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Abstract

Recent crises have seen large spikes in asset price risk without dramatic shifts in

fundamentals. We propose an explanation for these risk panics, based on self-

fulfilling shifts in beliefs about risk, that are driven by a negative link between

the current asset price and risk about the future asset price. This link implies

that risk about the future asset price depends on uncertainty about future risk.

This dynamic mapping of risk into itself gives rise to the possibility of multiple

equilibria and can generate risk panics. In a panic, risk beliefs are coordinated

around a macro fundamental that becomes a sudden focal point of the market.

The magnitude of the panic is larger the weaker this macro fundamental. The

sharp increase in risk leads to a large drop in the asset price, decreased leverage and

reduced market liquidity. While the model is not aimed at modeling the specifics of

any particular financial crisis, we show that its implications are broadly consistent

with what happened during the 2007-2008 crisis.



1 Introduction

Sharp surges in risk are a prominent feature of financial panics, such as the turmoil

in the Fall of 2008 or the 2010 Eurozone debt crisis. Volatility, as measured by the

VIX index, more than quadrupled in the wake of the Lehman Brothers failure, and

tripled during the debt crisis. Explaining such huge and sudden spikes in risk is

an important challenge for economic theory and the literature has not yet offered

a formal explanation. In this paper we propose a theory for such spikes in risk,

which we refer to as “risk panics”. These involve a large and sudden self-fulfilling

increase in risk, coordinated around a macro fundamental that becomes a sudden

focal point of the market.

The main contribution of this paper is to show how such risk panics can de-

velop in a model where agents have simple mean-variance preferences. In that case

portfolio demand depends on risk associated with the future asset price.1 In equi-

librium the asset price today depends negatively on risk associated with the asset

price tomorrow. There is then a dynamic degree of freedom in the model. Risk is

defined in terms of uncertainty about the asset price tomorrow. The asset price

tomorrow in turn depends on risk perceptions tomorrow. Therefore risk today de-

pends on uncertainty about risk tomorrow. The dependence of risk on uncertainty

about future risk opens up the possibility of dynamic multiple equilibria associated

with the perceived stochastic process of risk.

We find that beyond a regular fundamental equilibrium where risk is constant

over time, there are equilibria in which the perceived process of risk is time-varying.

In the latter case the perceived risk is tied to the stochastic process of a variable

that can be extrinsic to the model or be a macro fundamental that is part of the

model. We refer to these as respectively sunspot and sunspot-like equilibria.2 In

a sunspot-like equilibrium the fundamental variable plays a dual role. It affects

1Since we take a macroeconomic perspective, we refer to “the asset price” as the price of a

market portfolio of risky stocks rather than the equity price of a particular firm.
2The term “sunspot-like” equilibria was first coined by Manuelli and Peck (1992). They write:

“There are two ways that random fundamentals can influence economic outcomes. First, random-

ness affects resources which intrinsically affects prices and allocation. Second, the randomness

can endogenously affect expectations or market psychology, thereby leading to excessive volatil-

ity.” In the limiting case where fundamental uncertainty goes to zero, sunspot-like equilibria

converge to pure sunspot equilibria.
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the asset price both through its regular role as fundamental (e.g., through asset

payoffs or wealth) and as a coordination device for beliefs about risk. The latter

role is entirely separate from its fundamental role.

Risk panics are closely related to the presence of sunspot-like equilibria. In ad-

dition to the pure fundamental equilibrium and sunspot-like equilibrium described

above, we consider switching equilibria between a low-risk and a high-risk state,

with shifts driven by a Markov process. A panic is a switch from the low to the

high-risk state. During a panic, a macro variable suddenly becomes a focal point

for shifts in beliefs about risk. The panic is therefore not triggered by a change in

the variable, but by the sudden self-fulfilling shift in beliefs about risk that is coor-

dinated around the fundamental.3 Moreover, the panic is larger when this variable

is weak at the time of the shift (e.g., the net worth of leveraged institutions is low

or the Greek debt is high).

The paper is related to the broader literature on multiple equilibria with self-

fulfilling shifts in beliefs. In this literature there is a coordination of beliefs among

agents, such that a common shift in beliefs leads to actions of all agents that

make the change in expectations self-fulfilling. In terms of asset prices, there are

many applications of this phenomenon for both stock prices and exchange rates.

In particular, there is a large literature with self-fulfilling speculative attacks on

currencies.4 A key distinction here is that the self-fulfilling shift in beliefs is not

about the level of the asset price but about the level, and more generally the

process, of risk. This is critical as we wish to explain large spikes in risk.

There is also a small literature in which self-fulfilling shifts in beliefs about risk

can occur due to an interaction between risk and liquidity. This occurs in limited

participation models such as Pagano (1989), Allen and Gale (1994) and Jeanne

and Rose (2002). When agents believe that risk is high, market participation is

low. This implies low market liquidity, which leads to a large price response to

asset demand shocks and therefore high risk.5 In this paper multiple equilibria are

not associated with an interaction between risk and liquidity, but rather are the

3Our mechanism is thus distinct from a financial accelerator where a fundamental shock is

amplified through financial frictions.
4E.g., see Obstfeld (1986), Aghion et al. (2004), or Burnside et al. (2004).
5This phenomenon is not limited to limited participation models of asset prices. For other

applications see Bacchetta and van Wincoop (2006) and Walker and Whiteman (2007).
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result of the dynamic nature of the model where risk today depends on uncertainty

about risk tomorrow.6 In contrast to the static limited participation models, in

the model here risk is time-varying in the high risk equilibrium and its process is

closely connected to that of a macro fundamental. This connects more closely to

what we have seen during recent crises.7

We derive our results under the assumption that agents have simple mean-

variance preferences. The mean-variance portfolio model has a long history in

academics and remains extensively used today. It is also widely used in the financial

industry and can therefore be considered as a reasonable description of actual

behavior.8 An alternative avenue would be to introduce micro founded risk-based

portfolio constraints, such as value-at-risk constraints or margin constraints, so

that asset demand would depend explicitly on uncertainty about the future asset

price.9 This would, however, make the model significantly more complicated. The

mean-variance portfolio assumption in this paper should then be considered as an

approximation of more complex behavior.

As an illustration of the theory, we consider an application to the financial

crisis of 2007-2008. We show that an extension of the model, where we introduce

shocks to the wealth of leveraged investors, delivers results that are qualitatively

consistent with what happened during the crisis to stock prices, market liquidity,

stock price risk, the volatility of risk and financial leverage. Of particular interest

in the context of this paper is that the model can generate a very large sudden

spike in risk.

We want to emphasize though that while our model can account for the broad

patterns observed during the 2008 panic, it is not aimed at modeling the specifics

of any particular financial crisis. We do not encompass important aspects of the

6The dynamic nature of the multiplicity only arises when the variable around which expecta-

tions are coordinated displays persistence.
7The spike in risk during recent crises was accompanied by a similar spike in the volatility of

risk. Moreover, after the spike in risk the VIX fluctuated closely with the variable of concern,

for example any information about a possible bailout package during the Greek debt crisis.
8See Basak and Chabakauri (2009) for further motivation.
9A substantial literature introducing such constraints has developed in recent years. Examples

are Brunnermeier and Pedersen (2009), Danielsson, Shin and Zigrand (2010) and Gromb and

Vayanos (2002). For the same reason of analytic tractability as in this paper, these constraints

are often introduced in a reduced-form way rather than based on explicit micro foundations.
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recent crisis, such as a run on wholesale bank deposits (e.g. through repo contracts)

that most observers would consider to be a major aspect of the crisis. Moreover,

every crisis is different. During the Greek debt crisis in the Spring of 2010, the VIX

more than tripled while there was no bank run at all, and no security complexity

issues and adverse selection problems that characterized the breakdown in liquidity

during the 2008 panic. In our framework there just needs to be some variable, or

set of variables, that becomes a natural focal point of the market, instilling a

significant level of “fear” that implies a self-fulfilling increase in perceived risk. In

both of these two recent crises there was clearly such a variable: the health of

leveraged financial institutions in 2008 and the magnitude of Greek debt in 2010.

