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Abstract

Imperfection information models where agents solve some kind of sig-
nal extraction problem are multiplying and developing fast. They have
commonly been used to study the impact of imperfect information on the
business cycle and the importance of news versus noise shocks. This paper
attempts to apply the framework to a di¤erent, albeit related, question:
that of the e¤ect of volatility (both in news and noise) on the economy,
from a long and short run perspective. An RBC model where the agent
faces imperfect information regarding productivity is developed and cal-
ibrated in order to address the question, coming to the conclusion that
the long run e¤ect is insigni�cant while further development is required
to address the short run conclusively.

1 Introduction

General equilibrium models of incomplete information are rapidly gaining promi-
nence in the literature. They provide a useful framework to study agent re-
sponses in a context of unobservable variables complemented with signals. Thus,
they have been used to analyze the impact of permanent and temporary shocks
a¤ecting a wide array of exogenous variables on agent decisions when they can-
not distinguish perfectly between them. Several studies have reported on the
impact of the introduction of this expectation mechanism compared to the usual
full information one and perhaps the most interesting result of the comparison
has been the appearance of a "hump-shaped" consumption impulse response
function even with CRRA utility functions (the standard New Keynesian frame-
work requires the assumption of habit formation in order to deliver the same
result).
Other studies have used this framework to explore the relative importance of

"real" versus "noise" shocks, the latter being considered as measurement error
or forecast error amongst other interpretations.
Yet, we are not aware of any attempt to explore the consequences of higher

volatility in either real or noise shocks. Intuitively, higher volatility of real
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shocks (permanent or temporary) implies a higher degree of uncertainty in fu-
ture outcomes, whereas higher noise shock volatility could be interpreted as a
decrease in forecast quality and/or precision.
This paper focuses on the e¤ects of higher real or noise volatility and its

impact on both long and short run dynamics. In particular, the e¤ects of higher
TFP variance will be explored, together with higher noise variance in the signal
used to obtain information about the components of TFP.
Turning to related literature, the model explored here draws heavily from

Blanchard et al. (2009). They present a simple consumption model where the
random-walk result holds and then assume imperfect information in the form of
unobservable variables coupled with signals delivering information about them.
They show the consumer�s signal extraction problem, solve it, and then proceed
to evaluate the model empirically. Amongst other things, they demonstrate
that an "econometrician" with no informational advantage to the agents cannot
distinguish between news and noise shocks from the estimation of structural
VAR�s and that noise shocks play an important role in short-run �uctuations.
Blanchard et al. (2009) assume log productivity has a permanent (unit

root) and transitory component. Productivity itself is perfectly observable but
its components are not. In order to gain some information about the permanent
component, a signal based on it is included in the agent�s information set. This
paper will employ the same setup, expanding the model to include all the pieces
of a classic RBC, allowing general equilibrium analysis.
Lorenzoni (2008) presents a model of business cycles driven by shocks to

consumer expectations regarding aggregate productivity. Agents are hit by
heterogeneous productivity shocks, they observe their own productivity and
a noisy public signal regarding aggregate productivity. The public signal gives
rise to "noise shocks", which have the features of aggregate demand shocks:
they increase output, employment and in�ation in the short run and have no
e¤ects in the long run.
The dynamics of the economy following an aggregate productivity shock are

also a¤ected by the presence of imperfect information: after a positive produc-
tivity shock output adjusts gradually to its higher long-run level, and there is a
temporary negative e¤ect on in�ation and employment.
His paper explores the idea of expectation-driven cycles, looking at a model

where technology determines equilibrium output in the long run, but consumers
only observe noisy signals about technology in the short run. The presence of
noisy signals produces expectation errors. The role of these expectation errors
in generating volatility at business cycle frequencies constitutes the main result.
The author is interested in the interaction of productivity and "noise" shocks
in generating the business cycle, he endows the agent with a Kalman �lter that
is used to "learn" about the nature of the shocks.
Lorenzoni�s work di¤ers from Blanchard et al. in that the former assumes

log productivity is the result of a "permanent" (unit root) process plus an
i.i.d component. Thus, his "noise" shock is mistaken initially for a real one,
mechanism that drives his result. Blanchard et al. (2009) fail to include the
extra i.i.d component into productivity, essentially allowing some shocks to be
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perfectly identi�able.
Collard et al. (2009) provide a broad review of the e¤ects of imperfect

