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Abstract
We study the implications of uncertainty on the Central Bank’s ability to
achieve its objectives. Assuming multiplicative uncertainty in a standard
forward looking model, we show that while the role for policy is reduced
in line with Brainard’s attenuation e¤ect, at the same time, the contri-
bution of expectations to the …nal outcome increases. In the context of a
discretionary set-up, if individuals are subject to di¤erential information
according to which expectations exhibit inertia, then the system takes a
long time to align with the CB’s in‡ation objective following a shock.
With this in mind, we thus look for an algorithm that concentrates on
removing inertia and thus bring expectations back on target. To this end,
we put forward a two-step algorithm in which the in‡ation target is state
contingent. The Central Bank sets (as an auxiliary step) a variable in‡a-
tion target that depends on both the degree of uncertainty, as well as the
shocks that occur each time. We show that such an algorithm increases
the level of variability in the system but for small levels of uncertainty
the cumulative bene…ts of pinning down expectations more than compen-
sate the costs of having to overuse the instrument. We demonstrate this
through Monte Carlo Simulations.
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1 Introduction
The bene…ts of in‡ation targeting in the Svensson (1999) sense amount to pro-
viding a nominal anchor for the private sector to infer policies with, in order
to formulate expectations with greater accuracy. For the Central Bank (CB),
on the other hand, in‡ation targeting provides an implicit commitment mech-
anism which increases its cost of deviating from announced targets and hence
discourages it from doing so. The economy on the whole bene…ts from greater
transparency because it leads to greater credibility and by consequence to ef-
fective monetary policies. From a political economy standpoint therefore, the
literature associates the concept of in‡ation targeting with greater transparency
and hence with more credible and e¤ective policies. By the same token, a cen-
tral bank that fails to achieve the target that it sets (and announces) will be
penalised with a loss in credibility and hence a subsequent reduction in the
ability to pursue its objectives. “It appears that for monetary policy makers,
announcements alone are not enough; the only way to gain credibility is to earn
it”, (Bernanke and Mishkin, 1997).
Our paper is motivated from the importance that in‡ation targeting puts on
achieving the monetary ob jective announced. We analyse this issue in the con-
text of an economy that is characterised by parameter uncertainty as modelled
by Brainard, (1967). In describing the attenuation e¤ect he puts forward, we
observe that as the contribution of policy to the …nal in‡ation outcome reduces
in the presence of multiplicative uncertainty, that of expectations increases pro-
portionally to the prevailing degree of the speci…ed uncertainty. Naturally, if
the Central Bank operates under commitment, expectations are anchored by
the level of in‡ation the Central Bank aims at. In a discretionary environment
where expectations are parametric to the CB’s actions, it is then the assumption
of rational expectations (RE) that “forces” the private sector to adjust their ex-
pectations such that the outcome is consistent with the intentions of the Central
Bank. The discrepancy in the way policy and expectations a¤ect the …nal out-
come is therefore redundant. However, if one departs from a rigid application
of the RE paradigm, then multiplicative uncertainty can seriously compromise
the CB’s ability to attain its objectives. To demonstrate this we allow private
agents to be subject to di¤erential information (Morris and Shin, 2006). This
implies that even if a very small proportion of people are backward-looking in
the way they form expectations, their beliefs prevail and average expectations
are also backward-looking. This in turn prevents policy from closing the gap
between current in‡ation and the CB’s ob jective. We will add to that, that this
inability is made worse in the presence of uncertainty and therefore, attaining
the target becomes increasingly more di¢cult. We analyse two issues: …rst,
if there is some value in attaining the target as in‡ation targeting proponents
advocate, then we aim to …nd an algorithm that will both manage to achieve
it on average, as well as still operate in an optimisation framework, so that the
procedure remains transparent to the public. We thus identify a two-step algo-
rithm according to which, in the …rst step, the central bank deviates from the
target in order to reactivate the instrument and only in the second step, does
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it aim for the actual target itself. The two-step procedure amounts therefore,
to the Central bank aiming for the bull’s eye and not directly at it. Second,
we identify the conditions of uncertainty under which such an algorithm can
prove superior in welfare terms to the Brainard result. This is important in
an in‡ation targeting framework as announcing a target that is unlikely to be
achieved is not necessarily increasing one’s credibility (Posen, 2002).
The paper is organised as follows. Sections 2 discusses the model under certainty
and multiplicative uncertainty respectively. Section 3 introduces the concept of
di¤erential information and how it a¤ects private agents’ expectations. Section
4 then derives a two-step algorithm to in‡ation targeting and with the aid of
numerical simulations, section 5 discusses when such an algorithm is bene…cial.
Section 6 concludes.

2 The Role of Expectations
Most of the attempts to examine the e¤ects of uncertainty in a dynamic frame-
work rely on a backward-looking set-up (Söderstöm, 2002, Srour, 1999). The
somehow surprising result, from the point of view of in‡ation targeting propo-
nents, is that uncertainty in the structure of the economy implies that achieving
the target is not optimal as it may lead to instability in the system. This seems
at odds with the general perception that the main advantage of in‡ation tar-
geting is that it stabilises expectations (see the empirical evidence in Johnson,
2002 and Levin et al, 2003). The contradiction is only apparent: controlling
expectations is relevant only if private sector expectations are an important de-
terminant of the economic outcome. Thus the right set-up to test the e¤ect of
model uncertainty on the Central Bank’s ability to achieve its in‡ation objec-
tive is a forward-looking model. We apply therefore, a standard New Keynesian
model as described in Clarida Gali and Getler (1999) and Woodford (2004) and
used in a similar context by Giannoni (2002) in which expectations play again
a central role (Woodford, 2003). Following Clarida, Gali and Getler (1999),
the economy is thus described by the following pair of log-linear relations in
deviation from their steady state:

