

Camu-camu Innovación del agro en la Amazonia Peruana; Perspectivas

Mario Pinedo Panduro pacc@iiap.org.pe

Encuentro Económico, Región Loreto 22-23 oct 2009 BANCO CENTRAL DEL PERU

GENERALIDADES

FUENTES

Conocimientos	Entidades	Años
Ancestrales	Comunidades Nativas	?5
Populares	Familias Productoras	50
Investigación	IIAP,INIA,UNAP, UNU	35
Promoción	MINAG, GOREL, IIAP	15

ESPECIES Y TIPOS DE CAMU-CAMU

GENERALIDADES

CAMU CAMU, POR QUE

- ◆ Hay mercado
- **◆** Rentable
- ◆ Vitamina C
- ◆ Semi-acuática
- ◆ Hay tecnología
- **♦** Frutal precoz
- **♦ Impactos ESE**
- **♦** Sostenible
- ◆2 millones ha
- **♦** Ribereños

SOSTENIBILIDAD DEL SISTEMA CAMU-CAMU fitodiversidad riesgos inundacion/erosión/sedimentación costos de producción costos de transporte malezas, plagas, enfermedades fertilidad suelo/precocidad/rendim ento precio de la fruta **PISO PRIORITARIO** máximo nivel de inundacion minimo nivel de inundacion **TIERRA RESTINGA RESTINGA FIRME ALTA** RÍO **BAJA BARREAL**

ASPECTOS ECOLOGICOS

Sedimentación y camu-camu

Agricultura temporal

Camu camu

sedimento

Camu camu

Agricultura temporal

sedimento

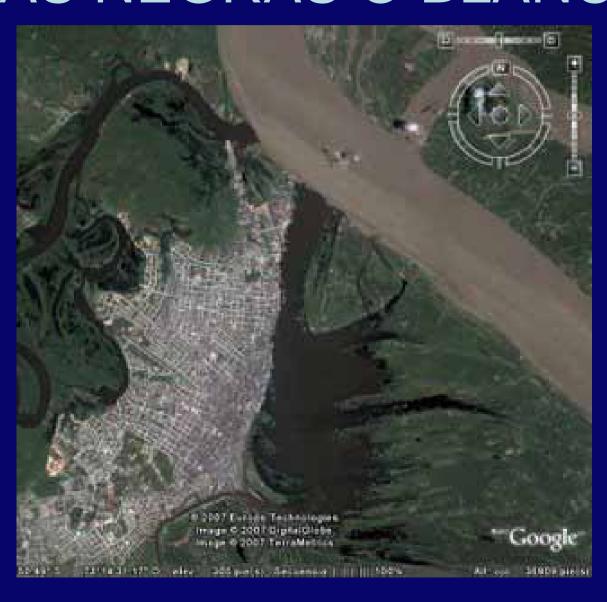
agua turbia

Camu camu

sedimento

agua negra

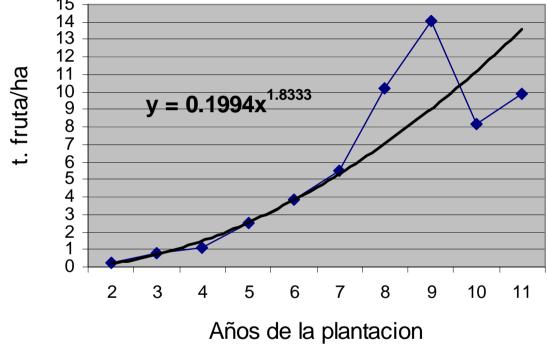
INUNDACIONES CON CAMU-CAMU



INUNDACIONES
SIN CAMU-CAMU

Arroz bajo riego: Oportunidad o Amenaza??