information on the business cycle. Using a New Keynesian framework, they
introduce imperfect information in several di¤erent ways, a¤ecting productivity
or monetary policy. The objective of their paper is to estimate the impact of
the imperfect information assumption in business cycle �uctuations and they
conclude that it is "quantitatively relevant, conceptually satisfactory and em-
pirically plausible".
Clearly, the vast majority of work done in imperfect information models with

signal extraction has not attempted to study the e¤ects of process or signal noise
volatility. Senhadji (2000) attempts to estimate TFP for several country groups
over di¤erent time periods. He reports that log productivity volatility di¤ers
signi�cantly between country groups implying there is enough cross-country
variation to justify exploring its consequences both in the long (steady state)
and short run (business cycle).
In order to address the question, we will construct a simple RBC model

with a consumer-producer agent who faces imperfect information regarding the
components of productivity and deals with the problem by applying a Kalman
�lter to the information at his disposition ("total" log productivity and a signal
regarding its permanent component).

2 The Model

The model is largely based on a standard real business cycle structure with a
representative agent in charge of consumption and production decisions. The
agent�s signal extraction problem will generate all expectations required to solve
the optimization problem he faces. Output is produced according to:

Yt = AtK
�
t L

1��
t : (1)

Capital accumulation follows the usual de�nition:

Kt+1 = It + (1� �)Kt: (2)

We will assume the only asset available in the economy is physical capital
implying the following resource constraint:

Yt = Ct + It: (3)

The agent�s objective is to maximize the (subjective) present discounted
value of utility:

E0

1X
t=0

�t

(
U (Ct)�

L1+�t

1 + �

)
; U (Ct) =

C1�
t

1� 
 : (4)

Thus, using standard solution methods it can be shown the agent must
choose consumption according to the following Euler equation:

U 0 (Ct) = Et
�
�U 0 (Ct+1)

�
�At+1K

��1
t+1 L

1��
t+1 + 1� �

��
: (5)
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Labour supply will be the result of equating marginal disutility of labor to
it�s marginal product expressed in consumption units:

L�t = (1� �)AtK�
t L

��
t U 0(Ct): (6)

Following Blanchard et al. (2009), we will assume the log of TFP, at = lnAt,
is the sum of two components:

at = xt + zt: (7)

The permanent component, xt, follows a unit root process of the form:

�xt = �x�xt�1 + �t: (8)

The transitory component, zt, follows a stationary AR(1) process of the
form:

zt = �zzt�1 + �t: (9)

Both parameters �x and �z are in [0,1), and �t and �t are i.i.d. normal
shocks with variance �2� and �

2
� respectively. Agents observe productivity at

but not the individual components. For the sake of analytical convenience, log
productivity will be assumed to follow a random walk:

at = at�1 + ut; (10)

with the variance of ut equal to �2u. Thus, certain restrictions on the parameters
of its components must be imposed to guarantee consistency. In particular,

�x = �z = �;

�2� = (1� �)
2
�2u; �2� = ��

2
u;

for some � in [0,1).

3 Model Solution and Calibration

The key to solving the agent�s problem lies in the formulation of Et [At+1] =
Et [exp (at+1)]. From (7) - (9) it can be shown that,

at+1 = (1 + �)xt � �xt�1 + �zt + �t+1 + �t+1; (11)

thus, given information at period t, at+1 is normally distributed. This allows
the application of standard log normal properties to Et [exp (at+1)]:

Et [exp (at+1)] = exp

�
Et [at+1] +

1

2
V art [at+1]

�
: (12)