πt = βEtπt+1 + αyt + εt (1)
yt = Etyt+1 ¡ γ (it ¡ Etπt+1) + ξt (2)

where (1) is an expectations-augmented “AS” relation in which present in‡ation
is a function of private sector in‡ation expectations one period ahead, and (2)
is an intertemporal “IS” relation. Notation follows convention and coe¢cients
satisfy, α, γ > 0. Supply shocks are uncorrelated autoregressive processes, i.e.:

εt+1 = ρεt + vt+1, 0 < ρ < 1

and vt+1 has a zero mean and constant variance. We solve under the AS con-
straint in which output gap is considered the intermediate instrument. We thus
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abstract, for simplicity, from the issue of actual monetary policy transmission.
The Central Bank minimises the following objective function:

min
y

Lt =
1
2
Et

1X

τ=0

βτ
n
(πt+τ ¡ π¤)2 + y2

t+τ

o
(3)

and the discount factor is equal to one, i.e. β = 11 . The central bank announces
that it aims at a level of in‡ation equal to π¤, known as the in‡ation target.
In evaluating policy, expectations are treated as parametric (Currie and Levine
1999) and the time-consistent discretionary solution reduces to a period-by-
period optimization of the loss function under and (1) and (2), or in other
words:

min
y

L =
1
2
E

n
(πt ¡ π¤)2 + y2

t

o
(4)

Assume now that there is limited knowledge about the monetary transmission
mechanism. Similar to Brainard’s contribution this is represented by coe¢cient
α in the AS equation being stochastic i.e.: αt ! N

¡
¹a, σ2

α
¢

2 and has come to be
knows as Brainard Uncertainty. The existence of such uncertainty implies that
the ob jective function (3) can now be expressed in terms of the …rst and second
moment of the uncertain terms (see Appendix B for a detailed derivation):

min
y

L =
1
2
E

n
(¹πt ¡ π¤)2 + y2

t
¡
1 + σ2

α
¢o

(5)

where ¹πt = Etπt+1 + ¹αyt + εt . The term y2
t σ2

α now represents the extra cost
that the CB incurs as a result of facing uncertainty in the parameter structure
of the model. Again expectations are treated as parametric and the discre-
tionary solution reduces the problem to a period-by-period optimization of the
loss function (5) subject to (1). We compare next how the existence of such
uncertainty a¤ects the results. We optimise thus respectively (4) and (5). The
structural representation of the results with Certainty (when α is treated as a
parameter) is then:

yCE
t =

α
1 + α2π¤ +

α
1 + α2Etπt+1 +

α
1 + α2 εt (6)

πCE
t =

α2

1 + α2π¤ +
1

1 + α2Etπt+1 +
1

1 + α2 εt (7)

By contrast, the results under Brainard Uncertainty are:
1 See Appendix A for the general solution of what follows when 0< β < 1.
2 Note, that uncertainty in α is qualitatively equivalent to uncertainty in γ when one wishes

to examine the impact of supply shocks. Walsh 2003 shows that if the central bank had an
interest rate term in its objective function and examined the e¤ect of a quasi-demand shock
(real interest rate shock), then the uncertainty in either α or γ would have qualitatively
di¤erent implications on policy implementation.
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yBR
t =

α
1 + α2 + σ2

α
π¤ +

α
1 + α2 + σ2

α
Etπt+1 +

α
1 + α2 + σ2

α
εt (8)

πBR
t =

α2

1 + α2 + σ2
α

π¤ +
1 + σ2

α
1 + α2 + σ2

α
Etπt+1 +

1 + σ2
α

1 + α2 + σ2
α

εt (9)

We observe that the existence of parameter uncertainty implies the following
things:

² As uncertainty increases ( σ2
α ! 1), the instrument (yt) is used less and

less, in line with Brainard’s classical attenuation e¤ect, from (8).

² As a consequence, the relative contribution of policy to the in‡ation out-
come (coe¢cient of π¤ in (9)) reduces in uncertainty.

² By contrast, that of expectations (coe¢cient of Etπt+1 in (9)) increases
in the level of prevailing uncertainty. At the limit when uncertainty is
in…nite (σ2

α ! 1), it is straightforward to show that the target of the
Central Bank becomes irrelevant and all that matters is private sector
expectations (naturally shocks always play a role).

Note that these observations hold for the structural representation of the solu-
tions. Moving next to the reduced form solutions where expectations are solved
for with recursive substitution, the discrepancy in the way uncertainty a¤ects
the role of policy and expectations is eliminated. The in‡ation outcome is now,
respectively for the two cases:

~πC E
t = π¤ +

1
1 + α2 ¡ ρ

εt (10)

~πBR
t = π¤ +

1 + σ2
α

¹α2 + (1 + σ2
α) (1 ¡ ρ)

εt (11)

and the Central Bank is able to achieve its objective π¤ (but for the supply error
and its persistence). Imposing rational expectations in a standard way ensures
therefore, that expectations Etπt+1 act as a ‘jump’ variable that always moves
to compensate for any shortcomings in the policy action and bring in‡ation in
line with the objective. But this also obfuscates the e¤ect of uncertainty on the
relative importance of expectations. We attempt to address this issue next.

