Second Monetary Policy Research Workshop in Latin America and the Caribbean on Monetary Policy, Uncertainty, and the Business Cycle

November 6-7, 2006

Lima - Peru

#### Inflation Premium and Oil Price Uncertainty Paul Castillo, Carlos Montoro and Vicente Tuesta



#### Central Reserve Bank of Peru

# **1** Motivation : Can oil price shocks explain high average inflation levels?

For instance the 70s in the US:

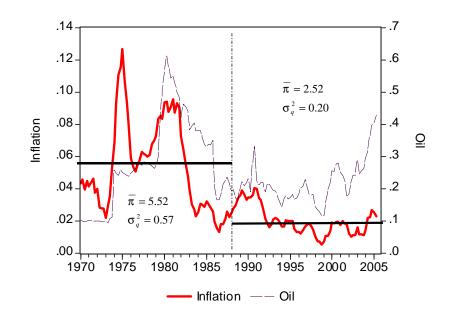



Figure 1: US inflation and Oil Prices.

#### **2** Explanations in the literature:

- Poor monetary policy during the 70s: Clarida, Galí and Gertler(2002),Cogley and Sargent (2002) and Lubick and Shorfhedie (2005)
- Change volatility of business cycle driven forces: Sims and Zha (2005). Weak evidence of change in monetary policy response

#### 3 What do we do?

- Add oil price shocks to a standard DSGE model with sticky prices
- Solve it, analytically, up to second using the Perturbation method
- Use this solution to show the determinants of the link between inflation and oil price volatility
- Evaluate the implications of this link for monetary policy.

#### 4 We find

- Oil prices generate an endogenous trade off between stabilizing inflation and output gap.
- Given this trade off, oil price volatility generate an inflation premium that, with a sensible parametrization, matches US data.
- Analytical solution shows that this inflation premium increases when:
  - The elasticity of substitution between oil and labor is smaller
  - reaction of the Central bank to output is larger
  - The Phillips curve is more convex

#### 5 The model

- Standard New Keynesian Model with sticky prices a la Calvo.
- Only difference oil and labor are poor substitutes,

$$Y_t = \left[ \left(1 - \alpha\right) \left(L_t\right)^{\frac{\psi - 1}{\psi}} + \alpha \left(M_t\right)^{\frac{\psi - 1}{\psi}} \right]^{\frac{\psi}{\psi - 1}}$$

then, marginal costs become:

$$MC_t = \left[ (1-\alpha)^{\psi} \left( \frac{W_t}{P_t} \right)^{1-\psi} + \alpha^{\psi} (Q_t)^{1-\psi} \right]^{\frac{1}{1-\psi}}$$

#### 6 Linear version of the model

$$\pi_t = \beta E_t \pi_{t+1} + \lambda m c_t$$

$$y_t = E_t y_{t+1} - \frac{1}{\sigma} (i_t - E_t \pi_{t+1})$$

$$mc_t = \chi \left( \nu + \sigma \right) y_t + (1 - \chi) q_t$$

$$\overline{\alpha} = \alpha^{\psi} \left( \frac{\overline{Q}}{\overline{MC}} \right)^{1-\psi}, \ \chi = \frac{1-\overline{\alpha}}{1+v\psi\overline{\alpha}}$$

Similar to a standard New-Keynesian model.

#### 7 What does second order add ?

• Interaction of non linearities with uncertainty.

$$\pi_{t} = \kappa_{y} y_{t} + \kappa_{q} q_{t} + \beta E_{t} \pi_{t+1} + \frac{1}{2} \omega_{v} \sigma_{q}^{2} + \frac{1}{2} (\Omega_{\pi} + \Omega_{mc}) q_{t}^{2} + O(||q_{t}, \sigma_{q}||^{3})$$

$$y_{t} = E_{t} (y_{t+1}) - \frac{1}{\sigma} ((\phi_{\pi} - 1) E_{t} \pi_{t+1} + \phi_{y} y_{t}) + \frac{1}{2} \omega_{y} \sigma_{q}^{2} + O(||q_{t}, \sigma_{q}||^{3})$$

• In particular, convexity of marginal costs respect to oil prices.