In order to calculate the expectation and variance of next period�s log pro-
ductivity, the agent will have to solve a signal extraction problem by means of
the Kalman �lter. Following Blanchard et al. (2009) again, each period the
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agent observes current productivity and receives a signal, st, which provides
information regarding the permanent component of the productivity process:

st = xt + �t; (13)

where �t is i.i.d. normal with variance �2v. Note that without the signal it would
be impossible for the agent to decompose changes in productivity between per-
manent and temporary shocks. Furthermore, the agent knows the model behind
productivity in detail: the particular functional forms involved and parameter
values (� and the variance of the three shocks).
Thus, the agent enters period t with his knowledge of the model plus beliefs

formed last period
�
xtjt�1; xt�1jt�1; ztjt�1

�
, observes productivity and the sig-

nal (at; st) and uses all that information to update his expectations using the
Kalman �lter: 24 xtjt

xt�1jt
ztjt

35 = A
24 xt�1jt�1
xt�2jt�1
zt�1jt�1

35+B � at
st

�
(14)

where the matrices A and B depend on parameters of the model. Given the
above, the Kalman �lter provides the necessary ingredients to construct:

Et [at+1] = (1 + �)xtjt � �xt�1jt + �ztjt � b0Et [�t] ; (15)

b �

24 1 + �
��
�

35 ; �t =

24 xt
xt�1
zt

35
V art [at+1] = b

0V art [�t] b+ �
2
� + �

2
� (16)

where V art [�t] � P is found by solving the time-invariant Ricatti equation
implied by the Kalman �lter and will depend on model parameters as well.
Adding these results to the Euler equation will result in:

U 0 (Ct) = �� exp
�
b0Et [�t] + 0:5

�
b0Pb+ �2� + �

2
�

��
Et
�
U 0 (Ct+1)K

��1
t+1 L

1��
t+1

�
+� (1� �)Et [U 0 (Ct+1)] (17)

note that we have eliminated the only stochastic forward-looking variable present
in the RBC model and replaced it with a process that depends exclusively on
past realizations of productivity and the signal. In order to obtain this result the
covariance between productivity and other variables has been ignored. This is
akin to a �rst order approximation of the Euler equation only, log-linearization
is not applied to the whole system in order to preserve the richer dynamics
present in the rest of the equations.
Equations (1) - (3) and (6) together with the reformulated Euler equation

and the Kalman �lter result (14) form a system where all variables are driven
by productivity and the signal (from the agent�s point of view) which, in turn,
ultimately depend on the history of the three shocks (from the researcher�s point
of view).
Turning to the model calibration, standard values will be used for �, �, 
,

� and �, transformed to their quarterly equivalents as shown in the following
table (quarterly-adjusted values have been rounded):
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Parameter Reference value Quarterly-adjusted value
� 0.33 0.33
� 0.96 0.99

 0.95 0.95
� 0.05 0.01
� 2 2
Table 1: Calibration of RBC parameters

For the parameter governing the relative importance of permanent versus
temporary shocks, �, a value of 0.89 will be taken, following Blanchard et al.
(2009). This will imply permanent shocks that build up slowly and temporary
shocks that take a long time to decay.
The only parameters left are the variances of the three shocks. Since these are

the ones that will be changed in order to explore the e¤ects of higher volatility
of productivity or signal noise we will require several sets of them.

Parameter A: Base scenario B: Higher �u C: Higher ��
�u 0.67% 1.27% 0.67%
�� 0.07% 0.14% 0.07%
�� 0.63% 1.26% 0.63%
�� 0.89% 0.89% 1.78%
Table 2: Variance of shocks for di¤erent scenarios

The base scenario corresponds to Blanchard et al (2009). The other ones are
based on Senhadji�s (2000) estimates of the standard deviation of total factor
productivity for several country groups over the 1960-1994 period. His average
for "Industrial Countries" is fairly close to the value reported by Blanchard
(which is for the US only). Furthermore, he �nds that yearly �u for Middle
East and North Africa is roughly 5.7% (the highest volatility he reports); that
value will be used approximately for the scenario with high �u: for simplicity,
we have constructed it as an increase in �u by a factor of 2. Similarly scenario
C has been constructed by doubling the magnitude of �� only.

4 Results

The following �gures show impulse response functions for a permanent, transi-
tory and noise shock for the base scenario. When the permanent shock takes
place, consumption increases right from the outset, even at the cost of an initial
fall in investment. This, together with the sustained fall in labour are the agent�s
responses to the wealth component of the shock. At the time of the shock, not
all the observed variation in log productivity is attributed to the permanent
component, in fact, the agent believes most of the shock is transitory (roughly
65% of the shock is attributed to the transitory component). As time goes by,
the agent gradually realizes the true nature of the shock, thus increasing con-
sumption slowly. This also explains the shape of investment which seems to
settle at a higher level in order to sustain what will eventually become the new
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steady state level of consumption. Output dynamics basically follow those of
productivity.