The remainder of the paper is organized as follows. In Section 2 we develop

the possibility of sunspot and sunspot-like equilibria in a simple mean-variance

portfolio model with stochastic asset payoffs (dividends). We consider both a

simple model with a closed form solution and a more general one. In Section 3 we

show that the model can generate risk panics. Section 4 presents an application

to the 2007-2008 crisis relying on wealth shocks. Section 5 concludes.

2 A Simple Mean-Variance Portfolio Choice Model

Consider a simple mean-variance portfolio choice model where agents buy a stock

and a risk-free bond. We first consider the case where the return on the bond is

exogenous as this allows us to derive closed-form solutions. We then endogenize

the interest rate in a full general equilibrium setup.

2.1 Model Description

The model complexity is kept to a strict minimum. We consider an overlapping

generation (OLG) setup where investors are born with wealth WI . They invest in

equity and bonds and consume the return on their investment when old. The bond

pays an exogenous constant gross return R. This assumption, which is often made

in the finance literature, allows us to derive a closed form solution. It implicitly

assumes that there is a risk-free technology with a constant real return R that is

in infinite supply. This assumption is not crucial to our results and is relaxed in

Section 2.5.
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Equity consists of a claim on a tree with stochastic payoff. There are K trees,

each producing an exogenous stochastic output (dividend) At. Denoting the equity

price by Qt, the equity return from t to t+ 1 is:

RK,t+1 =
At+1 +Qt+1

Qt

(1)

Agents face uncertainty both about the dividend and the future equity price.

The dividend is equal to Ā(1 +mSt), where St follows an AR process:

St+1 = ρSt + εt+1, (2)

ρ ∈ 〈0, 1〉 and the innovation εt+1 has a symmetric distribution with mean zero

and variance σ2. We denote the variance of ε2t+1 by ω2. St is the only state variable

in the model. When m = 0 the dividend is a constant (At = Ā) and St becomes a

pure sunspot. When m > 0, St has a fundamental impact on the equity payoff.

Investors born at time t maximize a mean-variance utility over their portfolio

return:

EtR
p
t+1 − 0.5γvart(R

p
t+1) (3)

where γ measures risk aversion and the portfolio return is:

Rp
t+1 = αtRK,t+1 + (1− αt)R

αt denotes the portfolio share invested in equity. The gross returns on equity and

bonds are RK,t+1 and R respectively. The equity market clearing condition is

αtWI = QtK (4)

The OLG assumption is not critical to the results but simplifies the analysis

in two ways. First, it avoids the well-known dynamic hedge term in the optimal

portfolio that arises in multi-period portfolio problems. Second, the wealth level

would be an additional state variable (in addition to St) if agents had infinite

lives. We would then be unable to solve the model analytically or even represent

the equilibria graphically. While we cannot get a closed form solution when the

bond interest rate is endogenous, we can still represent the equilibria graphically

as there is only one state variable. A shortcoming of the OLG assumption is that it

prevents movements in asset prices from feeding back into the wealth of investors,

a channel that can be important in a crisis. We introduce such a feedback effect

in the Technical Appendix through a simple extension of the OLG setting, with a

brief discussion in Section 4.4.
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2.2 Equilibrium Condition for Equity Price

The maximization of (3) with respect to αt gives the optimal portfolio share, which

reflects the expected excess return on equity scaled by the variance of the equity

return:

αt =
EtRK,t+1 −R
γvart(RK,t+1)

(5)

The portfolio share of equity can exceed one when the equity return is not

very risky, or when investors put little weight on risk. In that case investors are

leveraged, with long positions in equity and short positions in bonds.

Using (5), the market clearing condition (4) becomes:

Et(At+1 +Qt+1 −RQt) =
γK

WI

vart(Qt+1 + At+1) (6)

Equation (6) equates the equilibrium expected excess payoff on equity to a risk

premium that depends on the variance of the payoff Qt+1 + At+1. We use it to

solve for the equilibrium asset price Qt as a function of the single state variable St.

2.3 Sunspot Equilibria

First consider the case where m = 0, so that St is a pure sunspot. In that case (6)

can be written as

Qt = λ0 + λ1Riskt + λ2EtQt+1 (7)

where Riskt = vart(Qt+1) measures risk associated with the future asset price and

the parameters are λ0 = Ā/R, λ1 = −γK/(RWI) and λ2 = 1/R.

There are two equilibria.10 The first is a fundamental equilibrium where the

asset price is constant:

Qt =
Ā

R− 1
(8)

The second is the sunspot equilibrium Qt = Q̃− V S2t where:11

V =
WI

Kγ

R− ρ2
4ρ2σ2

(9)

10We only consider stationary equilibria, ruling out rational explosive bubbles.
11An additional restriction to make sure that the asset price is always positive is that the

distribution of εt is bounded. In that case St is bounded as well. Then a sufficient condition for

the asset price to always be positive is that Ā is sufficiently large, since (R − 1)Q̃ = Ā− V σ2 −
(γK/WI)V

2ω2.
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Q̃ =
1

R− 1

(
Ā− γK

WI

V 2ω2 − V σ2
)

(10)

In the sunspot equilibrium the asset price fluctuates with the sunspot St. Risk

is time-varying with the sunspot as well:

Riskt = vart(Qt+1) = 4V 2ρ2σ2S2t + V 2ω2 (11)

The perceived equilibrium process for risk is therefore either a constant or

time-varying and tied to the process for the sunspot St. In order to provide some

intuition for this result, it is useful to consider setting λ2 = 0 in (7). This sup-

presses, just for the purpose of intuition, the standard dynamic link between the

asset price today and the expected future asset price, a link that is not central to

the mechanism we focus on. We then have

Qt = λ0 + λ1Riskt (12)

The same equation forwarded by one period shows that the future asset price

depends on future risk:

Qt+1 = λ0 + λ1Riskt+1

Taking the variance on both sides, current risk is linked to uncertainty about future

risk:

Riskt = λ21vart(Riskt+1) (13)

Risk therefore depends on uncertainty about future risk itself. It is this dynamic

mapping of risk into itself that opens up the possibility for multiple equilibria.

Clearly, zero risk is an equilibrium. But any process for Riskt is an equilibrium as

long as it satisfies (13). This process must clearly lead to joint shifts in risk and

uncertainty about risk as they are proportional in (13). One process that satisfies

(13) is where Riskt is linear in S2t . Uncertainty about future risk will then depend

on S2t as well because vart(S
2
t+1) = 4ρ2σ2S2t + ω2.