ASPECTOS ECOLOGICOS AGUAS NEGRAS O BLANCAS

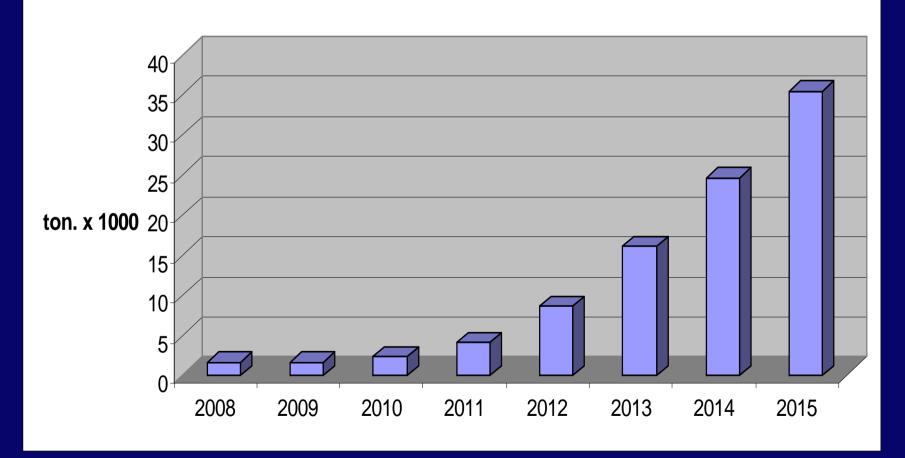


ASPECTOS ECOLOGICOS

Cuanto tiempo se cultiva camu-camu

Figura 2. Productividad en area inundable, distanciamiento 2 a 4 m



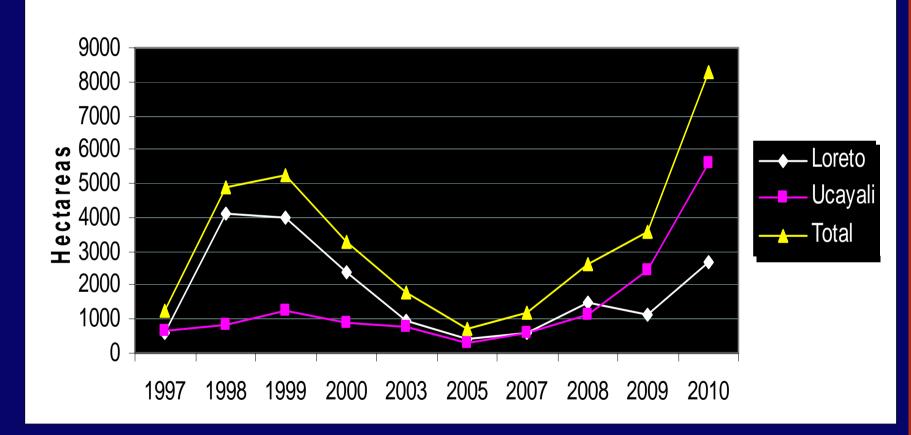


Años	t/ha	
3	0.7	
4	2.5	
5	3.8	
6	5.3	
7	7.1	
8	9.0	
9	11.2	
10	13.6	
11	16.2	
12	19.0	
13	22.0	
14	25.2	
15	28.6	

Estimado de produccion de fruta fresca en Loreto

REQUERIMIENTO DE aa PARA PERU

Población	25 millones
aa/dia/persona	200 mg
aa/dia/pais	5 ton
aa/año/pais	1500 ton
pulpa/año/pais	100,000 ton
fruta/año/pais	200,000 ton
Area cultivo/pais	40,000 ha

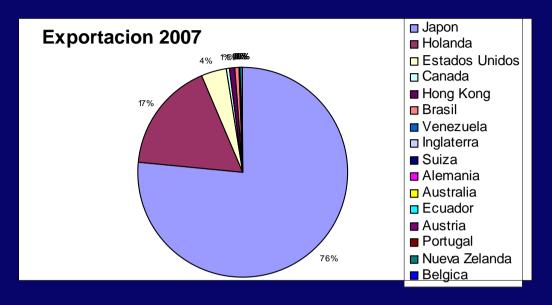

ANALISIS RENTABILIDAD

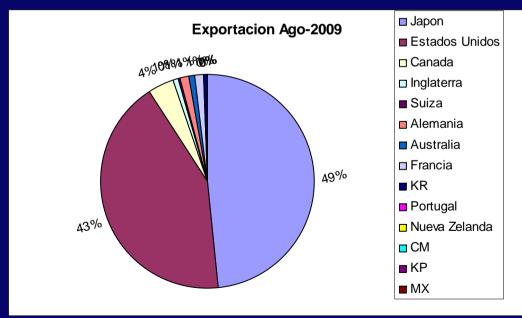
ALTERNATIVAS	VAN (8 años)	TIR	B/C
Camu-camu	3330 (10%)	36.22%	2.74
Camu-camu-Yuca	2827 (17%)	51.53%	2.40

