Aiming for the bull’s eye: Uncertainty and inertia in monetary policy

by Maria Demertzis and Nicola Viegi
discussion by Kristoffer Nimark

Conference on Monetary policy, uncertainty and the business cycle
Central Reserve Bank of Peru, November 2006
What the paper does

- Demertzis and Viegi (DV) derive a policy procedure in a forward looking New-Keynesian type model

- 2 twists:
 - Parameter uncertainty: The slope of the short run Phillips curve is unknown
 - Expectations are subject to differential information as in Morris and Shin (2006) which introduces inflation inertia
The set up

\[\begin{align*}
\pi_t &= \beta E_t \pi_{t+1} + \alpha y_t + \varepsilon_t \\
y_t &= E_t y_{t+1} - \gamma (i_t - \beta E_t \pi_{t+1}) + \xi_t \\
\alpha &\sim N(\bar{\alpha}, \sigma^2_\alpha) \\
L &= [(\pi_t - \pi^*)^2 + y_t^2]
\end{align*}\]

Brainard's (1967) result applies: Policy "caution" is increasing in variance of \(\alpha\)
Expectations

DV appeal to Morris and Shin (2006)

- Only a fraction \(\mu \) of price setters receive information about the CB’s target level of inflation \(\pi_t^* \)

- This is used to motivate \(E_t \pi_{t+1} = \pi_{t-1} \) in numerical simulations
The results

DV derive a two-step procedure that yields certainty equivalent policy recommendation

- More aggressive/certainty equivalent policy results in smaller losses than Brainard type policy

- What’s going on?
New Dynamics

\[\pi_t = \beta \pi_{t-1} + \alpha y_t + \varepsilon_t \] \hspace{1cm} (1)

- We are in Soderstrom (SJE 2002): Discretionary policy is now a dynamic problem
- No analytical solution to optimal policy if CB care about both inflation and output gap volatility
- No particular reason to believe that either Brainard or TS will be optimal
- Soderstrom finds that if inflation follows (1), then the intuition of Brainard still holds.
Using Morris and Shin (2006) in a NK setting

Morris and Shin’s set up is highly stylized:

\[a_{it} = \gamma E_{it} \theta_t + \beta E_{it} a_{t+1} \]
\[a_t = (1 - \beta) E_t \theta_t + E_t \beta a_{t+1} \] (2)

- Limit case for $\beta \to 1$ perhaps not the most interesting or realistic

- State only affect outcomes through expectations
 - Otherwise a simple observation of a_t would reveal that the state has changed

- NK Phillips curve does not have the form (2)
Suggestions

- Be more careful when transplanting Morris and Shin type information set up into the model.

- Start from the price setting problem of the firm, define information sets and a process for CB’s inflation target.

- Solve the dynamic optimization problem of the central bank.

- Interesting interactions between caution and learning about target?