An interesting point is that the impact of the sunspot on the equity price is

larger when investors have a low risk aversion γ or a large wealth WI . As can be

seen from (6), low risk aversion or large wealth reduce the risk premium and make

it less sensitive to changes in risk. It is precisely because agents respond less to

risk (i.e. are less risk averse) that it is possible to have an equilibrium with large

time-variation in perceived risk.
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2.4 Sunspot-Like Equilibria

Next consider the case where m > 0, so that shocks to St are fundamental shocks

to the asset payoff. We conjecture that the asset price is linear-quadratic in St:

Qt = Q̃+ vSt − V S2t (14)

There are again two equilibria: a fundamental one and a sunspot-like one. In

the fundamental equilibrium we have V = 0, v = mρ/(R − ρ), and Q̃ = (Ā +

(γK/WI)v
2σ2)/(R− 1). The asset price is then:

Qt = Q̃+
mĀρ

R− ρSt (15)

Shocks have a bigger impact on the asset price when they are persistent. Asset

price risk is constant.

In the sunspot equilibrium we have:

V =
WI

Kγ

R− ρ2
4ρ2σ2

(16)

v = − mĀ

1− ρ (17)

Q̃ =
1

R− 1

(
Ā+

1

R
v2σ2 − γK

WI

V 2ω2 + V σ2
)

(18)

The key parameter here is V . When V is non-zero, as is clearly the case, then

perceived risk in this equilibrium is time-varying and depends on St:

vart(Qt+1) = 4V 2ρ2σ2S2t + V 2ω2 (19)

The role of St in coordinating beliefs about risk is entirely separate from its role

as a fundamental. Specifically, V does not depend on m and is thus independent

of the fundamental role of St. The role of St in driving time-varying perceptions

of risk is therefore unrelated to its fundamental role.

We call this equilibrium a sunspot-like equilibrium, and the variable St a

sunspot-like variable, because St has a role similar to that of a sunspot. St clearly

is not a pure sunspot as it affects the Home dividend when m > 0, but its role

in coordinating beliefs about risk is exactly the same as that of a sunspot vari-

able. Although in a very different context, not involving time-varying shifts in risk,
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Manuelli and Peck (1992) and Spear, Srivastava and Woodford (1990) also present

models with sunspot-like equilibria. Spears, Srivastava and Woodford (1990) point

out that “...a sharp distinction between “sunspot equilibria” and “non-sunspot

equilibria” is of little interest in the case of economies subject to stochastic shocks

to fundamentals.” Indeed, as we raise m slightly above 0, the sunspot-like equi-

librium is technically no longer a pure sunspot equilibrium, but it is effectively

indistinguishable.

2.5 Full General Equilibrium

We now move to a full general equilibrium approach by relaxing our assumption

of an exogenous risk-free return R. We introduce an interest-rate elastic supply of

bonds so that investors can reallocate between stocks and bonds in equilibrium.12

We do so by introducing another set of agents, which we call households, who

invest in bonds and in a household technology detailed below.

There are overlapping generations of households born with wealth WH . House-

holds invest their endowment in bonds and a risk-free household technology, and

consume the proceeds when old. Investing KH,t+1 in the household technology at

time t yields an output f(KH,t+1) at t + 1. The technology exhibits decreasing

returns to scale, f ′(.) > 0 and f ′′(.) < 0. Households born at time t maximize

consumption at time t+1, which is equal to f(KH,t+1)+Rt+1(WH−KH,t+1) where

Rt+1 is the interest rate on the bond. This choice equalizes the marginal return on

the technology to the bond yield: f ′(KH,t+1) = Rt+1.

For convenience we assume a simple quadratic form for household technology.

The capital demand is then linear in the interest rate:13 KH,t+1 = ν − ηRt+1, and

the demand for bonds by households is:

WH −KH,t+1 = WH − ν + ηRt+1 (20)

Equation (20) can be positive, in which case households lend bonds to investors,

or negative, in which case they borrow from investors.

12With a constant supply of bonds, the equity price would be entirely pinned down by investors’

wealth and there would be no sunspot or sunspot-like equilibria. There are many ways to

introduce an interest-rate elastic supply or demand schedule of bonds, for example by introducing

interest elastic consumption/savings or investment decisions.
13Specifically, we assume that f(KH,t+1) =

[
νKH,t+1 − 0.5K2

H,t+1

]
/η.
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The bond market clearing condition shows that the demands for bonds by

households and investors add up to zero, as bonds are in zero net supply:

(1− αt)WI +WH − ν + ηRt+1 = 0

Using the equity market clearing condition (4), we rewrite this as

QtK + ν − ηRt+1 = W (21)

where W = WI + WH is the aggregate initial wealth. (21) gives a linear positive

relationship between the equity price and the interest rate. A higher equity price

raises the supply of equity. Clearing the equity market then requires investors to

shift their portfolio towards equity and reduce their purchase of bonds (or borrow

more from households). Bond market clearing then requires households to lower

their borrowing (or increase their bond purchase), which they are induced to do

through a higher interest rate.14

Using (21), the equity market clearing condition (6) becomes:

Et

(
At+1 +Qt+1 −

ν −W
η

Qt −
K

η
Q2t

)
=
γK

WI

vart(Qt+1 + At+1) (22)

The equilibrium condition (22) only involves the equity price, which we again

solve with the method of undetermined coefficients. As (22) is non linear in the as-

set price, we no longer have an analytical solution. We therefore adopt a numerical

approximation method along the following lines (details are given in Appendix A).

As is standard in the literature, we consider an approximation of the equilibrium

asset price in logs:

qt = q̃ + vSt − V S2t (23)

We then take a quadratic approximation of Qt and Qt+1 around St = St+1 =

0, and use the result to compute the expectation and variance of Qt+1 + At+1.

We substitute the resulting expressions into (22). We finally take a quadratic

approximation around St = 0, which gives a linear-quadratic expression in St:

Z0 + Z1St + Z2S
2
t = 0 (24)

14There is a third market clearing condition, for goods, but we can drop it thanks to Walras’

Law.
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where Z0, Z1, and Z2 are functions of Q̃ = eq̃, v, and V . We solve for the value of

these parameters by setting Z0 = 0, Z1 = 0, and Z2 = 0.

While we are solving for three parameters, Q̃, v and V , we can represent the

equilibria graphically in a (Q̃, v) space. Define Ṽ = Q̃V . In Appendix A we show

that Z0 = 0 implies

Ṽ = α1 + α2v
2 (25)

where α1 and α2 are functions of Q̃. Substituting this into the expressions associ-

ated with Z1 = 0 and Z2 = 0 we obtain

h1 + h2v + h3v
2 + h4v

3 = 0 (26)

g1 + g2v + g3v
2 + g4v

3 + g5v
4 = 0 (27)

where hi and gi are functions of Q̃.

We solve numerically for the roots of the third and fourth order polynomials

(26) and (27). The polynomials represent two schedules that map a given Q̃ into

v, with possibly multiple solutions. We plot these two schedules in a (Q̃, v) space

with each intersection representing an equilibrium combination of Q̃ and v. Ṽ ,

and therefore V , then follow from (25).

For a given process for St a typical parameterization gives 4 equilibria. This is

illustrated in Figures 1 and 2 for respectively m = 0 and m = 1. Schedule (26) is

represented by the solid line and (27) by the broken line. When m = 0 the variable

St is a pure sunspot. Figure 1 shows that there is one fundamental equilibrium

where v = V = 0. The other three equilibria are all sunspot equilibria. The

fact that for a given process for St there are now three sunspot equilibria rather

than the single sunspot equilibrium we found before is a result of the non-linearity

generated by the time-varying interest rate.