3 The Formation of Expectations
For the relevance of expectations in the presence of uncertainty to come to the
fore we need to identify an expectation formation process that prevents this
immediate adjustment to the desired level. To this end, we apply the concept
of Di¤erential Information as presented by Morris and Shin (2006). This latter
formulation is an attractive way of capturing this issue because it allows for
individuals to have di¤erent information about the relevant level of in‡ation,
while still operating within the context of rational expectations.
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3.1 Di¤erential Information and Expectations
The concept of Di¤erential Information builds on previous work by Morris and
Shin (Morris and Shin, 2002a and 2002b). When applied to monetary policy
the idea behind this is as follows: the current state of in‡ation is π 0 but the
Central Bank wants to move it to a new level π¤. In‡ation state π at time t
evolves in the following way:

πt =
½

π0 for t = 0
π¤ for t ¸ 1

However, in the eyes of those who form expectations, the assumption of di¤er-
ential information implies that at time t ¸ 1 only a proportion of the private
sector µ knows the value of πt and automatically adjusts expectations to that
level (π¤), whereas, 1 ¡ µ does not. The authors assume that the proportion
of people, (1 ¡ µ), that are e¤ectively "unaware" of this target is very small to
start with (such that µ is very close but not quite one) and diminishes from
period to period, such that eventually everyone adjusts their expectation in line
with the target. This latter assumption implies that their approach is consistent
with Rational Expectations. The authors then derive the way expectations are
formed for the two groups through forward iterations (described in detail in
Appendix C). They show that expected in‡ation h periods ahead is

¹E1 ¹E2... ¹Et (πt+h) =
µ

1 ¡
tQ

s=1
µs

¶
π0 +

µ
tQ

s=1
µs

¶
π¤ (12)

Note that in the absence of di¤erential information (µ = 1) iterated expectations
collapse to the single expectation at time t, which under RE is equal to π¤.
However for µ < 1, the higher order expectations for a given timing t+h (where
h > 0) depends on the limiting property of

Qt
s=1 µs. And if µs approaches one

only when t ! 1, then it follows that
Qt

s=1 µs ! 0 (even if µs is very close
to one to start with) and the current level of in‡ation π0 prevails in (12). The
intuition behind this stems from the fact that monetary policy is an information
game between the central bank and the private agents but also between the
private agents themselves3. The element of coordination between the agents is
important in the process of forming expectations and second-guessing how others
think is crucial to one’s decision. In the presence of di¤erential information,
those that are aware of the target are also aware that there is a very small
minority that is not and will therefore form expectations according to the current
level of in‡ation. Knowing that, the desire to coordinate "forces" them to match
their expectations to those of the least informed group, namely at π0. The
existence of such small minority of people implies that π¤ can therefore never
be attained. The e¤ect of such an assumption is that while the economy is
forward-looking, the system e¤ectively operates as though it were backward-
looking.

3 See Demertzis and Viegi (2006) for a detailed description of monetary policy as an infor-
mation game.
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In order to allow for di¤erential information in the context of our model, in‡ation
expectation Etπt+1 is now proxied by its higher order equivalent, i.e.:

¹Et¡k ¹Et¡k+1... ¹Et (πt+1) =

Ã
1 ¡

tQ
s=t¡k

µs

!
π0 +

Ã
tQ

s=t¡k
µs

!
π¤ (13)

What (13) then tells us is that the longer it takes for µ to converge to 1 (k
is a large number), the closer the expectations remains to the original level of
in‡ation π0. Substituting then (13) in (9) we can now see that this e¤ect is
exacerbated in the presence of uncertainty.

πt =
¹α2

1 + ¹α2 + σ2
α

π¤ +
1 + σ2

α

1 + ¹α2 + σ2
α

"Ã
1 ¡

tQ
s=t¡k

µs

!
π0 +

Ã
tQ

s=t¡k
µs

!
π¤

#

(14)

+
1 + σ 2

α

1 + ¹α2 + σ2
α

εt

For demonstration purposes only we will consider here the limit case when
k ! 1, or in other words, when agents take a very long time to update their
beliefs and expectations are therefore, purely backward-looking:

lim
k!1

¹Et¡k
¹Et¡k+1... ¹Et (πt+1) = π0 (15)

Substituting then (15) into (14) produces:

πt =
¹α2

1 + ¹α2 + σ2
α

π¤ +
1 + σ2

α

1 + ¹α2 + σ2
α

π0 +
1 + σ2

α

1 + ¹α2 + σ2
α

εt (16)

This shows that the system exhibits inertia and therefore, the ability of the Cen-
tral Bank to achieve its objectives is seriously hindered. The in‡ation outcome
will therefore, not close the whole distance between π0 and π¤. It is then straight
forward to illustrate from (16) the role of uncertainty in exacerbating this dis-
crepancy. Even if a little di¤erentiated information is introduced, the existence
of uncertainty emphasises the role of expectations in terms of determining the
outcome and de-emphasises that of policy. At the limit when uncertainty is in…-
nite, the central bank is unable to move away from the current level of in‡ation.
In other words,

lim
σ2

α!1
πt = π 0 + εt (17)

This implies that in the presence of uncertainty, it becomes increasingly di¢cult
for policy to achieve its in‡ation objective and the system is characterised by
even greater inertia than is due to just di¤erential information.
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4 Two-Step In‡ation Targeting
We have thus shown so far that the presence of Brainard uncertainty exacerbates
the degree of inertia due to di¤erential information and at the limit immobilises
policy. In turn, this also implies that the in‡ation objective becomes more
and more di¢cult to achieve, which lends itself to the question of what use is a
quantitative objective if it is seldom achieved. Our ob jective as a consequence, is
to identify an algorithm that, given the set-up assumed, reactivates the relevance
of policy and aims explicitly at attaining the target. Achieving that, we can
then evaluate whether and when such an algorithm actually does better that
the Brainard solution shown above and why.
We derive an algorithm based on the following rationale. We know from (16)
that the attenuated policy will close only part of the distance between the
current level of in‡ation π0 and the target π¤, say k(π¤ ¡ π0), where k < 1 (and
reducing in the level of prevailing uncertainty σ2

α). Closing the full distance
requires then that one aims at a target further away than the desired level, say
(π¤ + θ) such that k [(π¤ + θ) ¡ π0]) is the distance covered by the attenuated
policy rule that will land at precisely π¤. We do this in two steps: we …rst derive
a policy rule as a function of the overshooting target (π¤ + θ) and in the second
step then identify the value of θ that matches the degree of "overshooting" to
the proportion of the distance that needs to be covered.

