Externalidades de default en países emergentes

Rocio Gondo

BCRP

Octubre 2013

Introducción

- Las crisis financieras están acompañadas por un gran número de defaults.
- La decisión de default de un agente lleva a:
 - Reposesiones de colateral Bankruptcy
 - Salidas masivas de capitales
 - Depreciaciones del tipo de cambio
- Los modelos normativos de crisis sistémicas de deuda no incluyen la posibilidad de default.

Resumen

- El trabajo presenta un modelo de default privado donde aparece una distorsión en los incentivos de default de los agentes individuales.
- Al hacer default, el prestamista no internaliza que su default genera una depreciación cambiaria, lo que induce a otros a hacer default mediante el efecto en el valor del colateral.
- Para corregir esta distorsión, se necesita mejorar la ejecución (enforcement) de los derechos del acreedor.

Literatura relacionada

- Externalidades pecuniarias en restricciones de incentivos: Greenwald y Stiglitz (1986)
- Externalidades en modelos de default con un solo sector:
 - Políticas del gobierno (Tirole (2003)), mercados de capitales doméstico / externo (Jeske (2006)), préstamos descentralizados/ default centralizadp (Kim y Zhang (2012))
- Sobreendeudamiento y externalidades pecuniarias en modelos con restricciones crediticias: Bianchi (2011) y Korinek (2010)
- Modelos con default en equilibrio:
 - Soberana: Aguiar y Gopinath(2006), Arellano (2008), Mendoza y Yue (2011), privada: Popov y Wiczer (2010)

El Modelo

- Economía pequeña y abierta
- Economía de dotación de 2 sectores: transable (y) y no transable (y^N)
- Deudor privado averso al riesgo:
 - Preferencias: $U(c_T, c_N)$
 - 2 decisiones: repagar/default y nuevo nivel de deuda (d').
- Prestamista internacional neutral al riesgo

El Modelo

- Repago: Situación estándar
 - El deudor paga y toma nueva deuda.
 - El deudor consume bienes transables y no transables.
- Default: Salida de capitales + depreciación del tipo de cambio real
 - Los deudores pierden una fracción λ_1 del colateral $(y + py^N)$.
 - Los prestamistas obtiene una fracción $\lambda_2 \leq \lambda_1$ en términos de bienes transable.
 - \bullet Los deudores pierden acceso al mercado internacional y reingresan con probabilidad $\phi.$
- ullet Conjunto de default: El deudor hace default si $v^R < v^D$

Incentivos de default

 Costo de default expresado en términos del valor de los ingresos totales:

$$\lambda_1[y + py^N]$$

- Externalidad afecta los incentivos a hacer default
 - Los prestamistas venden el colateral no transable y lo repatrian en términos de bienes transables.
 - Reversión de la cuenta corriente.

Planificador Social

▶ Ecuaciones

$$c_T^D + pc_N^D = (1 - \lambda_1)(y + py^N)$$
 (CE1)

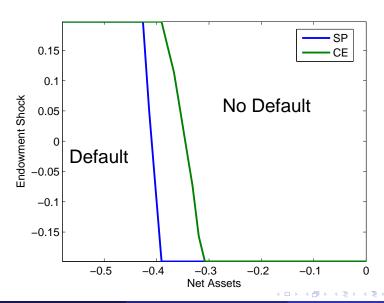
$$(1+r)d\int_{\hat{y}}^{\bar{y}} f(y,y_{-1})dy + \lambda_2 \int_{\underline{y}}^{\bar{y}} (y+py^N)f(y,y_{-1})dy = (1+\rho)d$$
(CE2)

$$c_T^D = (1 - \lambda_1)y - \lambda_1 \frac{U_2}{U_1} y^N; c_N^D = y^N$$
 (SP1)

$$(1+r)d\int_{\hat{y}}^{\bar{y}}f(y,y_{-1})dy + \lambda_2 \int_{\underline{y}}^{\hat{y}}(y+\frac{U_2}{U_1}y^N)f(y,y_{-1})dy = (1+\rho)d \tag{SP2}$$

Corrección de la Externalidad

- Fortalecer la ejecución de los derechos del prestamista: Hacer más costoso el default.
- Penalidad en el valor del colateral que pierden los agents individuales $\tau \lambda_1(y+pyN)$.


$$c_T^D + \textit{pc}_N^D = (1 - \lambda_1(1+\tau))\textit{y} + (1 - \lambda_1(1+\tau))\textit{py}^N + \textit{T}$$