In Figure 2, where m = 1, St is a fundamental that drives the asset payoffs.

There are again 4 equilibria. Equilibrium 1 is a pure fundamental equilibrium.

As we let m → 0, it converges to Equilibrium 1 in Figure 1 where v = V =

0. The other three equilibria are all sunspot-like equilibria. As we let m →
0, they converge to the corresponding sunspot equilibria in Figure 1. Figure 3

illustrates the convergence of the sunspot-like Equilibrium 2 of Figure 2 to the

sunspot Equilibrium 2 of Figure 1 when m goes to zero. It is remarkable that even

when we get far away from m = 0, Q̃, v and V change very little, especially in

11



comparison to the near-zero levels of v and V in the fundamental equilibrium. This

suggests that even when the fundamental role of St is important, the impact of St

on the asset price is dominated by shifts in beliefs about risk that are unrelated to

this fundamental role.

3 Risk Panics

3.1 Switching across states

Risk panics can happen in equilibria that allow for a switch between low and high

risk states. In the previous section the economy was either in a fundamental or a

sunspot-like equilibrium. We now consider an equilibrium that allows for switches

between a low risk state (indexed by 1, akin to the fundamental equilibrium) and

a high risk state (indexed by 2, akin to the sunspot equilibrium). Switching occurs

through an exogenous Markov process. The probability that we remain in a low

risk state next period when we are in a low risk state today is p1 > 0.5. Similarly,

the probability that we remain in a high risk state next period when we are in a

high risk state today is p2 > 0.5.15

Equilibria 1 and 2 in Figure 2 are the points to which the low and high risk

states converge, respectively, in the limit where switching is not possible (p1 =

p2 → 1). When switching is possible, the low risk state becomes riskier than

the pure fundamental Equilibrium 1 in Figure 2. This is because there is now a

possibility of switching to the high risk state, a switch that implies a significant

drop in the equity price. Even when the probability of switching is low, the main

source of uncertainty in the low risk state becomes the possibility of a jump to

the high risk state rather than the pure fundamental uncertainty in Equilibrium 1

of Figure 2.16 Agents take the possibility of switching into account when forming

their expectations.

15It may be realistic to allow these probabilities to depend on the state variable itself. For

example, a switch to the high risk state may be more likely when the fundamental is weak. Here

we abstract from that possibility and only consider the simpler case of constant probabilities of

switching.
16This is similar to what is found in the “rare disaster” literature (e.g., Barro, 2006, Gabaix,

2008) where a small probability of a large disaster affects what happens in the no disaster periods.
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We conjecture that the log equity price in state i is

qi,t = q̃i + viSt − ViS2t (28)

As there are two such equations we solve for 6 unknown parameters (3 for each

state). This is done by imposing equity market equilibrium as before, but sepa-

rately for both states. We compute the expectation and variance of Qt+1 taking

into account that a switch to a different state is possible. The algebra is presented

in Appendix B.

As an illustration, Figure 4 shows the values of Q̃i, vi and Vi in the low and

high risk states for the case where p1 = p2. As pointed out above, the two states

correspond exactly to Equilibria 1 and 2 of Figure 2 when p1 = p2 = 1. Switching

equilibria only exist when the probability of remaining in the same state is high

enough. But when p1 = p2 is higher than this cutoff (sufficiently low probability

of switching), the difference between the two states quickly becomes very big. A

lower probability of switching particularly reduces risk in the low risk state (lower

values of v and V ).

A risk panic is a switch from the low to the high risk state. It involves a

self-fulfilling shift in beliefs about the process of risk. For example, when p1 = p2

are close to 1, there is a self-fulfilling shift in beliefs about risk from the low and

constant risk in the fundamental equilibrium to the high and time-varying risk in

the sunspot-like equilibrium. Apart from the spike in risk, the panic also entails

an increase in the volatility of risk, a sharp drop in the equity price and a shift out

of equity (i.e. deleveraging when investors initially hold leveraged portfolios). We

graphically illustrate these effects in Section 4 in an application to the 2007-2008

financial crisis.

3.2 Panics and fundamentals

It is important to be clear both about the role that fundamentals do and do not

play in a risk panic. First, a panic is not caused by a change in fundamentals.

It happens for a given level of St. Second, the magnitude of the panic is larger

the weaker the fundamental (the more negative St). Finally, once a panic occurs

the asset price becomes much more sensitive to subsequent fluctuations in the

fundamental. The market becomes on edge regarding any news about St.
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Consider the first point: a panic does not result from a change in the funda-

mental. As can be seen from Figure 4, during the switch to the high risk state

the coefficients v and V increase, generally by a large magnitude. This affects

risk and the asset price for a given level of St. What changes is not St itself but

rather the role it plays. As we switch to the high risk state, St suddenly becomes

a key variable around which agents coordinate their perceptions of risk. There is

a sudden self-fulfilling increase in beliefs about risk, with the variable St being the

focal point for the change in risk perceptions.17

Notice that a risk panic is therefore conceptually distinct from financial acceler-

ator models where the impact of shocks is magnified through financial constraints.

While small shocks have a large effect in such models, the mechanism at work is

a purely fundamental mechanism. Our framework instead puts the coordination

of beliefs about risk center stage. During the panic, asset prices and risk move

sharply even though the state variable does not change.

Next consider the second point: the magnitude of the panic is larger the weaker

the fundamental. To illustrate this point, consider the change in the equity price

from the low to the high risk state. From (28) it follows that the change in the log

equity price is

q2,t − q1,t = q̃2 − q̃1 + (v2 − v1)St − (V2 − V1)S2t < 0

Since v2 − v1 and V2 − V1 are both positive (see Figure 4), the drop in the equity

price is larger the more negative is St (i.e. the weaker the fundamental). Consider

for instance p1 = p2 = 0.65. In that case a panic lowers the equity price by

only 13% when St = 0, but by 65% when St is two standard deviations below its

unconditional mean of 0.

In this light a large risk panic can also be viewed as a delayed amplification ef-

fect. Consider a deterioration of the fundamental (a drop in St) when the economy

is in the low risk state. The shock lowers the equity price through the standard

fundamental mechanism, but this impact is relatively small. The delayed am-

plification effect occurs if at some later date there is a switch to the high risk

equilibrium. At that point, the sunspot role of St suddenly surges. The impact of

17Even in the low risk state St plays to some extent a sunspot role if p1 < 1. But this role

is generally much stronger in the high risk state. In the low-risk state this role only reflects the

possibility of switching to the high risk state.

14



the panic on the asset price is much larger than the fundamental impact of St in

the first stage. We will further illustrate this point in Section 4 in the context of

the recent financial crisis.

Finally consider the last role of the fundamental in a panic: once a panic

occurs the asset price becomes much more sensitive to subsequent fluctuations

in the fundamental. Once we switch to the high risk state, the fundamental St

becomes the focal point around which investors coordinate their beliefs about

risk. This causes them to react strongly to any change in the variable. A further

deterioration can lead to a significant further drop in the equity price. Conversely,

an improvement in the fundamental becomes a significant stabilizing force. In the

example above with p1 = p2 = 0.65, the equity price drops from 100 to 35 during a

panic when the fundamental is two standard deviations below its mean. But when

the fundamental reverts to it mean, the equity price goes all the way back to 87,

even though we are still in the high risk state.