4.1 An optimisation framework
We describe next the two-step procedure reduces the impact of Brainard uncer-
tainty in greater detail.

STEP 1

In the …rst step, and after the shock has occurred, the monetary policy authority
identi…es the optimal policy rule as a function of an auxiliary target (π¤ + θ).
Formally this means optimising the following ob jective function instead of (5),

min
y

E (L) =
1
2

n
[¹π t ¡ (π¤ + θ)]2 + y2

t
¡
1 + σ2

α
¢o

(18)

subject to the supply curve (1). The optimal rule derived following the optimi-
sation of (18) is a function of θ:

ŷt =
¹α

1 + ¹α2 + σ2
α

(π¤ + θ) ¡ ¹α
1 + ¹α2 + σ2

α
(Etπt+1 + εt) (19)

and therefore in‡ation is:

π̂t =
¹α2

1 + ¹α2 + σ 2
α

(π¤ + θ) +
1 + σ2

α

1 + ¹α2 + σ2
α

(Etπt+1 + εt) (20)

8



The above two equations imply that for a given level of uncertainty, the CB will
choose to deviate, at …rst instance, from its ultimate target π¤ by a parameter
θ.

STEP 2

The CB now chooses θ in full knowledge of the extent of uncertainty and the
size of the shock and aims to maximise the probability of achieving its true
objectives. In other words, since in‡ation expectations move away from the
target as uncertainty increases, the deviation term θ will move to close that
gap. In that respect θ is therefore, an auxiliary step, necessary to make full use
of the information available to the bank. The derived rules from Step 1 (19)
and (20) are now substituted into the objective function of the Central Bank:

min
θ

E (L) =
1
2

Et

h
(π̂t ¡ π¤)2 + ŷ2

i
(21)

to produce

min
θ

E (L) = f (θ, σ2
a, ŷt, π̂t) (22)

Given the rule derived in Step 1, the CB chooses now the degree of overshoot-
ing θ required, (contingent on the economy’s past history and the perceived
uncertainty of the transmission of policies), that will get her closer to π¤, i.e.:

θ(σ2
α) = arg min

θ
E (L)

which in its analytical form is

θ =
σ2

a

1 + ¹α
[π¤ ¡ Etπt+1 ¡ εt ] (23)

As uncertainty decreases, the deviations from π¤ decrease as well, such that at
the limit they become zero, i.e.

lim
σ2

a!0
(θ) = 0

Proposition 1 Applying a two-step procedure in which θ is contingent on the
shocks that hit the economy, the existing uncertainty and the in‡ation target,
neutralises the ex ante e¤ects of uncertainty on the policy rules.

Proof 1: Substituting the analytical solutions for θ (23) into (19) and (20)
produces the two-step target rules that a Central Bank needs to apply under
uncertainty.

yT S
t =

¹α
1 + ¹α2π¤ ¡ ¹α

1 + ¹α2 (Etπt+1 + εt) (24)

πT S
t =

¹α2

1 + ¹α2π¤ +
1

1 + ¹α2 (Etπt+1 + εt) (25)
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The rules achieved are similar to those attained with no uncertainty, (30) and
(31) (with α replaced by ¹α). This demonstrates that by varying the target
optimally, neutralises the presence of uncertainty in the transmission process4 .
This however, is an ex ante result. As we will show next, this happens at the
expense of using yt more actively, thereby introducing greater variability in the
system. In a period-by-period optimisation Brainard’s attenuated policy is by
construction optimal. However, this policy is not guaranteed to be optimal if
one was interested in the dynamic properties (i.e. cumulative e¤ects) of the rule,
where the bene…ts of hitting the target more often may on aggregate compensate
for the increased volatility. We will show this in the sections of simulations.

Before doing that, we impose again di¤erential information by applying (15) in
(24) and (25). The TS algorithm then implies the following results for output
and in‡ation respectively

~yTS
t =

¹α2

1 + ¹α2 π¤ ¡ ¹α
1 + ¹α2 π0 ¡ ¹α

1 + ¹α2 εt (26)

~πTS
t =

¹α2

1 + ¹α2 π¤ +
1

1 + ¹α2 π0 +
1

1 + ¹α2 εt (27)

equivalent to the solution under no uncertainty but for the …rst moment of α
replacing the actual value. It is important to examine next, whether reactivat-
ing the instrument compensate for the variability introduced, and under which
conditions.

5 The merits of the TS procedure
The nature of the problem the Central Bank faces under uncertainty is encap-
sulated in (5) and the optimal solution to that problem is given by (8) and (9).
In which sense then is it sensible to advocate the merits of the TS algorithm?
The answer to the latter question comes from the way the game is set-up. The
discretionary nature of our set-up explained earlier on, implies that we face a
period-by-period game. In any given period therefore that the CB needs to
move its instrument in reaction to a shock, the losses obtained by applying the
BR rule are by de…nition lower than that of any other rule, including the TS.
Hence in that period the advantage of getting closer to the target attained by
the TS algorithm does not compensate for the extra variability introduced in the
system. However, the dynamic nature of the adjustment to the shock implies
that multiple periods are required before the system converges to the objective.
From the second period onwards however, the bene…ts can potentially outweigh

4 Our approach is in fact equivalent to introducing an extra instrument while the number
of targets remains the same. As Hughes Hallett (1989) mentions “...all the instruments will
be needed to combat uncertainty even when there are only a few targets compared to the
number of instruments”.
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the costs such that on aggregate and for small degrees of variance the TS algo-
rithm does better. We demonstrate this next through Monte Carlo simulations
but show how this is done also analytically in Appendix D.

