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Living SOEs - EMEs: Are exchange rate
depreciations expansionary, contractionary or
both?

• Standard case: Expenditure-switching effects are expansion-

ary

• EMEs with financial dollarisation: Balance-sheet effects are

contractionary
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Why is that so?

• Existing literature not conclusive

• Exchange rate effects are hard to estimate

– Evolving private agents expectations

– Evolving policy makers views and deeds

– Severity and propagation of shocks are endogenous
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• THEREFORE: THERE IS UNCERTAINTY

– Endogenous: Economic policies

– Exogenous: External factors, technology and prefer-

ences

• How should the Central Bank behave under this uncer-

tainty?

• Is ”Fear of Floating” a rational response by Central Bankers?
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TWO EXERCISES:

• Simple Model: Analytical Solutions, Easy to Solve, Intuitive

conclusions

• Complex Model: No solution strategy yet - Work in progress
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Agenda for the few coming minutes:

• Two alternative models - A) traditional small open economy

model and B) contractionary exrate model

• Optimal monetary policy under certainty

• Balance sheet trap

• How to get out of the trap: Learning

• Conclusions
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EXERCISE 1
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Absolute Certainty

Model A

Phillips Curve (Näıve)

πt = γ1yt + γ2δt + επ,t (1)

Exchange rate

δt = −it + εδ,t (2)
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Aggregate Demand

yt = θ1it + θ2δt + εy,t (3)

where the exchange rate shock is

εδ
t = ρεδ

t−1 + µt (4)
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Central bank loss function:

L = Et
∑
s=t

βs−t
(
π2

s + y2
s

)
(5)

Optimal Rule is:

it = Λεδ
t−1 (6)
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Model B

with Balance Sheet:

yt = θ1it + θ2δt + θ3δ2t + εy,t (7)
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Comparison
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Optimal rule comparison - model A vs. model B
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Monetary Policy under Model Uncertainty

Bayesian Solution

Loss function under uncertainty:

Lt = ptLt|A + (1− pt)Lt|B (8)

probabilities are assigned as follows (ODDS RATIO):

pt = p
(
MA|Data

)
=

p
(
Data|MA

)
p

(
MA

)
p

(
Data|MB

)
p

(
MB

)
+ p

(
Data|MA

)
p

(
MA

)
(9)
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How do Prior Probabilities Evolve in time?:

Pt =
Pt−1P

(
Datat|Datat−1, MA

)
Pt−1P

(
Datat|Datat−1, MA

)
+ (1− Pt−1)P

(
Datat|Datat−1, MB

)
(10)
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Balance Sheet Trap
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Escaping the Trap: Dynamic Solution

Redefinition of the Problem:

L = Et

∑
s=t

βs−t(π2
s + y2

s | Ps)


s.t. 10

Bellman Equation:

V (εδ,t, Pt) = min
{it}

E[π2
t (it) + y2

t (it)| Pt] +

βE[PtV (εδ
t , P

1
t+1) + (1− Pt)E[V (εδ

t , P
2
t+1)]
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Numerical Solution



Welfare Benefits?

True Model: SOE Evolution of Model Posterior Probabilities
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Conclusions

• Central Banks can face Learning Traps in non-linear contexts

• Policy Rules should take into account Learning Dynamics

• Further Research:

• Solving the Complex Problem (we need an efficient algo-

rithm)

• Estimating the Evolution of Priors
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