Robustifying Learnability

Robert Tetlow* Peter von zur Muehlen

*Division of Research and Statistics, Federal Reserve Board, Washington, D.C., 20051 USA

E-mail: rtetlow@frb.gov http://www.roberttetlow.com

Disclaimer!

- The views in this presentation are those of the authors only and are not necessarily shared by the members of the Board of Governors or the staff.

Motivation

- Model uncertainty is widely accepted.
- Agents may not to have RE but are rational and can learn.
- But: No assurance they use LS correctly or even use LS at all.

Objectives

- Introduce uncertainty in the models agents use.
- Devise procedures for maximizing prospect that an economy converges in expectations in the presence of model uncertainty...that is, robustify learnability

Methodology

- We take the learnability literature...
- ...and marry it to the robust control literature
- ...to come up with tools to choose policy rules that render a model's actual law of motion locally robust to misspecification

Contribution of this paper

- Policy makers can act to minimize consequences of these errors.
- Not knowing where mistakes arise, and to protect against worst cases, the authority uses methods of structured robust control.

Performance metrics

- Not concerned with loss function minimization
- Mostly concerned with ensuring convergence of learning by agents to REE: E-stability.

A few of the pertinent references

Learning \& determinacy literature:

- Bullard and Mitra (2001) JME, (2003).
- Evans and Honkapohja (EH) Learning and Expectations in Macroeconomics (2001).
Control literature:
- Zames (1966), Zhou-Doyle-Glover (1996).
- Onatski and Stock (2002), Zhou and Doyle, Essentials of Robust Control (1998), Tetlow and vzM (2001).
Literature related to this paper:
- Evans \& McGough (2004),EH\&Marimon (MD,2001)

Determinacy and Learning

- Plausible policy rules can be unstable under learning. (Bullard \& Mitra, JME 2002 and Evans\&Honkapohja 2003).
- Determinacy and learnability are not the same.

A General Linear Framework

$$
\begin{aligned}
& y_{t}=\alpha+M E_{t}^{*} y_{t+1}+N y_{t-1}+P v_{t} \text { with } v_{t}=\rho v_{t-1}+\varepsilon_{t} \\
& \binom{E_{t}^{*} y_{t+1}}{y_{t}}=\binom{\alpha M^{-1}}{0}+\left(\begin{array}{cc}
M^{-1} & -N M^{-1} \\
I & 0
\end{array}\right)\binom{y_{t}}{y_{t-1}}-\binom{M^{-1}}{0} P v_{t}+\binom{1}{0} \varepsilon_{t} \\
& E_{t}^{*} Y_{t+1}=A+B Y_{t}+C v_{t}+D \varepsilon_{t}
\end{aligned}
$$

- Unique REE if the Blanchard \& Kahn conditions hold

Perceived Law of Motion

- Perceived law of motion (PLM): the model agents estimate using LS

$$
Y_{t}=a_{t}+b_{t} Y_{t-1}+c_{t} V_{t}
$$

- Actual law of motion (ALM):
- Agents substitute expectations formed with PLM into the linear model.

Mapping from PLM to ALM

- Resulting mapping

$$
(a, b, c)=T(a, b, c)
$$

- is unique if there is a fixed point for which b has all roots inside the unit circle.

E-stability

- If eigenvalues of Jacobian of ODE

$$
\frac{d}{d \tau}(a, b, c)=T(a, b, c)-(a, b, c)
$$

- have real parts <1. See Evans and Honkapohja (2001).

Model Perturbation

- Begin with a PLM (omit intercept and let $X_{t}=\left[Y_{t}, v_{t}\right]$):

$$
\begin{aligned}
X_{t} & =\left(\begin{array}{ll}
b & c \\
0 & \rho
\end{array}\right) X_{t-1}+\varepsilon_{t} \\
& \equiv \Pi \cdot X_{t-1}+\varepsilon_{t}
\end{aligned}
$$

- Now perturb this model:

$$
X_{t}=\left[\Pi+\Delta_{W}\right] \cdot X_{t-1}+\varepsilon_{t}
$$

Perturbation Operator

- where, with W_{1} and W_{2} as scaling matrices

$$
\Delta_{W}=W_{1} \Delta W_{2}
$$

Δ is a diagonal matrix with norm:

$$
\|\Delta\|_{\infty}=\sqrt{\sup _{\omega} \max _{e i g}\left[\Delta^{\prime}\left(e^{-i \omega}\right) \Delta\left(e^{i \omega}\right)\right]}<r<\infty
$$