Figure 1: Impulse response function for a permanent shock

Figure 1a: Evolution of expectations after a permanent shock
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The transitory shock tells a di¤erent story. The agent realizes right from
the beginning the nature of the shock (95% of the variation is attributed to the
transitory component). Thus, the agent proceeds to smooth out the bene�ts
of the shock. Consumption and labour response at time zero is mild, but in-
vestment response is relatively high. The idea will be to accumulate capital in
order to sustain higher output for as long as possible to allow for a longer-lasting
consumption increase.

Figure 2: Impulse response function for a transitory shock
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Figure 2a: Evolution of expectations after a temporary shock

The impulse response function derived from a signal noise shock delivers
unexpected results.

Figure 3: Impulse response function for a noise shock
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Figure 3a: Evolution of expectations after a noise shock

Di¤ering from Blanchard et al. (2009), the response is insigni�cant. The
biggest impulse obtained, that of investment, is below 0.01% at its highest
(which occurs right at the moment the shock hits). The contradiction can be
explained by comparing Euler equations. Blanchard et al. (2009) obtain the
following result for consumption:

ct = lim
j!1

Et [at+j ] :

Note that this implies consumption will depend on the expected limit value
of the at process alone. Since any transitory shock eventually dies out, that
expected value will depend solely on the current expectations of the permanent
component of productivity:

ct = xtjt +
�

1� �
�
xtjt � xt�1jt

�
:

On the other hand, the model presented in this paper results in an Euler
equation that predicts consumption depends on the entire expected present and
future history of log productivity: the transitory component matters.
Thus, Blanchard et al. (2009) report consumption impulse responses that

depend solely on the evolution of xtjt and xt�1jt (for the permanent shock these
change obviously; for the transitory shock, recall that the agent erroneously
interprets part of the transitory shock as a permanent one when the shock hits
and only "learns" the truth gradually). This has no signi�cant impact on the
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qualitative aspect of the response to permanent and transitory shocks but makes
a big di¤erence when it comes to signal noise shocks.
When a signal noise shock hits this system, the signal jumps but observed

log productivity does not change. Given that the Kalman �lter is always trying
to "split" observed changes in these variables into the permanent and transitory
components of productivity, the signal jump of �� magnitude will be interpreted
as an increase in the permanent component mirrored by a decrease in the tran-
sitory component, both with magnitude equal to roughly a quarter of �� . Since
Blanchard et al. (2009) have consumption depending on the permanent compo-
nent only, they obtain a non-trivial impulse response, but that will not be the
case for the model developed in this paper: the signal noise shock will gener-
ate insigni�cant responses given that the permanent and transitory components
move in opposite directions and the agent learns fairly quickly that the signal
jump had no "real" basis. Still, Figure 3 shows the agent�s response to the noise
shock is reasonable: the initial increase in investment and labour coupled with
the fall in consumption would indicate an attempt to spread out the bene�ts of
a non-existent positive shock to the future. The mistake in�ates output above
steady state brie�y and the situation is corrected (with higher consumption and
lower investment and labour) fairly quickly.
Turning to the analysis of the di¤erent scenarios presented in Table 2, it

turns out that only scenario B shows an impact on the steady state worth not-
ing. In particular, higher (double) �u, which implies proportionally higher ��
and ��, results in a 0.016% increase in the steady state values of capital, out-
put, investment and consumption. The reason is fairly straightforward: higher
log productivity variance implies higher expected productivity in level (by log
normal property) which leads to a higher demand for capital in steady state.
Capital then causes a proportional rise in all other model variables. Note that
the model assumes no trend in log productivity (steady state exogenous growth
is zero) and decreasing returns to capital (thus preventing endogenous growth
from appearing). Changing the latter assumption to one of constant returns
would imply the 0.016% increase would be imputed to the steady state growth
rate.
Why is the impact of a change in shock volatility so small? Generally speak-

ing, the magnitude of the change in �2u is too small to generate a signi�cant
response in steady state capital. TFP volatility apparently is too small to mat-
ter in the long run.
Changes in shock volatility also have a small impact on the short run re-