## 8 Sources of non linearities: Preferences and production function

- $\Omega_{mc}$  captures the nonlinearity of the marginal cost respect to oil prices that depends crucially on the elasticity of substitution  $\psi$ . When  $\psi < 1$  ( $\psi > 1$ ),  $\Omega_{mc} > 0$  ( $\Omega_{mc} < 0$ )
- $\Omega_{\pi}$  captures the convexity of the Phillips curve. $\Omega_{\pi} > 0 \rightarrow$  convex Phillips curve
- $\omega_y < 0$  accounts for precautionary savings effect.

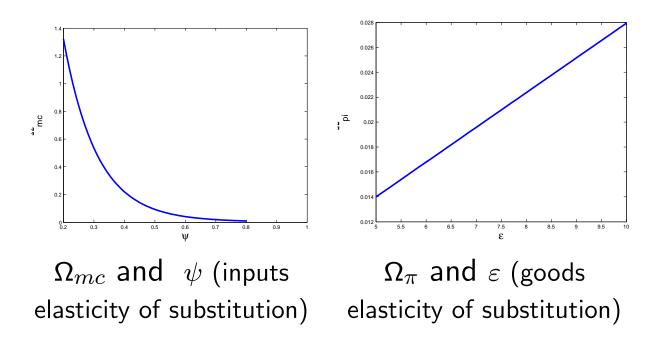
#### 9 Intuition in partial equilibrium:

Optimal firm 's relative price, when prices are set one period in advance:

$$\frac{P_t^*(z)}{P_{t-1}} = \mu E_{t-1} \left[ \Psi_t M C_t \right]$$

where  $\Psi_t = \frac{\Pi_t^{\varepsilon+1}}{E_{t-1}\Pi_t^{\varepsilon}}$  is a measure of the responsiveness of the optimal price to future marginal costs, with a second order taylor expansion (in expected value):

$$E_{t-1}\left[\Psi_t\right] = E_{t-1}\left[\pi_t + \frac{1}{2}\left(2\varepsilon + 1\right)\pi_t^2\right]$$


Also:

$$MC_t = \phi_1 q_t + \frac{\phi_2}{2} q_t^2$$

#### Inflation Premium and Oil Price Uncertainty

### **10** Comparative Statics (1) - components

• Risk Premium is higher: lower  $\psi$  and higher  $\varepsilon$ 



#### **11** Rational expectations solution

- The previous two equations represent a second order system of difference equations: how do we solve? **Perturbation Method**
- Solution can be represented as follows:

$$\pi_t = \frac{1}{2}b_o\sigma_q^2 + b_1q_t + \frac{1}{2}b_2q_t^2$$

• The inflation premium is defined as:  $IP_t = \frac{1}{2} \left( b_o \sigma_q^2 + b_2 q_t^2 \right)$ , thus,

$$E\pi = \frac{1}{2} \left( b_o + b_2 \right) \sigma_q^2$$

### 12 Is it the case that $E(\pi) > 0$ ?

$$E(\pi) = \frac{1}{2} \frac{1}{\Lambda_0} \left[ \phi_y \left( \Omega_{mc} + \Omega_\pi \right) \left( 1 + \Theta \right) + \phi_y \omega_v + \sigma \kappa_y \omega_y \right] \sigma_q^2$$

for  $\Lambda_0$  and  $\Theta>0$ 

Answer: **yes**, as long as  $\phi_y > 0$ 

### 13 Endogenous trade-off

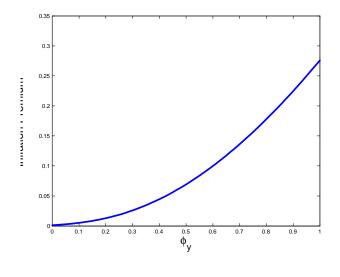
With  $\psi < 1$ 

$$|y_t^*| < |y_t^n|$$

Also: Montoro (2006) microfounded welfare function for a New Keynesian model with oil.