- We want r as large as possible

Augmented Feedback Loop

- We can write the model as

$$
\begin{aligned}
& \binom{X_{t+1}}{p_{t}}=\left(\begin{array}{cc}
\Pi & W_{1} \\
W_{2} & 0
\end{array}\right)\binom{X_{t}}{h_{t}} \\
& h_{t}=\Delta p_{t}
\end{aligned}
$$

- Transfer function from h to X and p :

$$
\begin{aligned}
& \binom{X_{t}}{p_{t}} \equiv\binom{G_{1}}{G_{2}} h_{t} \\
& G_{1}=\left(I L^{-1}-\Pi\right)^{-1} W_{1} ; G_{2}=W_{2}\left(I L^{-1}-\Pi\right)^{-1} W_{1}
\end{aligned}
$$

Small Gain Theorem

$$
\|\Delta\|_{\infty}<1 / r \text { iff }\left\|G_{2}(s)\right\|_{\infty}<r
$$

- i.e. stabilize G_{2} and you stabilize the entire system
- The object is to find the largest singular value of
- such that $I-G_{2} \Delta$ is not invertible

Structured Singular Value

$$
\begin{gathered}
\mu(\phi, \omega)=\min \left\{\begin{array}{l}
\bar{\sigma}\left[\Delta\left(e^{i \omega}\right)\right]: \Delta \in D_{r}, \\
\operatorname{det}\left[I-G_{2}(\omega) \Delta\left(e^{i \omega}\right)\right]=0
\end{array}\right\}^{-1} \\
\bar{\mu}\left(\phi^{*}\right)=\inf _{\phi} \sup _{\omega \in[0,2 \pi]} \mu(\phi, \omega) \\
r \approx 1 / \bar{\mu} \\
r=\text { radius of allowable perturbations } \\
\bar{\sigma}=\text { maximum singular value }
\end{gathered}
$$

Schematic representation of robust learnability maximum perturbation space around the reference PLM that keeps the model determinate and stable

The NKB model

$$
\begin{gathered}
x_{t}=E_{t}^{*} x_{t+1}-1 / \sigma\left(r_{t}-r_{t}^{n}-E_{t}^{*} \pi_{t+1}\right) \\
\pi_{t}=\beta E_{t}^{*} \pi_{t+1}+\kappa x_{t} \\
r_{t}^{n}=\rho r_{t-1}^{n}+\varepsilon_{t}
\end{gathered}
$$

...plus one of three policy rules

1. Lagged-data rule

$$
r_{t}=\phi_{x} x_{t-1}+\phi_{\pi} \pi_{t-1}+\phi_{r} r_{t-1}
$$

2. Contemporaneous-data rule

$$
r_{t}=\phi_{x} x_{t}+\phi_{\pi} \pi_{t}+\phi_{r} r_{t-1}
$$

3. Forecast-based rule

$$
r_{t}=\phi_{x} E_{t} x_{t+1}+\phi_{\pi} E_{t} \pi_{t+1}+\phi_{r} r_{t-1}
$$

Information Protocol

The central bank knows

$$
\sigma, \kappa, \beta, \rho
$$

Agents observe

$$
X_{t-1}, \pi_{t-1}, r_{t-1}, r_{t-1}^{n}
$$

The PLM

- We assume that agents estimate a VAR in $x_{t}, \pi_{t}, r_{t}, r_{t}^{n}$
- In most cases our PLMs are overparameterized.
- But these PLMs converge to the MSV solution in learning.

Scaling the perturbations

- We allow all 16 coefficients in the VAR to be perturbed.
- Each perturbation is scaled by its standard deviation in the VAR estimated prior to the experiments.

No Sunspots!

- Learnability is made robust conditional on establishment of a unique saddle-point equilibrium.

Bullard and Mitra (2003)

FIGURE 2. Forward Expectations

Table 1 : Contemporaneous data rules

Rule coefficients

rule	X_{t}	π_{t}	r_{t-1}	radius	loss
optimized	0.053	0.995	1.12	1.06	3.63
robust	0.052	1.21	1.41	1.13	3.70

- Does high policy inertia necessarily imply learnability under misspecification?
- The contour maps in the next slides suggest: not exactly.
- Difference between
--- robust learnability
--- size of learnable space.

Robustness contours Contemporaneous data rules

Table 2 : Forecast-based rules

Rule coefficients

rule	X_{t}	π_{t}	r_{t-1}	radius	loss
optimized	0.29	0.99	1.32	0.88	3.63
robust	0.04	2.80	0.10	2.32	4.43

Robustness contours forecast-based rule

Conclusions

- Policy is about more than minimizing a loss function.
- If agents form expectations by recursive learning in mis-specified models, policy can facilitate learning to achieve a REE.
- We have identified and described tools to do this using robust control theory.
- A robustly learnable rule is not the same as rule that has a wide learnable space in a given model.

