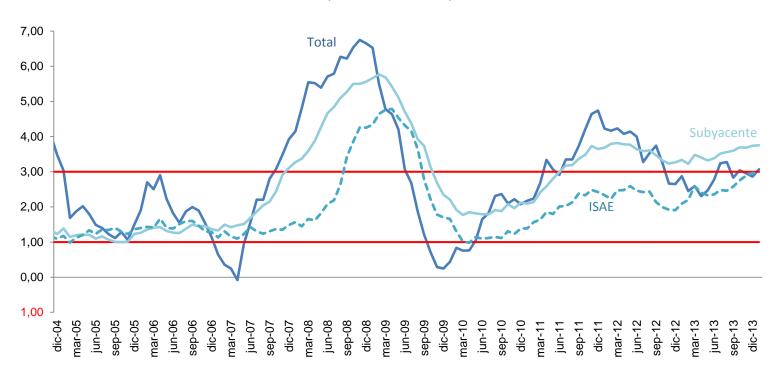

Cálculo de la divergencia relativa de precios como medida de presión inflacionaria

María Gracia Ramos Diego Winkelried

2014

Motivación


IPC total y subyacente (Var. % anual)

Fuente: INEI, elaboración propia

Motivación

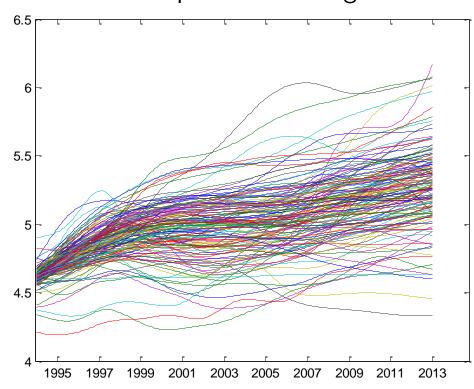
IPC total y subyacente e ISAE (Var. % anual)

Fuente: INEI, elaboración propia

Motivación

Tasas de inflación anual - 150 rubros IPC (%)

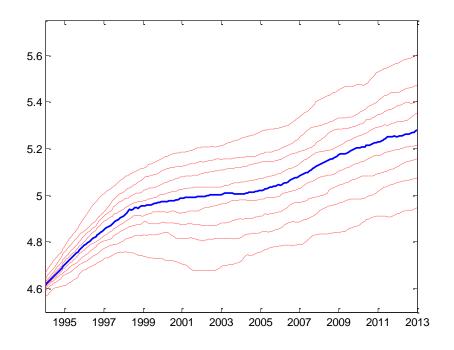

			D.	Percentil	
Periodo	Media	Mediana	E.	5	Percentil 95
Dic. 95 - Dic. 13	4.0	2.4	11.4	-8.0	18.8
Dic. 95 - Nov. 02	5.3	4.3	13.0	-10.0	20.5
Dic. 02 - Dic. 13 Fuente: Elaboración propia, 2014	3.2	1.7	10.1	-6.9	17.1


Literatura

- Phillips, Peter C.B.; Sul, Donggyu (2006). "Transition modeling and econometric convergence tests". *Econometrica*, Vol. 75, No. 6, November 2007, 1771–1855.
- Phillips, Peter C.B.; Sul, Donggyu (Mayo 2007). "Some empirics on economic growth under heterogeneous technology". *Journal of Macroeconomics*, 2007, 455-469.
- Phillips, Peter C.B.; Sul, Donggyu (2009). "Economic transition and growth". Journal of Applied Econometrics, Vol. 24, 1153–1185.
- Bartkowska, Monika; Riedl, Aleksandra (2011). "Regional convergence clubs in Europe: Identication and conditioning factors". Elsevier, Economic Modelling 29, 2012, 22–31.
- Fritsche, Ulrich; Kuzin, Vladimir (2010), "Analysing convergence in Europe using the non-linear single factor model", Hamburg University, Department Wirtschaft und Politik.
- Choi, Horag; Greenaway-McGrevy, Ryan; Se Kim, Young; Sul, Donggyu (Junio 2013).
 "The role of labor share in relative price divergence".

