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Introduction

Examples

Examples of structural change/parameter variation

GDP and nearly every other macroeconomic series are less
volatile 1984 to present than before

Well-known (reduced form) relationships used by central
banks vary over time

1 Okun�s Law
2 Phillips Curve

Pervasiveness of unit roots, near unit roots, fractional
integration in economic time series

Mix of production/employment/consumption changed greatly
over the last 100 years

Individuals live longer, better educated, fewer children
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Introduction

Motivation

Motivation

Why do we care?
For purposes here take a narrow technical de�nition:
Observed time series do not have one of the following

linear form (ie IID errors)

Fixed parameters

Initial conditions drawn from its stationary distribution.
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Introduction

Forecasting

Forecasting

If constant parameter linear iid true

More accurate model choice and parameter estimates (97% of
econometrics) ! Better Forecasts

In practice no evidence of better forecasting by economists:

1 Despite massive improvements in econometric techniques
under constant parameter linear iid restriction .

2 Various papers on forecasting by Stock and Watson conclude
parameter variation of subtle type is present

Forecasting Models need to take account of structural
change/parameter instability

In particular they need to be able to �deal�with change in the
recent past and the certainty of more change in the future
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Introduction

Lucas Critique

Not just Lucas Critique

A Major (but not only) source of parameter instability is
failure to analyze �structural relationships/parameters�
Usual (heroic) assumption is that �structural parameters� are
constant, like the Rocky Mountains.
Changes in life expectancy, education, knowledge and fertility
happen at a much higher frequency than changes in the Rock
Mountains
Empirically modeling these changes as part of the transition
to the long run stochastic steady state virtually impossible
Lots of recent work on policymaking under uncertainty
Assertion: policymakers do better if forecasting models
constructed to allow for parameter instability

At least gives some method of analyzing whether they are
moving things in the desired direction
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Introduction

Literature Review

Literature Review

Structural breaks commonly cited as major source of
forecasting failure (e.g. Clements and Hendry)

Tests indicate structural breaks are widespread (e.g. Stock
and Watson, 1996, Journal of Business and Economic
Statistics)

Huge literature on testing for structural breaks (e.g. Bai and
Perron, 1998, Econometrica), less on developing models
suitable for estimation and forecasting when structural breaks
are present.

Forecasting: how to model break process out-of-sample? see
Pesaran et al ReStud forthcoming

Should we simply ignore pre-break data? Pastor and
Stambaugh, 2001, Journal of Finance
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Modeling Approaches

Desirable Properties

Desirable Properties for multiple break model

1 The parameters characterizing a new regime can potentially
depend on the parameters of the old regime.

2 Durations of previous regimes can potentially provide some
information about durations of future regimes.

3 The parameters describing the distribution of the parameters
in each regime should, if possible, have conditionally
conjugate prior distributions to minimize the computational
complexity of change-point models.

4 The regime duration distribution should not be restricted to
be constant or monotonically decreasing/increasing.

5 The number and maximum duration of regimes should not be
restricted ex-ante.

6 Model should be able to nest small number of breaks up to
T-1 breaks of a time varying parameter model.
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Modeling Approaches

Small number of Breaks

Model with Small Number of Breaks

yt = Xtβ1 + σ1εt if t � τ1
yt = Xtβ2 + σ2εt if τ1 < t � τ2
yt = Xtβ3 + σ3εt if t > τ2

Terminology: here we have 3 regimes and, thus, two change-points
τ1 and τ2 or in terms of regime durations, d1 = τ1, d2 = τ2 � τ1
and d3 = T � τ2 or in terms of states: st = 1 if t � τ1, st = 2 if
τ1 < t � τ2, etc.
In general have M regimes.