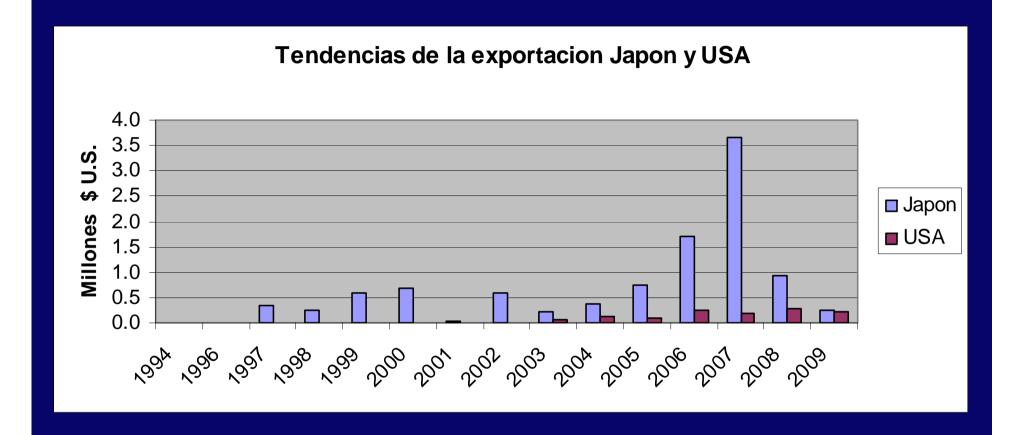
Capacidad productiva en Loreto y Ucayali

,	Plantaciones			
Región	En producción al 2009	Nuevas al 2009	Total al 2010	
Loreto (ha)	400	800	2350	
Ucayali ha)	350	2770	5930	
Total (ha)	750	3570	8280	
Fruta (t)	2850	13566	31464	
Pulpa (t)	1425	6783	15732	

Area cultivada de camu-camu en Loreto y Ucayali







Crisis del 2008

EVENTOS

- Exceso de pulpa en Lima y Japon
- Se compro poca fruta
- Bajo el precio de fruta
 S/. 3.5 hasta a S/.1.0
- Desperdicio de fruta
- Diversificacion de la demanda

CAUSAS

- Calidad de la pulpa
- Calidad de los productos japoneses
- Precio de la acerola
- Necesidad de ajustar costos/precio

de 39

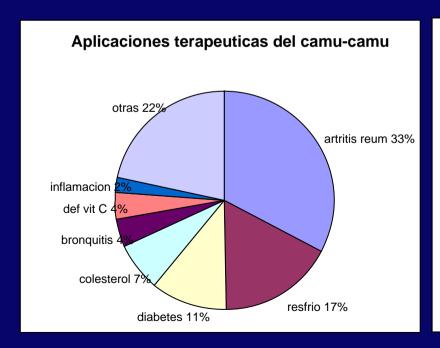
CAMU CAMU VS ACEROLA AL 2007

CAMU CAMU	ACEROLA
1.Costo FOB Callao \$ 3.50 2.Contenido Vitamina C: 1,800 ml/100 g 3.Cosecha estacional 4.Áreas de cultivo: 700 ha, Loreto y Ucayali 5.Consumo nacional: nulo 6.Exportación: 1000 t/ 2007, 95% Japón 7.Rendimiento: 5 t/ha 8.Costo: \$1,000/ha	1.Costo FOB Sao Paulo/Fortaleza \$ 2.00 2.Contenido vitamina C: 900 ml/100 g 3.Cosecha permanente 4.Áreas de cultivo: 7,000 hectáreas. 5.Consumo nacional: 6,000 t/ano 6.Exportación: 6000 t/ 2007, 70% Japón 7.Rendimiento: 40 t/ha 8.Costo: \$ 2,000/ha