sponses of the model. In order to assess this e¤ect it is necessary to correct im-
pulse response functions for shock magnitude (a typical one-standard-deviation
permanent shock would have di¤erent magnitudes in scenarios A and B, same
reasoning applies to a one-standard-deviation signal noise shock in scenarios A
and C). Once the correction is made, we can construct the changes in impulse
response function (IRF) between scenarios.
Comparing scenarios A and C (the comparison between A and B is shown

in the appendix) we can appreciate the following changes:
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Figure 4: Permanent shock: IRF(C) - IRF(A)

Figure 5: Temporary shock: IRF(C) - IRF(A)
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Figure 6: Noise shock: IRF(C) - IRF(A)

An increase in signal noise volatility mainly impacts consumption, invest-
ment and labour.
In the case of the permanent shock, higher noise volatility results in a bigger

consumption expansion and a bigger investment contraction, this resembles,
qualitatively, a negative noise shock.
In the case of the temporary shock, higher noise volatility results in a smaller

consumption expansion and a bigger investment expansion, this resembles, qual-
itatively, a positive noise shock.
In the case of the noise shock, higher noise volatility results in a dampened

response.
In general, the agent assigns a higher proportion of changes in observed

productivity to the permanent component and pays less attention (weaker re-
sponses) to changes in the signal. The following �gure shows how the formula-
tion of expectations changes in response to higher volatility.
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Figure 7: Changes in expectations due to higher volatility

When productivity is more volatile, the agent �nds it easier to identify both
permanent and temporary shocks. Implicitly, he is giving more weight to the
signal and thus can discriminate better between shocks (recall the signal does
not change in response to temporary shocks). On the other hand, when the extra
volatility comes from signal noise his capacity to distinguish between shocks is
diminished: he identi�es a bigger proportion of permanent shocks as temporary
and viceversa.
The model cannot address the short run impact of changes in volatility (a

"volatility shock"). The reason is that productivity and signal volatility enter
the model as (known) constants. Thus, the e¤ect of any change in them is
completely absorbed by adjustments to the steady state values of the model.
The agent is assumed to know the magnitude of volatility in all three shocks
right from the outset in every scenario. This is an assumption required to solve
the Kalman �lter using the method presented above, but it will have to be lifted
in order to explore short run consequences of changes in volatility of the shocks
(note that this would imply assuming that volatility is not constant over time
and thus not necessarily observable by the agent).
Thus, the model presented seems to deliver a strong conclusion regarding

the e¤ects of TFP volatility in the long run but fails to account for short run
volatility changes. Given the magnitude of these (Senhadji reports TFP growth
averages for several country groups together with standard deviations: the im-
plication is that short run values cannot be too far from those we have studied)
are they worth of analysis? In order to answer this, recall the impulse response
functions reported for the base scenario. They are constructed based on a one-
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standard-deviation change in any of the shocks: the shock magnitude is exactly
the same that we�d like to apply to a short run change in volatility. Since
the impulse responses are not insigni�cant, that could be an indication, albeit
weak, that an impulse response to a "volatility shock" could have a non-trivial
magnitude.

5 Conclusion

An imperfect information model with an agent facing a signal extraction prob-
lem has been developed, solved and calibrated. Then, changes in process and
signal noise volatility of productivity are introduced and their impact studied.
The model clearly shows that volatility of this type has no relevant long run
impact but has a small e¤ect on the economy�s responses to productivity and
noise shocks. Volatility shocks are not addressed, the reason being that the
model studied takes volatility as a known constant from the agent�s point of
view, resulting in any changes to it being absorbed directly into the steady
state. Analysis of short run �uctuations in volatility will require an agent that
gradually learns what the true volatility behind his productivity process is or
a departure from the assumption of constant volatility. In both cases, non-
trivial modi�cations to the Kalman �lter algorithm presented in this paper as
the agent�s method of dealing with imperfect information would be required.
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7 Appendix

Figure A1: Permanent shock: IRF(B) - IRF(A)

Figure A2: Temporary shock: IRF(B) - IRF(A)
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Figure A3: Noise shock: IRF(B) - IRF(A)
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