4 Application to 2007-2008 Financial Crisis

This section uses our setting to shed light on what happened in the equity market

during the 2007-2008 financial crisis. We first discuss some basic financial data

associated with the dynamics of risk, leverage, liquidity and equity prices. After

that we slightly alter the model to make it more relevant to the crisis by introducing

shocks to the wealth of leveraged investors (think of mortgage market losses).

We then present a simulation and show that the outcome is qualitatively similar

to what happened during the crisis. We finish by briefly discussing a variety of

sensitivity analyses.

As emphasized in the introduction, there are many aspects of the recent crisis

that are well beyond the scope of this paper. To the extent that our model is

applicable in shedding light on the crisis, it is primarily in the context of the

self-fulfilling shifts in risk perceptions that are the focus of this paper. This key

mechanism applies beyond the particular episode of the 2007-2008 crisis, so this

section is only an illustration.
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4.1 Dynamics of Risk, Leverage, Liquidity, and Asset Prices

The crisis came in the form of a one-two punch. The first part is the relatively

calm period from the beginning of 2007 until September 2008. The second part is

the financial panic that started in September 2008. The panic peaked by the end

of 2008 and it took several quarters for the situation to return to a more normal

state. Using data for the United States, we focus on the following variables: (1)

stock prices, (2) T-bill rate, (3) equity price risk, (4) volatility of risk, (5) net worth

of leveraged institutions, (6) leverage, and (7) market liquidity. A description of

the data and data sources can be found in Appendix C.

The dynamics of these variables during the crisis are illustrated in Figure 5.

The vertical line represents the collapse of Lehman Brothers on September 15,

2008, which we consider to be the start of the financial panic. After a modest

decline in stock prices and a small increase in risk during the tranquil period of

the crisis, stock prices suddenly crashed and risk spiked in September 2008. The

volatility of risk also shot up, while it showed no trend in the first stage. A flight to

quality lowered the T-bill rate to near zero. Net worth gradually declined after mid

2007 until the third quarter of 2008, to quickly recover after the crisis. Financial

leverage first rose significantly during the tranquil period, and then fell sharply

during the panic stage. Finally, liquidity fell modestly during the tranquil part of

the crisis, followed by a sharp drop in liquidity during the panic and then a return

back to normal by mid-2009.

4.2 Model with Financial Shocks

In applying the model to the recent crisis we introduce financial shocks that redis-

tribute wealth between households and investors. These shocks fit more closely the

storyline of the 2007-2008 financial crisis where financial institutions experienced

large negative shocks to their wealth (net worth) connected to mortgage market

losses. We introduce shocks to the wealth of investors as follows:

WI,t = e−mθt−0.5m
2θ2t W̄I (29)

where

θt+1 = ρθθt + εθt+1 (30)

and εθt+1 is a shock with mean zero and variance σ2θ .
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Equation (29) ensures that investors’ wealth is linear in θt up to a quadratic ap-

proximation: WI,t = W̄I(1−mθt). A rise in θt implies a drop in the relative wealth

of investors. Financial shocks redistribute wealth and leave aggregate wealth un-

changed (WI,t + WH,t = W ), although in sensitivity analysis we find that results

are similar when there are shocks to the wealth of investors only. We assume that

financial shocks εθt+1 and asset payoffs At+1 are uncorrelated. Finally, we assume

that asset payoff shocks have no persistence (ρ = 0). This simplifies as the wealth

of investors is then the only state variable. The solution method is analogous to

that for the asset payoff shocks and can be found in the Technical Appendix. There

are again 4 equilibria, similar to those in Figure 2.

These wealth shocks also introduce links in the model between wealth, financial

leverage, risk and market liquidity. For example, lower wealth of investors reduces

market liquidity, which implies increased risk. Similarly, higher risk reduces finan-

cial leverage, which lowers market liquidity and increases risk further. We refer

to a previous version of this paper for a more detailed discussion of these links,18

which have been extensively discussed in the literature.19

While we have changed the nature of the state variable in the model in order to

make it more applicable to what happened in 2007-2008, we should emphasize that

the exact nature of the fundamental is not so important. The key point is that a

large risk panic can develop when there is a self-fulfilling shift in beliefs coordinated

around a very weak fundamental. The exact nature of the fundamental does not

matter much in this regard.

4.3 Model Simulation

We illustrate the dynamics of the variables in the model, and relate them to the

recent crisis, using the two-state switching equilibrium as described in Section 3.

The key point of this section is that large movements in asset prices and risk

require both a risk panic and a weak fundamental, with either having little impact

on its own. The parameters are shown at the bottom of Figure 6. The main

results are robust to the precise parameter values chosen, as discussed below. We

18See NBER working paper 16159.
19See Adrian and Shin (2008), Brunnermeier and Pedersen (2009), Brunnermeier and Sannikov

(2010), Gromb and Vayanos (2008), He and Krishnamurthy (2008a, b), Kyle and Xiong (2001)

and Xiong (2001).
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set p1 = 0.95 and p2 = 0.7. This ensures that the high risk state occurs much less

frequently than the low risk state, as the economy spends only 14% of the time in

the high risk state. Panics of a large magnitude are even less frequent because they

require not only a switch to the high risk state but also a very weak fundamental.

The parameterization is chosen to make sure that investors are substantially

leveraged. Investors’ initial equity holdings are four times their net worth (wealth),

and are financed by borrowing from households through bonds. High leverage is

characteristic of most financial institutions. We therefore also refer to the investors

as leveraged financial institutions.

We simulate the model over 16 periods, which we interpret as quarters. We

do no make any attempt to match the process of financial losses in the data, but

instead illustrate the drivers of the model through a simple step function for θt,

along with a simple switching between low and high risk states. The dynamics of

θt are illustrated through the wealth of investors, which follows the same path, in

the upper left chart of Figure 6. The economy is initially in a low risk state with θt

at its unconditional mean of zero. θt rises from 0 to 0.3 in period 2, which we can

think of as Q1 2007 when the losses of leveraged institutions on mortgage securities

became apparent, leading to a reduction of their wealth. This situation lasts until

period 8, which we can think of as Q3 2008, where the economy switches to the

high risk state. It stays in that situation until period 11 (Q2 2009) when θt falls

back to zero thanks, for example, to a recapitalization of leveraged institutions.

The economy reverts back to the low risk state in period 14 (Q1 2010).

These dates are not meant to match the exact length of the panic or the period

of financial weakness of leveraged financial institutions. Our focus is instead to

highlight the separate roles of the financial health of leveraged institutions and

the specific risk state. This is done by considering all possible combinations of

financial health (normal versus bad) and the state (low risk, high risk) in order to

evaluate the specific contribution of both elements.