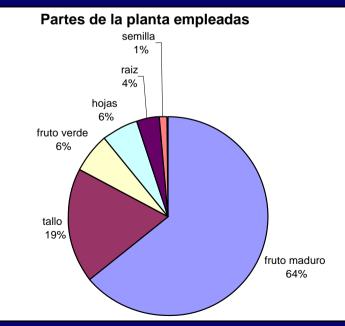
COSTOS AL 2008, VENTA EN	LIMA
1. Materia prima	\$ 0.80
2. Transformación en Iquitos	\$ 0.10
3. Envases (Baldes y javas)	\$ 0.15
4. Gastos Administrativos	\$ 0.10
5. Frio	\$ 0.10
6. Transporte interno	\$ 0.05
7. Transporte a Lima	\$ 0.40
8. Costos financieros	\$ 0.05
9. Imprevistos	\$ 0.10
COSTO TOTAL POR LITRO DE PULPA	\$ 1.85
VALOR DE VENTA POR LITRO EN LIMA	\$ 2.00
UTILIDAD POR LITRO DE PULPA EN LIMA	\$ 0.15

de 39

CONTROVERSIAS - SOSTENIBILIDAD **PROPÓSITO** Segurid Aliment. Mercado **SUBSIDIO** Populismo Autogestión TAMAÑO Media-grande Pequeño POB. OBJETIVO Fam. Productora **Empresas** TIPO DE MANEJO Conservación Producción DOMESTICACIÓN Extractivismo Plantación CONTAMINACIÓN No Orgánico Orgánico INVERSIÓN Bajos Insumos > Insumos AGRO-DIVERSIDAD Diversidad Uniformidad NIVEL TECNOLÓGICO Bajo Alto INVERSIÓN Bajo Alto **VISION** Técnica Política

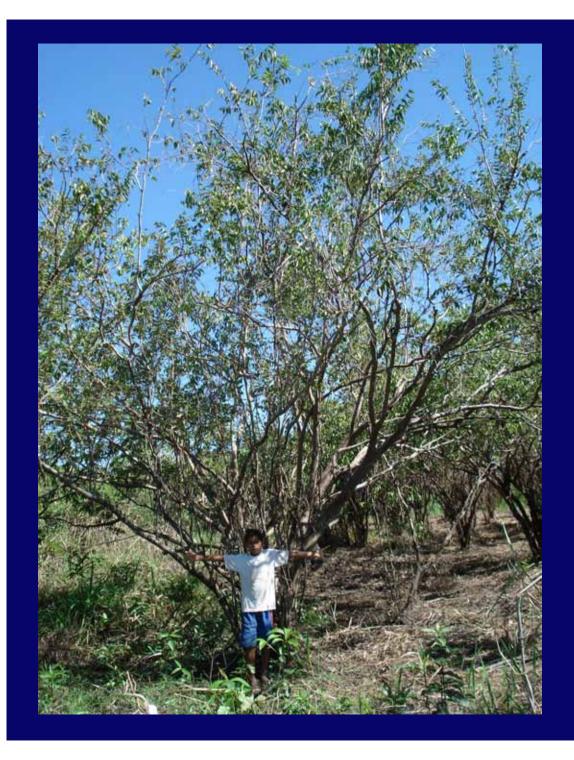

Produccion y distribucion de semilla mejorada 2007-2008

Entidad	Métodos	Plantones producidos 2007	Plantones Distribuidos 2007	Semillas o Plantones planeados 2008
IIAP-PET-Iquitos	Selección de germoplasma ex situ y en plantaciones de productores	50,588	45,588	760 kg S[1]
IIAP-PBIO- Iquitos	Selección de germoplasma en plantaciones de productores	198,000	198,000	800,000 P[2]
IIAP-PET- Pucallpa	Selección de germoplasma ex situ y en plantaciones de productores	11,000	11,000	500 [3] kg S
INIA-Iquitos	Selección de. Germoplasma ex situ Plantación semillera de procedencia conocida, PS-PC	170,000 80,000	140,000 80,000	100,000 P 170,000 P
INIA-Pucalipa	Selección de. Germoplasma ex situ			50 kg S
Totales Aprox. en plantones[4]		509,588	474,588	2′380,000


- [1] S=Semillas
- [2] P=Plantones
- de 39 [3] 75 provienen de plantas selectas IIAP y 425 de productores
 - [4] Para totalizar en plantones 1 kg.semilla = 1000 plantones

APLICACIONES POPULARES

Toribia Maytahuari Vargas
Productora de camu-camu,
Chingana, rio Ucayali con su hijo
que, según ella, resulto del
tratamiento, luego de 13 años de
infertilidad con macerado de frutos
maduros del camu-camu