Few breaks, but completely unrestricted
How to forecast? Simply use coe¢ cients in last regime. But
what if more breaks occur out of sample?
Computationally very challenging unless M is very small
M must be selected but bad consequences if you get it wrong
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Modeling Approaches

Maximum Number of Breaks

Time-varying Parameter (TVP) Model

E.g. Cogley and Sargent (2001, 2005,2006)

yt = Xtβt + exp(σt/2)εt ,

with

βt = βt�1 + ηUt ,

σt = σt�1 +ωut

Break in every period

Coe¢ cient changes across regimes constrained to be small

Can get around some problems by allowing η and ω to vary in
some manner

This is a state space model and standard methods of
estimation are available
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Modeling Approaches

Chib Model

Chib Model

Chib (1998), Journal of Econometrics popular in empirical work
Assumes st is Markovian. That is,

Pr (st = j jst�1 = i) =

8>><>>:
pi if j = i 6= M

1� pi if j = i + 1
1 if i = M
0 otherwise

Posterior computation can be done very e¢ ciently drawing on
MCMC algorithm of Chib (1996).
Let θ be model parameters, S = vector of states. Works by
sequentially drawing from:
p (θjData,S) and p (S jData, θ)
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Modeling Approaches

Chib Model

Issues

Regime duration distribution is Geometric � decreasing
probability.

Pile-up of probability at end of sample.

Does not satisfy 5 out of 6 of our "desirable features of a
change-point model"
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Hierarchical Priors

Uniform 1

Uniform priors on duration

Chib�s Markov switching formulation is interpreted by Bayesians as
a "hierarchical prior". An alternative, in the spirit of the
non-Bayesian literature:
Restricted Uniform Prior
(e.g. two change-point case)

p (τ1, τ2) = p (τ1) p (τ2jτ1)

p (τ1) =
1

T � 2 for τ1 = 1, ..,T � 2

p (τ2jτ1) =
1

T � τ1 � 1
for τ2 = τ1 + 1, ..,T � 1.

Has similar problems to Chib�s prior.
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Hierarchical Priors

Uniform 2

Unrestricted Uniform Prior

p (τ1) =
1

T � 2 for τ1 = 1, ..,T � 2.

p (τ2jτ1) =
1

T � 2 for τ2 = τ1 + 1, ..,T + τ1 � 2.

Solves undesirable properties of Chib�s and Restricted Uniform
prior, but allocates probability to breaks occurring out-of-sample!
This is actually a desirable property since it implicitly allows for
unknown number of change-points. E.g. if τ2 occurs out-of-sample
we have a one change-point model.
Note this also allows us to forecast out-of-sample breaks.
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Hierarchical Priors

Uniform 3

Enriched Unrestricted Uniform Prior

For the case where there is a maximum of M � 1 breaks in-sample,
we write our prior as
p (τ1, τ2, .., τM�1) = p (τ1)∑M�1

j=2 p (τj jτj�1) and assume

p (τ1) =
1
[cT ]

for τ1 = 1, .., [cT ] .

and

p (τj jτj�1) =
1
[cT ]

for τj = τj�1 + 1, .., τj�1 + [cT ]

The notation [cT ] indicates the smallest integer such that
cT � [cT ].
If c = 1

T we obtain the TVP model.
Previous example set M = 2 and set c = T�2

T .
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Hierarchical Priors

"Poisson" Durations

We use a hierarchical prior for the regime durations which is a
Poisson distribution.

p (dm jλm) is given by:

dm � 1 = τm � (τm�1 + 1) � Po(λm)

Issues

Does not impose a �xed number of regimes (some can occur
out-of-sample)

Poisson is commonly-used �exible distribution. Computation
straightforward

Unlike other approaches, the regime duration distribution is
not be restricted to be constant or monotonically
decreasing/increasing
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Hierarchical Priors

"Poisson" Durations

Heirarchy

"Durations of previous regimes can potentially provide some
information about durations of future regimes."
We do this through another hierarchical prior of the form:

λm jβλ � G (αλ, βλ) ,

where βλ is an unknown parameter.
λm controls the duration of the mth regime.
We are saying this is drawn from some common distribution
estimated from the data. Information from all regimes is used to
estimate this distribution (i.e. estimate βλ).
Duration of out-of-sample regimes depends on data (i.e. data used
to estimate βλ). Key for forecasting.
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Hierarchical Priors