Datos

- IPC Lima Metropolitana.
- 2009=100.
- 12m1994:12m2013.
- Fuente: INEI.


Datos

Ponderaciones del IPC* (%)

	Índice General	Subyacente	No subyacente
Alimentos y bebidas	37,8	23,0	14,8
Vestido y calzado	5,4	5,4	0
Alquiler de vivienda combustible y electricidad	9,3	3,2	6,1
Muebles, enseres y mantenimiento de la vivienda	5,8	5,8	0
Cuidado, conservación de la salud y servicios médicos	3,7	3,7	0
Transportes y comunicaciones	16,5	2,5	13,9
Esparcimiento, diversiones, servicio cultural y enseñanza	14,9	14,9	0
Otros bienes y servicios	6,7	6,7	0
Total	100,0	65,1	34,8
*Utilizada a partir del 2010			

Datos

Tendencia central y percentiles de IPC por rubros en log

- Phillps&Sul (2007):
 - Modelo:

$$p_{it} = \beta_{it} n_t$$

$$\beta_{it} = \beta_i + \xi_{it} * L(t)^{-1} * t^{-\alpha_i}$$

$$\operatorname{con} \xi_{it} \sim iid(0, \sigma_i^2)$$

$$H_0: \beta_i = \beta \land \alpha_i \ge 0$$

$$H_A$$
: { $\beta_i = \beta \ para \ todo$ "i" $con \ \alpha_i$
< 0} \ \ { $\beta_i \neq \beta \ para \ algún$ "i" $con \ \alpha_i \geq 0 \ o \ \alpha_i$
< 0}

Test de convergencia

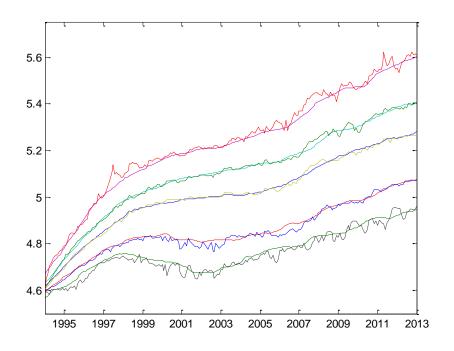
A partir de
$$H_t \coloneqq N^{-1} \sum_{i=1}^{N} (h_{it} - 1)^2$$

$$h_{it} \coloneqq \frac{p_{it}}{N^{-1} \sum_{i=1}^{N} p_{it}} = \frac{\beta_{it}}{N^{-1} \sum_{i=1}^{N} \beta_{it}}$$

Regresión OLS

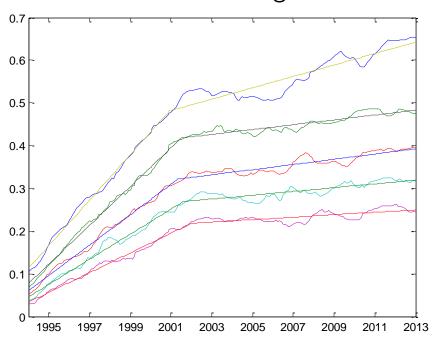
$$log \frac{H_1}{H_t} - 2 \log(\log(t+1)) = a + \phi \log(t) + u_t$$