5.1 Numerical Simulations
We design the simulations as follows: the solutions for output for the two dif-
ferent regimes Brainard (BR) and Two-Step (TS).

yBR
t =

¹α
1 + ¹α2 + σ2

α
π¤ ¡ ¹α

1 + ¹α2 + σ2
α

Etπ t+1 ¡ ¹α
1 + ¹α2 + σ2

α
εt

yTS
t =

¹α
1 + ¹α2π¤ ¡ ¹α

1 + ¹α2Etπt+1 ¡ ¹α
1 + ¹α2 εt

are substituted in the equation for prices

πj
t = βEtπt+1 + αiyj

t + εt j = BR,T S

where parameter αi is drawn from a distribution N
¡
¹α,σ 2

α
¢
. Further, expecta-

tions are backward looking and errors exhibit a certain degree of persistence,
i.e.:

Etπt+1 = πt¡1 (28)
εt = ρεt¡1 + vt vt ' N (0, 1)

As we operate in a discretionary framework we calculate losses period-by-period
as measured by

LBR,t =
1
2

n¡
πBR

t ¡ π¤¢2
+ y2

BR,t

o

LT S,t =
1
2

n¡
πT S

t ¡ π¤¢2
+ y2

T S,t

o

We then calculate the cumulative losses for a certain number of years (n), dis-
counted by the appropriate discount factor, i.e.

nX

t=1

β tLj,t 8 j = BR, TS and n = 10 (29)

We apply the following parameterisation5 :
5 Note that for β < 1 then the rules become

yBR
t =

α
1+α2 +σ2α

π¤ ¡ α
1+ α2 +σ2α

βEtπt+1 ¡
α

1+α2 + σ2α
βεt

yTS
t =

α
1+α2

π¤ ¡ α
1+α2

βEtπt+1 ¡
α

1+ α2
βεt
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β = 0.99
α ' N

¡
0.5, σ2

α
¢

ρ = 0.8
π¤ = 1, π0 = 0

The average value of α applied is somewhat higher than what exists in the
literature, where it ranges from a minimum of 0.024 in Woodford (1999) to
a maximum of 0.3 in McCallum and Nelson (1999). However, as the qualita-
tive nature of the results is dependent only on the coe¢cient of variation of α
(CV´ σα

¹α ) and not its mean, the choice of numerical value for α is done purely
for presentation purposes. The updating of expectations in equation (28) is
consistent with Morris and Shin (2006) de…nition of expectations inertia. The
model is similar to the model used by Svensson (1999) and Söderstrom (2002),
although the timing of policy responses and e¤ectiveness is di¤erent. In the
model applied, the policy response is contemporaneous to the supply shock and
to the realisation of in‡ation. The lag response of the system to the policy
action observed is due to the inertia in expectations formation imposed and
there is no built-in lag in the monetary transmission mechanism. In the …rst
period the economy is subjected both to a supply shock εt and a policy shift
from π0 to π¤. Note that the numerical value of the target does not in‡uence
the qualitative nature of the results. We then apply the optimal targeting rule
and calculate the impulse response functions for y and π. Cumulative losses for
ten periods are calculated in deviation from the targets. Before presenting a
detailed welfare analysis, …gures (1) and (2) show a typical path for output and
in‡ation produced by the simulations.
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0.00

0.10

0.20

0.30

0.40

0.50

1 2 3 4 5 6 7 8 9 10 11 12

y(t)-BR y(t)-TS

Figure 1: Output Gap - Typical Path

Figure 1 shows a typical path of y, the instrument in our targeting rule. To
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achieve the in‡ation target the economy is subjected to higher real variability
in the early periods of the policy plan, than in the two-step regime. As can be
seen in …gure 2, once in‡ation and in‡ation expectations converge towards the
target, the two-step policy rule produces both lower real variability as well as
a path of in‡ation closer to the target, relative to the cautious Brainard policy
rule.

0.00

0.50

1.00

1.50

2.00

1 2 3 4 5 6 7 8 9 10 11 12

p(t)-BR p(t)-TS

Figure 2: In‡ation - Typical Path

Table 2 presents then the average cumulative losses of 10,000 stochastic simu-
lations for the two regimes for di¤erent degrees of uncertainty captured by the
coe¢cient of variation. Cumulative losses are lower in the TS regime for coe¢-
cient of variations equal to 0.5 and 1. For higher than that levels of uncertainty,
the gains in convergence no longer compensate for the early losses, relative to
Brainard’s cautious approach.

Table 2. Cumulative Losses (n = 10)
CV LBR(¤10) LT S(¤10)
0.5 260.7 252.7
1 316.6 292.1
1.5 573.1 1032.0

Table 3 instead shows the …rst period losses for the two policy regime. This
is also con…rmed analytically in appendix B. In order to stabilise the system
around the target, the two steps regime introduces greater variability in the
early periods, thus increasing early losses6 .

6 This also means that the results are a function of the discount rate applied. A very myopic
policy maker will be always cautious
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Table 3. First Period Losses
CV LBR(¤10) LT S(¤10)
0.5 11.9 12.1
1 11.6 12.2
1.5 11.4 12.7

It is the case therefore, that when evaluating the bene…ts of two regimes in
terms of their dynamic properties, then there exist levels of uncertainty when
it is better to ignore the prevailing level of uncertainty and aim to achieve the
objectives set. The variability introduced as result is more than compensated
by the bene…ts of achieving them.