 $\bullet\,$  Thus, when  $\psi < 1$  endogenous trade-off appears

$$x_{t} = E_{t}x_{t+1} - \frac{1}{\sigma} \left( i_{t} - E_{t}\pi_{t+1} - r_{t}^{E} \right)$$
  


$$\pi_{t} = \beta E_{t}\pi_{t+1} + \kappa_{y}x_{t} + u_{t}$$
(1)

where  $u_t \equiv \omega q_t$ 

• Only when  $\psi = 1$ ,  $u_t = 0$ 

### 14 Comparative Statics (2) - monetary policy

• Risk Premium is positive for  $\phi_y > 0$ 



The inflation premium and the output parameter  $(\phi_y)$  in the Policy rule

# 15 Can inflation premium explain the high average US inflation in the 70s?.

• We calibrate the model using standard parameters in the literature + Oil structure.

Baseline Calibration

$$\begin{array}{ll} \alpha = 0.01 & \psi = 0.6 \\ \rho_1 = 0.95 & \sigma_{\epsilon,1} = 0.14 \\ \rho_2 = 0.82 & \sigma_{\epsilon,1} = 0.12 \end{array}$$

## 16 Yes, the calibrated model generates a inflation premium of around 5 percent for the Pre-and Vocker Period.

| Unconditional Moments Generated by the Benchmark Model (CGG) |             |          |              |          |  |  |
|--------------------------------------------------------------|-------------|----------|--------------|----------|--|--|
|                                                              | Pre-Volcker |          | Post-Volcker |          |  |  |
|                                                              | Simulated   | Observed | Simulated    | Observed |  |  |
| Mean Inflation                                               | 1.09        | 1.38     | 0.19         | 0.53     |  |  |
| Mean Output Gap (HP)                                         | -1.35       | -0.20    | -0.23        | 0.26     |  |  |
| Standard Deviation Real Oil Price                            | 0.46        | 0.57     | 0.22         | 0.21     |  |  |

Al variables are quarterly

#### **17** Which effects are present?

| Inflation | Premium - | <b>Effects</b> | Decomposition |
|-----------|-----------|----------------|---------------|
|-----------|-----------|----------------|---------------|

|                                                | CGG         |              |  |
|------------------------------------------------|-------------|--------------|--|
|                                                | Pre-Volcker | Post-Volcker |  |
| Convexity Phillips curve $(\Omega_{\pi})$      | 58.9        | 55.4         |  |
| Marginal costs $(\Omega_{mc})$                 | 45.2        | 48.2         |  |
| Indirect effect: price dispersion              | 27.4        | 24.8         |  |
| Direct effect: convexity respect to oil prices | 17.9        | 23.4         |  |
| Precautionary Savings $(\omega_y)$             | -0.3        | -0.6         |  |
| Total                                          | 100.0       | 100.0        |  |

#### **18 Robustness: Alternative Policy Rules**

|            | CGG         |              | Orphanides  |              | Judd-Rudebush |              |
|------------|-------------|--------------|-------------|--------------|---------------|--------------|
|            | Pre-Volcker | Post-Volcker | Pre-Volcker | Post-Volcker | Pre-Volcker   | Post-Volcker |
| $E\pi$     | 1.09        | 0.19         | 0.19        | 0.05         | 6.38          | 0.64         |
| Ey         | -1.35       | -0.23        | -0.57       | -0.15        | -3.49         | -0.35        |
| $\sigma_q$ | 0.46        | 0.22         | 0.46        | 0.22         | 0.46          | 0.22         |

#### **Alternative Policy Rules**

#### **19** What does this show?

- When marginal cost are convex in oil prices, there exist a trade off between stabilizing inflation and output gap that generates an inflation premium, which is increasing in oil prices volatility.
- Support to the finding of Sims Zha: second order moments of shocks matter for inflation determination.

### 20 Conclusions

- Volatility of oil price is an important determinant of inflation, how important?, depends on degree of substitution between oil and labor.
- Passive monetary policy is not necessary condition to explain high average levels of inflation in the US during 70s, active monetary policy in an economy where oil has a low elasticity of substitution, can explain this fact.
- After all it seems it was bad luck.