$$t = rT, rT + 1, \dots, T \quad \text{Con algún r} > 0$$


Clustering

Utiliza test de convergencia

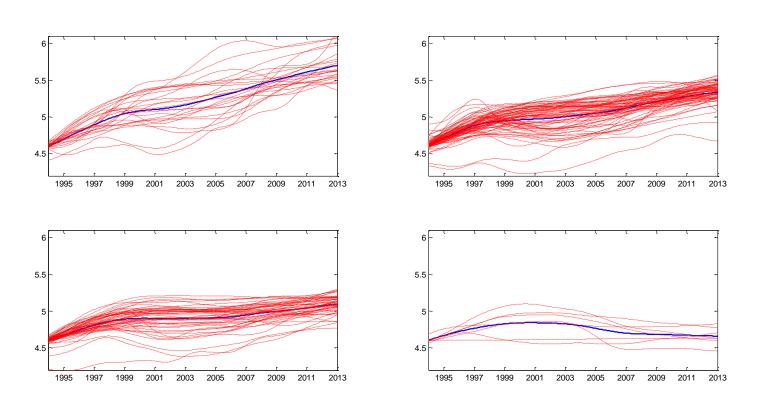
- 1. Orden de mayor a menor (p_{iT}) .
- 2. Grupo core G_k : maximizar $t_{\widehat{\phi}}(k)$ bajo la condición $\min\{t_{\widehat{\phi}}(k)\} > -1,65$.
- 3. Grupo core + valores separadamente: $t_{\widehat{\phi}}(k)$ vs. crítico c para inclusión en subgrupos.
- 4. Comprobar convergencia resto rubros.


Estimaciones-preliminar

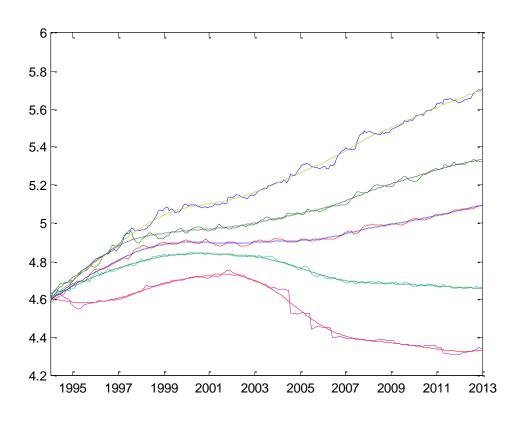
Percentiles de IPC por rubros en log

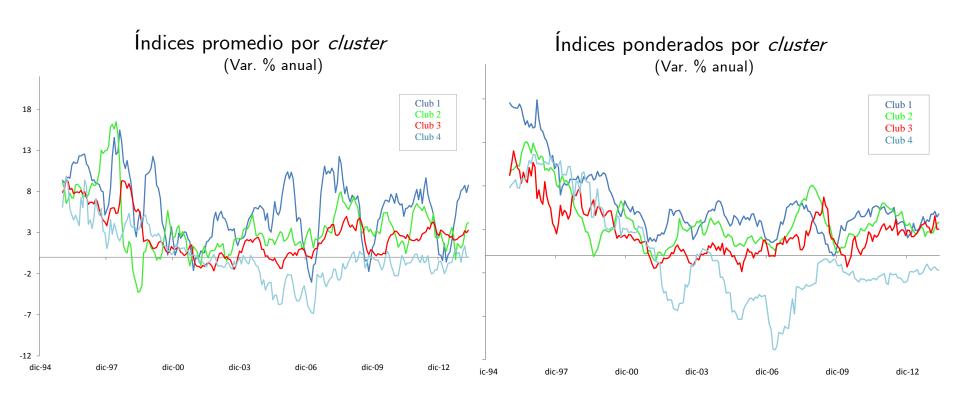
Estimaciones-preliminar

Diferencia de percentiles de IPC por rubros en log


Estimaciones del test de convergencia total

	jun-00	nov-00	mar-01	ene-02	nov-02	sep-03	jul-04
	(r = 0.15)	(r = 0.18)	(r = 0.20)	(r = 0.25)	(r = 0.30)	(r = 0.35)	(r = 0.40)
$\widehat{\phi}$	-0.7140	-0.7170	-0.7220	-0.7379	-0.7599	-0.7880	-0.8229
$t_{\widehat{m{\phi}}}$	-41.6841	-37.0867	-33.5614	-30.6266	-27.2632	-24.9862	-23.63


Identificación de *clusters* (t-estad)


Clasificación inicial							
Cluster 1	(1.2874)						
[24]							
Cluster 2	(2.5104)						
[68]							
Cluster 3	(2.6416)						
[50]							
Cluster 4	(5.2228)						
[7]							
Cluster 5	-						
[1]							