6 Conclusions
Our motivation stems from the observation that the role of policy is reduced in
the presence of multiplicative uncertainty and that of expectations is increased.
If there are reasons to believe that in‡ation expectations cannot automatically
adjust to be in line with what the Bank intends, then in the presence of Brainard
uncertainty this can seriously hinder the ability of the Central Bank to achieve
its objectives. Our intention then was to …nd a way of reducing the detrimental
e¤ect of uncertainty on the Central Banks’ ability to get to its objectives.We
assume …rst that expectations are subject to di¤erentiated information as put
forward by Morris and Shin (2006). The private sector then requires sometime to
learn what level of in‡ation the Central Bank aims to achieve and only gradually
therefore converges to it. This introduces by itself inertia to the system which
is worsened in the presence of multiplicative uncertainty. We identify then a
two-step algorithm that aims to reintroduce the relative relevance of policy.
This has the advantage that the Central Bank is able to achieve its objectives
quicker, but at the expense of introducing greater variability in the system.
Our simulation section then shows that in a one-period framework, Brainard
does indeed better on average. However, as any shock requires multiple periods
before it peters out, we evaluate the cumulative bene…ts of the two algorithms.
We thus show that as the TS algorithm attains the targets quicker, there are
levels of uncertainty where the bene…ts of hitting the “bull’s eye” outweigh
the costs of greater variability. Furthermore, as this regime is done within an
optimisation framework that accounts for the level of prevailing uncertainty, the
rules derived are easier to communicate to the public and are in line with the
levels of transparency required by modern monetary policy.
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APPENDICES

A General Solutions
We derive here the general solutions with the discount factor.

L =
1
2

E
n

(βEtπt+1 + αyt + εt ¡ π¤)2 + y2
t

o

The discretionary solution of the problem is therefore the following:

∂L
∂y

= α (βEtπt+1 + αyt + εt ¡ π¤) + yt = 0

yt
¡
1 + α2¢ = ¡α (βEtπt+1 + εt ¡ π¤)

yt =
α

1 + α2 π¤ ¡ α
1 + α2 (βEtπt+1 + εt) (30)

Substituting (30) in (1), we obtain the discretionary level of in‡ation:

πt = βEtπ t+1 + α
·

α
1 + α2

π¤ ¡ α
1 + α2

(βEtπt+1 + εt)
¸

+ εt

=
α2

1 + α2π¤ +
1 + α2 ¡ α2

1 + α2 βEtπt+1 +
1

1 + α2 εt

or

πt =
α2

1 + α2π¤ +
1

1 + α2βEtπt+1 +
1

1 + α2 εt (31)

This equation can be solved forward to obtain (under εt+1 = ρεt and calling
1

1+α2 = A) a solution for in‡ation

πt = Aα2π¤ + AβEtπt+1 + Aεt

πt+1 = Aα2π¤ + AβEtπt+2 + Aρεt

then it follows that

πt = Aα2π¤ + Aβ
¡
Aα2π¤ + AβEtπt+2 + Aρεt

¢
+ Aεt

= Aα2 £
1 + βA + β2A2 + ...

¤
π¤ + Aεt

£
1 + Aβρ + A2β2ρ2 + ...

¤

The two geometric series inside the square brackets are respectively equal to:

1 + Aβ + A2β 2 + ... =
1

1 ¡ A

1 + Aβρ + A2β 2ρ2 + ... =
1

1 ¡ Aρ
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Therefore, equilibrium in‡ation is equal to

πt =
Aα2

1 ¡ Aβ
π¤ +

A
1 ¡ Aβρ

εt

Substituting for A = 1
1+α2 , we obtain

πt =
1

1+α2 α2

1 ¡ 1
1+α2β

π¤ +
1

1+α2

1 ¡ 1
1+α2 βρ

εt

=
α2

1+α2

1+α2¡β
1+α2

π¤ +
1

1+α2

1+α2¡βρ
1+α2

εt

and therefore,

πt =
α2

1 + α2 ¡ β
π¤ +

1
1 + α2 ¡ βρ

εt (32)

Note that for β = 1 the result collapse to (10). Similarly under uncertainty
when the objective function is now

L =
1
2
E

n
(βEtπt+1 + ¹αyt + εt ¡ π¤)2 + y2

t
¡
1 + σ2

α
¢o

Like above, we solve under the AS constraint only and then identify the i that
is implied by the aggregate demand curve. The FOC is:

∂L
∂y

= ¹α (βEtπt+1 + ¹αyt + εt ¡ π¤ ) + yt
¡
1 + σ2

α
¢

= 0

yt
¡
1 + σ2

α + ¹α2¢ = ¡¹α (βEtπt+1 + εt ¡ π¤ )

yt =
¹α

1 + ¹α2 + σ2
α

π ¤ ¡ ¹α
1 + ¹α2 + σ2

α
(βEtπt+1 + εt) (33)

Substituting (33) in (1), we obtain the discretionary level of in‡ation:

πt = βEtπt+1 + ¹α
·

¹α
1 + ¹α + σ2

α
π¤ ¡ ¹α

1 + ¹α2 + σ2
α

(βEtπt+1 + εt)
¸

+ εt

=
¹α2

1 + ¹α + σ2
α

π¤ +
1 + ¹α2 + σ2

α ¡ ¹α2

1 + ¹α2 + σ2
α

βEtπ t+1 +
1 + ¹α2 + σ2

α ¡ ¹α2

1 + ¹α2 + σ 2
α

εt

and therefore,

πt =
¹α2

1 + ¹α2 + σ2
α

π¤ +
1 + σ2

α

1 + ¹α2 + σ2
α

βEtπt+1 +
1 + σ2

α

1 + ¹α2 + σ 2
α

εt (34)

To solve for expectations, under the assumption of rational expectations, we
iterate the equation forward (and assume just like above that εt+1 = ρεt and
calling 1

1+¹α2+σ2
α

= ª)
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πt = ª¹α2π¤ + ª
¡
1 + σ2