The simulation is presented in Figure 6. Periods during which θt changes are

marked by vertical dotted lines, while the shaded area denotes the time spent in the

high risk state. The wealth of investors follows the overall pattern seen in the data

for brokers and dealers in Figure 5, although the deterioration of the net worth

of financial institutions was obviously more gradual in the data. The other panels

show the paths of the equity price, risk, the volatility of risk, interest rate, leverage
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and illiquidity. The stock price (normalized at 100 initially) and gross interest rate

are Qt and Rt+1. Risk is measured as the standard deviation of Qt+1/Qt, taking

into account the possibility of switching to another state. The volatility of risk is

the standard deviation at time t of our risk measure at t + 1.20 Leverage is equal

to the share of equity in investors’ portfolio, αt. Finally, illiquidity is measured as

the absolute value of the derivative of the log equity price with respect to θt.
21

During the tranquil part of the crisis the shift in wealth away from leveraged

financial institutions reduces demand for equity and therefore its price. It also leads

to a decline in liquidity as less money is on the line in the equity market. The drop

in liquidity increases risk somewhat. Nonetheless Figure 6 shows that these effects

are all modest. The only large change is leverage, which almost doubles. While

the small increase in risk reduces leverage, this is more than offset by an increase

in the expected excess return due to the lower equity price.22

The second stage of the crisis, when the economy shifts into the high-risk stage,

is characterized by a surge in risk and its volatility. This prompts a sharp reduction

in the equity price and leverage. The drop in leverage in turn dries up liquidity

in the equity market as investors reduces their exposure to equity. The switch to

bonds leads to a sharp drop in the interest rate.

The key message to take away from Figure 6 is that a large surge in risk

requires two ingredients, either one of which alone is not sufficient. First, there

needs to be a self-fulfilling risk panic (switch to the high risk state). Second, the

fundamental around which the market perceptions of risk coalesce (in this case the

net worth of leveraged institutions) must be weak. A deterioration of the macro

fundamental alone is not enough to generate a surge in risk. Even though the

net worth of leveraged institutions drops by more than 50% during the first stage

of the crisis, risk remains relatively modest. A switch to the high risk state by

itself is not enough either. Risk is restored slightly below its pre-panic level in

period 11, when we are still in the high risk state but the leveraged institutions

20In computing the volatility of risk, we assume that we remain in the same state the next

period. This makes it more consistent with the data, where it is measured as the volatility of

risk over the past 30 days, which usually captures volatility within the same state.
21This connects well to the illiquidity measure used in the data, which is also meant to capture

the price impact of asset demand shocks. See Appendix C.
22The model does not account for the drop in the interest rate prior to the panic as that is

largely related to monetary policy.
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are recapitalized.

While the simple exercise we have conducted here is not meant to match precise

data, the overall pattern in these variables is broadly in line with the data in Figure

5. During the pre-panic state of the crisis the impact on the equity price, risk and

liquidity is quite modest in both the data and the model. The substantial increase

in financial leverage during this period is also consistent with the model. Then,

during the switch to the panic state the model accounts for the sharp drop in the

equity price, financial leverage, and market liquidity and the sharp increase in risk.

The volatility of risk also behaves similarly to that in the data. It surges

together with risk during the panic and later on declines with the fall in risk itself.

This joint behavior of risk and the volatility of risk is a critical element of the

model, as discussed in Section 2.1. Risk spikes in the model only because future

risk becomes more uncertain.

4.4 Sensitivity Analysis

Self-fulfilling shifts in risk can occur as long as the asset price is negatively affected

by risk about the future asset price. One might therefore expect the findings in

the simulation above to apply much more broadly than for the particular model

assumptions and parameterization underlying Figure 6. We confirm this through

a variety of sensitivity analysis that we summarize here, with the details given in

the Technical Appendix.

We first check that the results in the simulation exercise presented in Figure

6 are robust to alternative parameter values. This is done by halving and dou-

bling most parameters. The results remain qualitatively intact for all alternative

parametrizations. In particular, a risk panic leads to a sharp increase in risk and

the volatility of risk, and a large decrease in the equity price, market liquidity and

leverage. The precise magnitudes are certainly sensitive to parameterization. In

particular, the size of the risk panic is larger the smaller η, ρθ, γ, and m and the

larger ν −W .

Second, we assess how the specifics of the model affect the results. We have

already seen that the nature of the fundamental around which risk panics are

coordinated is not critical to the results, as shocks to asset payoffs also lead to

multiple equilibria and risk panics. Another modeling aspect is the assumption
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that financial shocks redistribute wealth between investors and households, with

no aggregate loss. We consider an alternative where the wealth loss for investors

is not offset by a gain for households and find that the results remain very similar.

Lastly, we abstracted from any feedback of the asset price to wealth. We include

this aspect in our OLG setting by assuming that some of the endowment when

born consists of trees. This amplifies the risk panic. For example, when 29% of

the wealth is subject to asset price shocks (in the low risk state at θt = 0), we find

that the feedback effect from the asset price to wealth increases the magnitude of

risk panics, with risk spiking from 26% during the tranquil part of the crisis all

the way to 129% at the height of the panic.

Finally, we check the robustness with respect to the approximation in the so-

lution method. This is done by considering a cubic approximation of the market

clearing condition instead of a quadratic one. The simulation results are not sub-

stantially affected, providing confidence that the precision of the approximation

method is not critical to the results.

5 Conclusion

Motivated by several recent crises that have shown very large spikes in risk without

correspondingly large shifts in fundamentals, we develop a theory for self-fulfilling

shifts in risk. These shifts can occur when the asset price depends negatively on

perceived risk about the future asset price. Risk associated with tomorrow’s asset

price then depends on uncertainty about risk tomorrow. This dynamic mapping

of risk into itself gives rise to the possibility of self-fulfilling shifts in risk.

Although a risk panic occurs without any change in fundamentals, it has a

larger impact the weaker the macro fundamental on which agents coordinate their

perceptions of risk at the time of the panic. The sharp increase in risk and ac-

companying volatility of risk in turn give rise to a large drop in the asset price,

decreased leverage and reduced market liquidity. While the model is not intended

to capture the events of any particular crisis episode, we have shown that the

implications of the model are nonetheless broadly consistent with what happened

during the 2007-2008 financial crisis.

Our findings open up several directions for future research. First, the equilibria

that we have identified can be found in any model where the actions of agents
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depend on the risk of an endogenous variable. While we have focused on asset

markets, the same may be the case for example in goods and labor markets. The

issue is also not limited to prices. We could replace Q with any other variable that

depends on risk associated with its future level. This could for example be output.

It is well-known that reduced uncertainty about the future economic environment

is good for business today (e.g. see Bloom, 2009).

Another direction for future research is to consider multiple assets. In our en-

tire analysis there is only one risky asset. This should therefore be interpreted

as the market portfolio of risky assets, which could be a country-wide or even a

global equity index. A natural question is what the implications are for stocks of

individual firms. Closely related, in an open economy context one would like to

know whether all countries will be affected by a risk panic or whether it could be

contained to a limited number of countries. This question relates to the widely dis-

cussed issue of financial contagion and is analyzed in Bacchetta and van Wincoop

(2010).