Clusters

Tendencia central de cada *cluster*

Estadísticas descriptivas por club-Inflación anual

	Club 1	Club 2	Club 3	Club 4		
Media	5,84	4,08	2,68	0,12		
Mediana	4,80	3,10	2,10	-1,40		
Máximo	17,90	13,00	12,00	11,60		
Mínimo	-0,10	-0,60	-1,90	-10,90		
Desviación estándar	3,89	3,17	2,87	5,62		
Coeficiente de asimetría	1,49	1,11	1,03	0,55		
Coeficiente de curtosis	4,73	3,52	3,65	2,35		
Jarque-Bera	106,83	47,07	41,89	14,73		
Probabilidad	0,00	0,00	0,00	0,00		
Observaciones	217					

Clasificación intra-clusters: Inflación subyacente y no subyacente

	Club 1	Club 2	Club 3	Club4
Ponderación del IPC	19.7	42.9	32.2	5.1
Ponderación subyacente	20.4	39.8	38.0	1.8
Ponderación no subyacente	18.5	48.7	21.7	11.2
Ponderación subyacente en club	67.0	60.2	76.4	22.7
Ponderación subyacente en club	33.0	39.8	23.6	77.3

Clasificación intra-*clusters*: Inflación de alimentos y energía y sin alimentos y energía

	Club 1	Club 2	Club 3	Club4
Ponderación del IPC	19,7	42,9	32,2	5,1
Ponderación ISAE	26,4	30,9	34,0	8,7
Ponderación IAE	11,3	58,3	30,1	0,4
Ponderación ISAE en club	74,9	40,4	59,0	96,5
Ponderación IAE en club	25,1	59,6	41,0	3,5

Clasificación intra-clusters: 8 grandes grupos-Clasificación INEI

	Club 1	Club 2	Club 3	Club4
Ponderación en club				
G1	17,9	56,3	31,7	3,5
G2	0,0	9,2	4,6	0,0
G3	8,9	3,6	18,8	0,0
G4	11,1	4,9	10,9	3,6
G5	1,9	2,4	0,4	0,0
G6	10,5	21,2	5,1	74,5
G7	46,6	1,7	10,2	18,4
G8	3,1	0,6	18,3	0,0

Descomposición de los desvíos de la inflación por club, respecto a la meta

	Año	Desvío de la inflaci ó n	Expectativas de inflaci ó n	Choques de oferta	Depreciaci ó n nominal	Inflaci ó n importada	Choques de demanda
÷	2011	3,6	2,1	1,4	-0,3	0,1	0,1
Cluster	2012	0,0	1,6	-1,3	-0,1	-0,3	0,5
D D	2013	2,8	1,6	1,1	0,2	-0,3	-0,1
5	2011	4,0	2,1	2,2	-0,1	0,5	0,1
Cluster	2012	1,4	1,2	0,4	-0,2	0,0	0,3
D D	2013	0,6	0,7	-0,9	0,1	-0,2	0,4
က	2011	1,6	0,6	2,0	-0,2	-0,4	-0,2
Cluster 3	2012	0,9	0,2	0,9	-0,5	0,5	0,1
J	2013	0,6	-0,2	-0,6	1,0	-0,4	0,8
4	2011	-4,1	-5,3	1,8	0,0	-0,2	-0,5
Cluster	2012	-4,9	-4,5	0,9	-0,7	0,2	-0,5
D	2013	-3,7	-4,2	-0,7	1,2	-0,1	-0,3

Conclusiones

- En base a la metodología de Phillips y Sul (2007), no existe una convergencia de los rubros que componen el IPC en Perú pero si se identifican 4 tenencias comunes.
- Los dos clubes con mayores desvíos respecto al promedio total acumulan 60,2% de la ponderación de la inflación total en bienes subyacentes, lo que podría ser señal de mayores presiones al alza los niveles de precios. Estas presiones se verían compensadas si se realiza el mismo análisis considerando como medida subyacente la inflación sin alimentos y energía.
- De la descomposición de los desvíos de la inflación respecto a la meta del BCRP destaca el creciente componente de choques de demanda en el club 2, que corresponde en parte al mayor incremento de precios en el rubro de alimentos fuera del hogar.