α
¢
βEtπt+1 + ª

¡
1 + σ2

α
¢

εt

π t+1 = ª¹α2π¤ + ª
¡
1 + σ2

α
¢
βEtπt+2 + ª

¡
1 + σ2

α
¢

ρεt

then we can substitute and iterate forward

πt = ª¹α2π¤ +
¡
1 + σ2

α
¢
ªβ

£
ª¹α2π¤ + ª

¡
1 + σ2

α
¢
βEtπt+2 + ª

¡
1 + σ2

α
¢

ρεt
¤

+ ª
¡
1 + σ2

α
¢

εt

πt = ª¹α2
h
1 +

¡
1 + σ2

α
¢
βª +

¡
1 + σ2

α
¢2 β2ª2...

i
π¤ + ª

¡
1 + σ2

α
¢ h

1 + ªβ
¡
1 + σ 2

α
¢
ρ + ª2β2 ¡

1 + σ

The two geometric series inside quadratic brackets are equal to

h
1 +

¡
1 + σ2

α
¢

βª +
¡
1 + σ2

α
¢2

β2ª2...
i

=
1

1 ¡ (1 + σ2
α)βª

h
1 + ªβ

¡
1 + σ2

α
¢
ρ + ª2β2 ¡

1 + σ2
α
¢2 ρ2

i
=

1
1 ¡ ª (1 + σ2

α)βρ

Therefore, equilibrium in‡ation is equal to

πt =
ª¹α2

1 ¡ (1 + σ 2
α) βª

π¤ +
ª

¡
1 + σ2

α

¢

1 ¡ (1 + σ2
α) ªβρ

εt

Substituting back the value for ª = 1
1+¹α2+σ2

α
we obtain

πt =
1

1+¹α2+σ2
α

¹α2

1 ¡ (1 + σ2
α)β 1

1+¹α2+σ2
α

π¤ +
1

1+¹α2+σ2
α

¡
1 + σ2

α

¢

1 ¡ 1
1+¹α2+σ2

α
(1 + σ2

α)βρ
εt

=
¹α2

1+¹α2+σ2
α

1+¹α2+σ2
α¡β¡βσ2

α
1+¹α2+σ2

α

π¤ +
(1+σ2

α)
1+¹α2+σ2

α
1+¹α2+σ2

α¡(1+σ2
α)βρ

1+¹α2+σ2
α

εt

and therefore,

πt =
¹α2

1 + ¹α2 + σ2
α ¡ β ¡ βσ2

α
π¤ +

1 + σ2
α

1 + ¹α2 + σ2
α ¡ (1 + σ2

α) βρ
εt (35)

In both case we see that the smaller the discount factor (and therefore, the
higher the degree of impatience) the longer it takes to come to the target π¤.

B The Objective Function with Uncertainty in
α

Under uncertainty, where αt ! N
¡
¹α, σ2

α
¢
, losses conditional on shocks ε, we

can express the objective function of the CB in terms of the moments of α.
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L =
1
2
E

n
(πt ¡ π¤)2 + y2

t

o

=
1
2
E (πt ¡ π¤)2 +

1
2
E

¡
y2

t
¢

=
1
2
E fEtπt+1 + αyt + εt ¡ π¤g2 +

1
2
E

¡
y2

t
¢

=
1
2
E

n
(Etπt+1 + εt ¡ π¤)2 + (αyt)2

+2 (Etπt+1 + εt ¡ π¤) (αyt)g +
1
2
E

¡
y2

t
¢

=
1
2

n
(Etπt+1 + εt ¡ π¤)2 + E (αyt)2

+2 (Etπt+1 + εt ¡ π¤)E (αyt)g +
1
2
E

¡
y2

t
¢

but since E (αyt)
2 = y2

t E (α)2and E
¡
α2

¢
= σ2

α + ¹α2 then,

L =
1
2

n
(Etπ t+1 + εt ¡ π¤)2 + y2

t E (α)2

+2 (Etπt+1 + εt ¡ π¤) ¹αytg +
1
2
E

¡
y2

t
¢

=
1
2

n
(Etπ t+1 + εt ¡ π¤)2

+y2
t

¡
σ2

α + ¹α2¢ + 2 (Etπt+1 + εt ¡ π¤) ¹αyt
ª

+
1
2
E

¡
y2

t
¢

= 1
2

n
(Etπ t+1 + εt ¡ π¤)2 + y2

t ¹α2

+2 (Etπt+1 + εt ¡ π¤) ¹αyt + y2
t σ

2
α
ª

+
1
2
E

¡
y2

t
¢

From this, it follows that

¹πt ´ E(πt) = Etπt+1 + ¹αyt + εt

and therefore,

L =
1
2

n
(¹πt ¡ π¤)2 + y2

t σ
2
α + y2

t

o

=
1
2

n
(¹πt ¡ π¤)2 + y2

t
¡
σ2

α + 1
¢o

C Introducing Di¤erential Information
We introduce next the concept of Di¤erential Information as presented by Morris
and Shin (2006) which builds on some of their previous work (Morris and Shin,
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2002a and 2002b). When applied to monetary policy, the idea behind this is
as follows: the current state of in‡ation is π0 but the Central Bank wants to
move it to a new state π¤ within a given time horizon. It announces therefore,
the desired level of in‡ation π¤, which under the assumption of di¤erential
information, is not automatically believed. A proportion of the private sector
µ will automatically adjust expectations to that level at time t, whereas, 1 ¡ µ
will not. In the eyes of those who form expectations, in‡ation state πt therefore
evolves in the following way:

πt =
½

π0 for t · 0
π¤ for t ¸ 1

If agents are sub ject to di¤erential information, only a proportion µt of the
agents know the true value of π t at time t ¸ 1. This proportion is increasing
over time, such that eventually µt = 1, and therefore, all agents learn what the
true value of π t is in the su¢ciently distant future (as t ! 1). Note that this
latter assumption implies that as agents eventually learn the value of the state
variable, this set-up is consistent with Rational Expectations. Moreover, MS
assume that µ1 is very close to one to start with, such that the informational
friction is su¢ciently small by comparison to the occasion of no di¤erential
information. Looking at the agents individually, it is then the case that informed
agents form expectations as:

Ei,t

·
π0

πt+h

¸
=

·
1 0
0 1

¸ ·
π0
π¤

¸
(36)

whereas uniformed agents form expectations as:

Ei,t

·
π0

πt+h

¸
=

·
1 0
1 0

¸ ·
π0
π¤

¸
(37)

The assumption therefore, is that everyone knows the current or past state of in-
‡ation. Then, since a proportion µt are informed at time t, average expectation
for in‡ation is

¹Et

·
π0

πt+h

¸
=

·
1 0

1 ¡ µt µt

¸ ·
π0
π¤

¸
(38)

Similarly,

¹Et¡1 ¹Et

·
π0

πt+h

¸
= ¹Et¡1

·
1 0

1 ¡ µt µt

¸ ·
π0
π¤

¸

=
·

1 0
1 ¡ µt µt

¸
¹Et¡1

·
π0
π¤

¸

=
·

1 0
1 ¡ µt µt

¸ ·
1 0

1 ¡ µt¡1 µt¡1

¸ ·
π0
π¤

¸

=
·

1 0
1 ¡ µt¡1µt µt¡1µt

¸ ·
π0
π¤

¸

21



In a forward looking world, the present is a function of the sequence of all future
expectations. In other words, to derive the appropriate expectation one needs
to iterate this forward such that

¹E1 ¹E2... ¹Et

·
π0

πt+h

¸
=

2
4

1 0

1 ¡
tQ

s=1
µs

tQ
s=1

µs

3
5

·
π0
π¤

¸

and therefore,

¹E1 ¹E2... ¹Et (π 0) = π0 (39)

¹E1 ¹E2... ¹Et (πt+h) =
µ

1 ¡
tQ

s=1
µs

¶
π0 +

µ
tQ

s=1
µs

¶
π¤ (40)

This implies that the higher order expectation for a given timing t + h (where

h > 0) depends on the limiting property of
tQ

s=1
µs .

D Ex Ante losses comparison
Static losses are evaluated based on

L =
1
2
E

n
(¹πt ¡ π¤)2 + y2

t
¡
1 + σ2

α
¢o

The solutions for Brainard are:

yBR,t =
¹α

1 + ¹α2 + σ2
α

π¤ ¡ ¹α
1 + ¹α2 + σ2

α
π0 ¡ ¹α

1 + ¹α2 + σ 2
α

εt

πBR,t =
¹α2

1 + ¹α2 + σ2
α

π¤ +
1 + σ2

α

1 + ¹α2 + σ2
α

π0 +
1 + σ2

α

1 + ¹α2 + σ 2
α

εt

and similarly for the TS solution:

yT S,t =
¹α2

1 + ¹α2 π¤ ¡ ¹α
1 + ¹α2 π0 ¡ ¹α

1 + ¹α2 εt

πT S,t =
¹α2

1 + ¹α2 π¤ +
1

1 + ¹α2 π0 +
1

1 + ¹α2 εt

Substituting then the solutions to the objective functions we calculate losses for
any given shock εt :

LBR,t =

¡
1 + σ2

α
¢
[εt + π0 ¡ π¤ ]2

2 (1 + ¹α2 + σ2
α)

LT S,t =

£
1 + ¹α2

¡
1 + σ2

α
¢¤

[εt + π0 ¡ π¤]2

2 (1 + ¹α2)2
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When are losses for Brainard bigger than for TS?

LBR,t =

¡
1 + σ2

α
¢
[εt + π0 ¡ π¤]2

2 (1 + ¹α2 + σ 2
α)

> LT S,t =

£
1 + ¹α2

¡
1 + σ2

α
¢¤

[εt + π0 ¡ π¤]2

2 (1 + ¹α2)2

and therefore,

¡
1 + σ2

α
¢
[εt + π0 ¡ π¤]2

2 (1 + ¹α2 + σ2
α)

>
£
1 + ¹α2

¡
1 + σ2

α
¢¤

[εt + π0 ¡ π¤]2

2 (1 + ¹α2)2

¹α2 > ¹α2 + σ2
α

This is never true for σ2
α > 0 and therefore LBR,t < LT S,t holds for t = 1 always.

D.1 Cumulative Losses
However, for t = 2, in other words, in the second period after the shock has
occurred, as TS is more aggressive it will have managed to close more of the
distance between actual in‡ation and the target i.e. πT S

1 ¡ π¤ < πBR
1 ¡ π¤ and

therefore
£
εt + πTS

1 ¡ π¤¤2 <
£
εt + πBR

1 ¡ π¤¤2. This implies that in the next
period losses with Brainard can be worse if the following holds.

¡
1 + σ2

α
¢ £

εt + πBR
1 ¡ π¤¤2

2 (1 + ¹α2 + σ2
α)

>

£
1 + ¹α2

¡
1 + σ2

α
¢¤ £

εt + πT S
1 ¡ π ¤¤2

2 (1 + ¹α2)2

¡
1 + σ 2

α
¢ ¡

1 + ¹α2
¢2

(1 + ¹α2 + σ2
α) [1 + ¹α2 (1 + σ2

α)]
>

π̧TS
1

π̧BR
1

where π̧T S
1 =

£
εt + πT S

1 ¡ π¤¤2 and π̧BR
1 =

£
εt + πBR

1 ¡ π¤¤2. In general, for
any period n this condition is

¡
1 + σ2

α
¢ ¡

1 + ¹α2
¢2

(1 + ¹α2 + σ2
α) [1 + ¹α2 (1 + σ2

α)]
>

πT S
n¡1

πBR
n¡1

We demonstrate through simulations for which values for the coe¢cient of vari-
ation this happens and then compare the cumulative losses implied by the two
methods.
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