A final direction for further research pertains to financial crises. We have kept

the model as simple as possible to focus on the role of self-fulfilling shifts in per-

ceived risk. A natural question is how this interacts with other elements that we

have ignored. A non-exhaustive list includes financial constraints on leveraged

institutions (borrowing constraints, value at risk constraints), bank runs, and the

interaction between the financial crisis and real economic activity. Moreover, a

crucial issue is the policy recommendation that arises from our analysis. In Bac-

chetta et al. (2010) we examine the role of leveraged institutions in the context

of our model. We find that, despite their stabilizing role in normal times, less risk

averse leveraged institutions increase the magnitude of risk panics. We conclude

that a policy making financial institutions more risk averse, or more prudent, could

substantially reduce volatility.
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Appendix

A Numerical Solution of Model in Section 2.5

In this Appendix we describe the solution of the equilibria in the version of the

model in Section 2.5. We take a quadratic approximation of the market clearing

condition around St = 0. Before doing so, we first need to compute the expectation

and variance of Qt+1 + At+1. From the conjecture (23) we have

Qt = Q̃evSt−V S
2
t (31)

where Q̃ = eq̃. A quadratic approximation around St = 0 gives

Qt = Q̃(1 + vSt + (−V + 0.5v2)S2t ) (32)

For consistency we now also model the asset payoff in logs: ln(At) = ln(Ā)+mSt−
0.5m2S2t . This specification implies that a quadratic approximation of At around

St = 0 is At = Ā(1 +mSt). Using these quadratic approximations of Qt and At at

t+ 1 and then substituting St+1 = ρSt + εt+1 gives

Et(Qt+1 + At+1) = Q̃
(
1 + vρSt + (−V + 0.5v2)(ρ2S2t + σ2)

)
+

Ā+mĀρSt (33)

var(Qt+1 + At+1) = Q̃2
(
v + (−V + 0.5v2)2ρSt

)2
σ2 +

m2Ā2σ2 + 2Q̃Ā
(
v + (−V + 0.5v2)2ρSt

)
σ2m (34)

Here we have simplified slightly by adopting approximation ε2t+1 = σ2 or var(ε2t+1) =

0. This holds exactly in a simple distribution where εt can only take on the val-

ues −σ and +σ. More generally, it is frequently adopted as a continuous time

approximation. Under a normal distribution the variance of ε2t+1 is 2σ4, which is

a small fourth-order term. Dropping this small term makes it easier to represent

the equilibria graphically.

Substituting these results into the market clearing condition (22) and taking a

quadratic approximation around St = 0 gives an equation of the form (24). Setting

the coefficients Z0, Z1 and Z2 equal to zero, we obtain respectively

W̄

(
Ā+ Q̃+ Q̃(−V + 0.5v2)σ2 − 1

η
(ν −W )Q̃− 1

η
KQ̃2

)
=

Km2Ā2σ2 + Q̃2Kv2σ2 +K2Q̃Āvσ2m (35)
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W̄ Q̃v(ρ− 1

η
(ν −W )− 1

η
2KQ̃) +mW̄Āρ = 4KQ̃2v(−V + 0.5v2)ρσ2 +

4KQ̃Ā(−V + 0.5v2)ρσ2m (36)

W̄

[
(−V + 0.5v2)ρ2 − 1

η
(ν −W )(−V + 0.5v2)− 1

η
2KQ̃(−V + v2)

]
=

4KQ̃(−V + 0.5v2)2ρ2σ2 (37)

Here we define W̄ = WI/γ.

The strategy is as follows. For a given value of Q̃ we first solve Q̃V from (35)

as a quadratic function of v. We substitute the result in (36) and (37). This

gives respectively a third and fourth order polynomial in v that needs to be solved

numerically. This leads to two schedules that map Q̃ into v (possibly multiple

values of v) that can be graphed. Equilibria are the points where these schedules

intersect.

From (35) we can solve

Q̃V = α1 + α2v + α3v
2 (38)

where

α1 =
1

σ2

(
Ā+ Q̃− 1

η
(ν −W )Q̃− 1

η
KQ̃2

)
− KĀ2m2

W̄
(39)

α2 = −2KQ̃Ām

W̄
(40)

α3 = 0.5Q̃− Q̃2K

W̄
(41)

From (36) we have

β1 + β2v + β3v
2 + β4v

3 + β5[Q̃V ] + β6[Q̃V ]v = 0 (42)

where

β1 = W̄ Āρm (43)

β2 = W̄ Q̃

(
ρ− 1

η
(ν −W )− 1

η
2Q̃K

)
(44)

β3 = −2KQ̃Āρσ2m (45)

β4 = −2KQ̃2ρσ2 (46)

β5 = 4KĀρσ2m (47)

β6 = 4KQ̃ρσ2 (48)
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Finally, (37) can be written as

λ1v + λ2v
2 + λ3v

4 + λ4[Q̃V ] + λ5[Q̃V ]2 + λ6[Q̃V ]v2 = 0 (49)

where

λ1 = 0 (50)

λ2 = 0.5W̄ Q̃ρ2 − 1

η
0.5W̄ Q̃(ν −W )− 1

η
2W̄KQ̃2 (51)

λ3 = −KQ̃2ρ2σ2 (52)

λ4 = −W̄
(
ρ2 − 1

η
(ν −W )− 1

η
2Q̃K

)
(53)

λ5 = −4Kρ2σ2 (54)

λ6 = 4KQ̃ρ2σ2 (55)

Substituting (38) into (42), we have

h1 + h2v + h3v
2 + h4v

3 = 0 (56)

where

h1 = β1 + β5α1 (57)

h2 = β2 + β6α1 + β5α2 (58)

h3 = β3 + β5α3 + β6α2 (59)

h4 = β4 + β6α3 (60)

Substituting (38) into (49), we have

g1 + g2v + g3v
2 + g4v

3 + g5v
4 = 0 (61)

where

g1 = λ4α1 + λ5α
2
1 (62)

g2 = λ1 + λ4α2 + 2λ5α1α2 (63)

g3 = λ2 + λ4α3 + 2λ5α1α3 + λ6α1 + λ5α
2
2 (64)

g4 = 2λ5α2α3 + λ6α2 (65)

g5 = λ3 + λ5α
2
3 + λ6α3 (66)
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Equations (56) and (61) are third and fourth order polynomials that we solve

numerically. The solutions map Q̃ into v. There may be multiple solutions (mul-

tiple v for a given Q̃). We then plot these two schedules in a space with v on the

vertical axis and Q̃ on the horizontal axis, as in Figures 1-2. There is an equi-

librium when the two schedules intersect. The precise equilibria can be found by

solving (35)-(37) numerically in Gauss as a fixed point problem in v, V and Q̃.

We choose starting values that are close to the equilibria found through visual in-

spection of where the two schedules intersect. Visual inspection gives approximate

values for Q̃ and v. The corresponding value for V follows from (38).

B Solving the Switching Equilibria

We now consider the equilibria in Section 3.1 of the paper where we allow for a

switch between a low and high risk state. p1 (p2) is the probability that next period

we will be in the low (high) risk state when this period we are in the low (high)

risk state. The log equity prices in the low and high risk states are

qlow riskt = q̃1 + v1St − V1S2t (67)

qhigh riskt = q̃2 + v2St − V2S2t (68)

Assume that currently we are in the low risk state at time t. Analogous to (33),

the expectation of Qt+1 +At+1, conditional on being in a low risk state in t+ 1, is

Et+1(Qt+1 + At+1|t+ 1 is low) = a1,low + a2,lowSt + a3,lowS
2
t

where a1,low = Q̃1(1 + ω1σ
2) + Ā, a2,low = Q̃1v1ρ + mĀρ, a3,low = Q̃1ω1ρ

2 and

ω1 = −V1 + 0.5v21. Similarly, the expectation of Qt+1 + At+1 conditional on being

in the high risk state at t+ 1 is

Et+1(Qt+1 + At+1|t+ 1 is high) = a1,high + a2,highSt + a3,highS
2
t

where a1,high = Q̃2(1 + ω2σ
2) + Ā, a2,high = Q̃2v2ρ + mĀρ, a3,high = Q̃2ω2ρ

2 and

ω2 = −V2 + 0.5v22.