Solución Cuantitativa

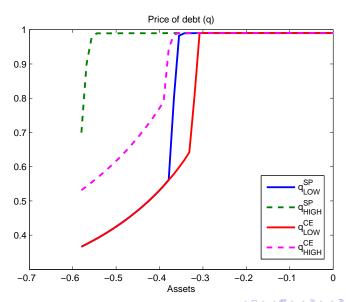
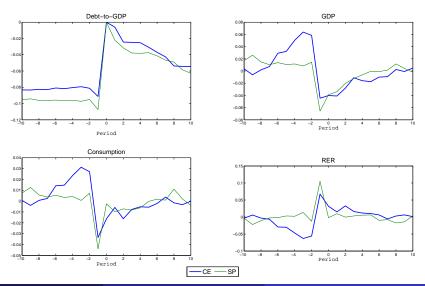

Parámetro	Valor	Descripción	
σ	2	Coeficiente CRRA	
ρ	0.01	Tasa libre de riesgo	Aguiar y Gopinath (2006)
ω	0.3	Consumo transable	Bianchi (2011)
$\frac{1}{1+\eta}$	8.0	Elasticidad de sustitución	Bianchi (2011)
φ	0.125	Acceso al mercado	Mendoza y Yue (2011)
$\dot{\lambda}_1$	0.15	Pérdida bajo default	AG (2006)
β	0.93	Factor de descuento	Deuda - PBI = 20 por ciento
ρ_y	0.9	Coeficiente AR(1)	AG (2006)
ξ	0.034	Desviación estándar	AG (2006)

Table : Valores de los Parámetros


Decisión de Default

Precio de la Deuda

Episodios de Default

Política óptima

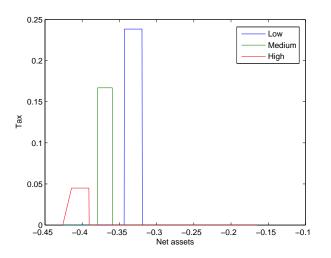


Figure : Penalidad de Default

Conclusiones

- Externalidad pecuniaria distorsiona los incentivos a hacer default.
 - Costo social de default > Costo privado de default
 - Mayor frecuencia de default bajo equilibrio competitivo.
- Default individual conlleva a salidas de capitales y depreciación real, lo que induce a otros a hacer default.
- Mejoras en el enforcement de los derechos de los prestamistas alinearía los incentivos de default.

Hechos estilizados

Table 22. Banking System Exposure to Risk. (% of assets at the end of 1997)

			Non-Performing Loans		Capital
	Exposurc	Valuation	1997	1998f	Ratio
Korea	15-25%	80-100%	16%	22.50%	6-10%
Indonesia	25-30%	80-100%	11%	20.00%	8-10%
Malaysia	30-40%	80-100%	7.50%	15.00%	8-14%
Philippines	15-20%	70-80%	5.50%	7.00%	15-18%
Singapore	30-40%	70-80%	2.00%	3.50%	18-22%
Thailand	30-40%	80-100%	15%	25%	6-10%
Hong Kong	40-55%	50-70%	1.50%	3%	15-20%

Source: JP Morgan "Asian Financial Markets", January 1998.

Equilibrio Descentralizado

$$\begin{split} v^{R}(y,d,D) &= \max_{c_{T}^{R},c_{N}^{R},d'} U(c_{T}^{R},c_{N}^{R}) + \beta \int_{\hat{y}}^{\bar{y}} v^{R}(y',d',D') f(y',y) dy' \\ &+ \beta \int_{\underline{y}}^{\hat{y}} v^{D}(y',D') f(y',y) dy' \end{split}$$

sujeto a:

$$c_T^R + pc_N^R = y + d' - (1+r)d + py^N$$
 (R1)

$$(1+r)d\int_{\hat{y}}^{\bar{y}} f(y,y_{-1})dy + \lambda_2 \int_{\underline{y}}^{\hat{y}} (y+py^N)f(y,y_{-1})dy = (1+\rho)d$$
(R2)

$$D' = \Gamma(D, y)$$

Equilibrio Descentralizado

▶ SP

$$v^D(y,D) = \max_{c_T^D,c_N^D} U\left(c_T^D,c_N^D\right) + \beta(1-\phi)Ev^A(y',D') + \beta\phi Ev^R(y',0,D')$$

sujeto a:

$$c_T^D + pc_N^D = (1 - \lambda_1)(y + py^N)$$

$$v^{A}(y, D) = \bigcup_{c_{T}^{A}, c_{N}^{A}} \left(c_{T}^{A}, c_{N}^{A} \right) + \beta (1 - \phi) E v^{A}(y', D') + \beta \phi E v^{R}(y', 0, D')$$

subjeto a:

$$c_T^A + pc_N^A = y + py^N$$