Regime Parameters

Heirarchical Prior for the Parameters in Each Regime

We assume, for m = 1, ..,M regimes

yt = Xtβm + exp(σm/2)εt ,

βm = βm�1 + Um ,

σm = σm�1 + um ,

Like the TVP model this is a state space model, but non-standard.
This satis�es:
"Model should be able to nest small number of breaks up to T-1
breaks of a time varying parameter model"
We assume Um � N(0,V ), um � N(0, η).
V and η controls size of coe¢ cient change across regimes.
Simple extension: all V and η to vary across regimes.
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Application to In�ation and Output

Estimation

Estimation in Poisson Hierarchical Model

Markov Chain Monte Carlo Algorithm that modi�es well
established algorithms:

States, st , drawn using a modi�ed version of Chib (1996)

Regression coe¢ cients drawn using (modi�ed) algorithms for
state space models.

Error variances drawn using algorithm for stochastic volatility
model.

Poisson intensities (λm) standard results for Poisson
likelihoods, except for incomplete regime (see paper for
details).

Other parameters � see earlier version of paper on Gary�s
website (simple forms).
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Application to In�ation and Output

Application

Application to US In�ation and Output

US data from 1947Q1 through 2005Q4

Real GDP growth

In�arion: PCE de�ator

1 Declining volatility of GDP growth usually dated to mid 1980s.

2 Changing persistent and volatility of in�ation.

Compare our model to TVP model and a one-break model.
In general, our model yields results between these two, but closer
to TVP.



Posterior Means of Coefficients: GDP Growth (TVP Model)
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Posterior Means of Coefficients: GDP Growth (One Break Model)
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Posterior Mean of Volatility: GDP Growth (One Break Model)

1.5

2

2.5

3

3.5

4

4.5

5

5.5

6

6.5

1940 1950 1960 1970 1980 1990 2000 2010



Posterior Mean of Volatility: GDP Growth (TVP Model)
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Posterior Mean of Volatility: GDP Growth (Our Model)
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Posterior Means of Coefficients: Inflation (TVP Model)
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Posterior Means of Coefficients: Inflation (One Break Model)
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Posterior Means of Coefficients: Inflation (Our Model)
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Posterior Mean of Volatility: Inflation (TVP Model)
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Posterior Mean of Volatility: Inflation (One Break Model)
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Posterior Mean of Volatility: Inflation (Our Model)
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Application to In�ation and Output

Number of Regimes and Prior Sensitivity

Number of "Regimes" for GDP and Prior Sensitivity

Prior Sensitivity Analysis For GDP Growth
Posterior Mean of # Regimes

ξ
2
= 1 ξ

2
= 12 ξ

2
= 100

ξ
1
= 1 73.32 12.48 12.15

ξ
1
= 12 74.16 45.35 12.17

ξ
1
= 100 78.29 76.23 17.38
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Application to In�ation and Output

Number of Regimes and Prior Sensitivity

Number of "Regimes" for In�ation and Prior Sensitivity

Prior Sensitivity Analysis For In�ation
Posterior Mean of # Regimes

ξ
2
= 1 ξ

2
= 12 ξ

2
= 100

ξ
1
= 1 189.25 90.32 86.96

ξ
1
= 12 189.80 124.00 87.96

ξ
1
= 100 190.62 186.85 88.92
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Conclusions

Model contains 6 desirable features

1 The parameters characterizing a new regime can potentially
depend on the parameters of the old regime.

2 Durations of previous regimes can potentially provide some
information about durations of future regimes.

3 The parameters describing the distribution of the parameters
in each regime should, if possible, have conditionally
conjugate prior distributions to minimize the computational
complexity of multiple models.

4 The regime duration distribution should not be restricted to
be constant or monotonically decreasing/increasing.

5 The number and maximum duration of regimes should not be
restricted ex-ante.

6 Model should be able to nest small number of breaks up to
T-1 breaks of a time varying parameter model.
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Conclusions

Further Research

Improved Algorithms

1 Paper uses a �particle �lter� to ease real time updating
2 Adaptive methods Metropolis Hastings: potential big
improvements (Giordani and Kohn)

Model variations

1 Full version of model (regime parameters depend on poisson
intensity) for �nancial time series

2 New paper with Koop, averages across nonlinear and break
models

3 Bound the variation in parameters a la Cogley and Sargent

Interesting when applied to natural rate models/unobserved
component models
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