The expectation of Qt+1 + At+1 is then

Et(Qt+1 + At+1)

= p1Et+1(Qt+1 + At+1|t+ 1 is low) + (1− p1)Et+1(Qt+1 + At+1|t+ 1 is high)

= d1,low + d2,lowSt + d3,lowS
2
t (69)
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where di,low = p1ai,low + (1− p1)ai,high, i = 1, 2, 3.

The variance of Qt+1 + At+1 is

var(Qt+1 + At+1) = Et(Qt+1 + At+1)
2 − (Et(Qt+1 + At+1))

2 (70)

Dropping terms in St that are third and higher order, (69) gives

(Et(Qt+1 + At+1))
2 = d21,low + 2d1,lowd2,lowSt + (d22,low + 2d1,lowd3,low)S2t (71)

Next consider Et(Qt+1 + At+1)
2. Conditional on being in a low risk state at

t+ 1, we have

Qt+1 + At+1 = a1,low + a2,lowSt + a3,lowS
2
t + a4,lowεt+1 (72)

where a4,low = Q̃1(v1 + ω12ρSt) +mĀ. Using the definition of a4,low, we then have

Et((Qt+1 + At+1)
2|t+ 1 is low) = b1,low + b2St,low + b3S

2
t,low (73)

where b1,low = a21,low+(Q̃1v1+mĀ)2σ2, b2,low = 2a1,lowa2,low+4Q̃1(Q̃1v1+mĀ)ω1ρσ
2,

and b3,low = a22,low + 2a1,lowa3,low + 4Q̃21ω
2
1ρ
2σ2. Similarly, conditional on being in a

high risk state at t+ 1 we have

Et((Qt+1 + At+1)
2|t+ 1 is high) = b1,high + b2,highSt + b3,highS

2
t (74)

Here bi,high (i = 1, 2, 3) is defined analogously to bi,low with subscripts low replaced

by high and subscripts 1 for Q̃, v and ω replaced by 2. This implies that in the

low risk state at t:

Et(Qt+1 + At+1)
2 = c1,low + c2,lowSt + c3,lowS

2
t (75)

where ci,low = p1bi,low + (1− p1)bi,high, i = 1, 2, 3.

It follows that

var(Qt+1 + At+1) =
(
c1,low − d21,low

)
+ (c2,low − 2d1,lowd2,low)St

+
(
c3,low − d22,low − 2d1,lowd3,low

)
S2t (76)

Finally, a quadratic approximation around St = 0 of QtRt+1 gives

QtRt+1 = e1,low + e2,lowSt + e3,lowS
2
t (77)

27



where e1,low = 1
η

[
(ν −W ) +KQ̃1

]
Q̃1, e2,low = 1

η

[
(ν −W ) + 2KQ̃1

]
Q̃1v1 and

e3,low = 1
η

[
(ν −W )ω1 + 2KQ̃1(−V1 + v21)

]
Q̃1.

Substituting these results into the market equilibrium condition (22), and tak-

ing a second order approximation around St = 0, again gives (24). Setting Z0 = 0,

Z1 = 0 and Z2 = 0 gives respectively

W̄ (d1,low − e1,low) = K(c1,low − d21,low) (78)

W̄ (d2,low − e2,low) = K(c2,low − 2d1,lowd2,low) (79)

W̄ (d3,low − e3,low) = K(c3,low − d22,low − 2d1,lowd3,low) (80)

All of this is conditional on being in the low risk state at t. We can similarly impose

market equilibrium conditional on being in the high risk state at t. Define ci,high

and di,high (i = 1, 2, 3) the same as ci,low and di,low, with p1 replaced by 1−p2. Also

define ei,high (i = 1, 2, 3) the same as ei,low, with the subscripts 1 for Q̃, v, V and

ω replaced by subscripts 2. Then imposing market clearing we get three equations

analogous to (78)-(80) with the subscripts low replaced by high. Solving these six

equations jointly gives the solutions for Q̃1, Q̃2, v1, v2, V1 and V2. This is done

numerically in Gauss, using as starting values the solutions for equilibria 1 and 2

without switching.

C Data Sources for Figure 5

The data presented in Figure 5 are constructed in the following way. Stock prices

are measured by the DJ U.S. total stock market index. Risk is measured as the

CBOE SPX volatility VIX index. Volatility of risk is the standard deviation of the

VIX index over the past 30 days. Net worth and leverage are based on U.S. brokers

and dealers as reported by the Federal Reserve Flow of Funds. For market liquid-

ity we construct a measure similar to Amihud (2002) which, of different market

liquidity measures, correlates the most with estimates of price impact computed

using very high-frequency data (see Goyenko et al., 2009). Starting with individual

stocks, we compute the average absolute daily stock price change over a month

per dollar of daily trading volume. This is then averaged over 100 stocks from the

S&P index. We are grateful to Giorgio Valente for providing us with the updated

measure. Holding period returns and volumes are from Reuters Datastream. To
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deal with stationarity, in the spirit of Acharya and Pedersen (2005) the illiquidity

measure is multiplied by the ratio of the aggregate volume for all stocks in the

sample at the end of a month to the same aggregate volume at the beginning of

the sample. A high value of our measure indicates low market liquidity. It is

therefore a measure of illiquidity.
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Figure 1  Sunspot Equilibria* 
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Figure 2  Sunspot-Like Equilibria* 

Equilibrium 2:

Equilibrium 1: 003.0;05.0;1.1
~ === VvQ

Equilibrium 3: 7.8;4.1;39.0
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* Parameters are as in Figure 1 except that m=1.
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Figure 3 Solution as Function of m (Equilibrium 2)*
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* Other than the value of m, parameters are identical to those in Figure 1.
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Figure 4 Switching Equilibria*

* This is based on the parameters of Figure 2. When p1=p2=1, the high and low risk states correspond exactly to equilibria 1 and 2 in 
Figure 2.
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Source: Datastream, daily data. Stock prices are the DJ U.S. total market price index (January 1, 2007 = 100). The interest rate is the U.S. 3 month Treasury 
bill. The risk measure is the CBOE SPX volatility VIX index. The volatility of risk is the 30 days standard deviation of the VIX index.

Figure 5a Stock prices, interest rate, and risk
vertical lines = Lehman Brothers bankruptcy (Sept. 15, 2008)
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Figure 5b Net worth, leverage and illiquidity

Leverage brokers and dealers

illiquidity

Source: Data on brokers and dealers from the Fed’s Flow of Funds (L.129); net worth is assets minus liabilities, billion US $; leverage is net worth 
divided by assets. The illiquidity measure is an updated measure of Amihud (2002). The vertical lines represent Q3 2008 for the quarterly net worth 
and leverage series and September 2008 for the monthly illiquidity series. 
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Figure 6 Model Simulation*
shaded area = high risk equilibrium; vertical lines = endowment shock
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* The economy starts in the low risk equilibrium. At time 2 the endowment of investors falls from 6 to 2.8. The economy stays in the low risk equilibrium     
until time 8, at which point is shifts to the high risk equilibrium. At time 11 endowments shift back towards the initial allocation. The economy remains in 
the high risk equilibrium until time 14, at which points it shifts back to the low risk equilibrium.
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