APICACIONES TERAPEUTICAS, EVIDENCIAS CIENTIFICAS

Enfermedad	Aplicación popular %	Testimonios	Componentes químicos	Referencia científica
Artritis Reumatoide	32.87	Sandra Soplin (frutomaduro)	Acido ascorbico, Calcio	Werbach, M. 1993. Pizzorno, J.E. and Murray, M.T. 1985.
Resfrio	16.67	Segundo Soria (fruto maduro)	A. ascórbico	Davies, S., and Stewart, A. 1990
Diabetes	11.11	Janeth Irarica (fruto maduro) Medardo Del Aguila (Coccion del tallo)	A.ascorbico Fibra	Challem, J. et al. 2000. Duke, J. A. 1992
Colesterol	7.40	Teresa Mori (fruto maduro)	Calcio, A.ascorbico Fibra	Werbach, M. 1993. Davies, S., and Stewart, A. 1990 Duke, J. A. 1992.
Inflamación	2.31	Roman Taminche (hojas)	Acido ascorbico	Pizzorno, J.E. and Murray, M.T. 1985.
Presión alta	1.85	Adrian Yalta (fruto maduro)	Niacina, Calcio Fibra	Martindale's 29th . Werbach, M. 1993. Pizzorno, J.E. and Murray, M.T. 1985.
Fertilidad femenina	0.92	Toribia Maytahuari (fruto maduro)	Acido ascorbico	Werbach, M. 1993
Cáncer	0.46	Marlene Huaman (fruto maduro)	Acido ascorbico, Beta caroteno, Fibra, Niacina, Riboflavina	Stitt, P. A. 1990, Pizzorno, J.E. et al. 1985. Joseph, J. et al. 2001, Stitt, P. A. et al. 1990.
Catarata	0.46	Fernando Bardales (tallo y ramas)	Acido ascorbico Riboflavina	Challem, J. et al 2000 Werbach, M. 1993
Alcoholismo	0.46	Manuel Vela (fruto maduro)	Tiamina	Duke, James A. 1992.

camu-camu para toda la vida

- Ema Piches Flores,
 con 67 años de edad
- Plantación de 47 años en Tamshiyacu
- Principal fuente de ingresos de la familia

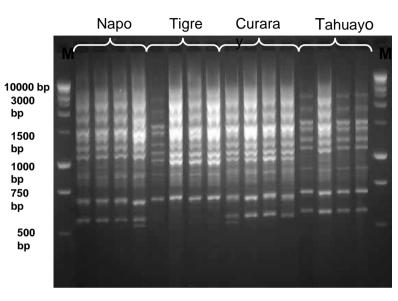
SEMILLA MEJORADA

- Desarrollo y validación de técnicas de propagación vegetativa (estacas, micro estaca acodo)
- Viveros en parcelas de productores y en Centro Experimentales
- Producción de 2 mill.
 plantones mejorados para el 2007

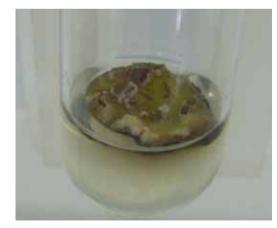
TECNOLOGIAS

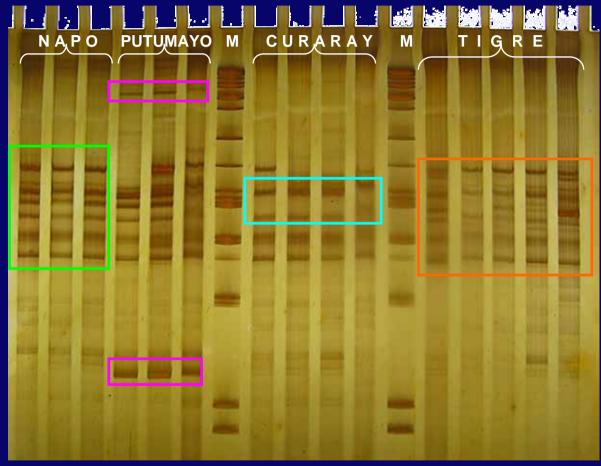
SEMILLA MEJORADA

- Semilla mejorada
- Manejo integrado de plagas
- Manejo agronómico
- Biología molecular
- Fotoquímica
- Aspectos sociales
- Aspectos ecológicos



BIOTECNOLOGIA

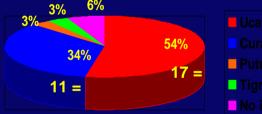



10000 bp 3000 bp 1500 bp 1000 pb 750 pb

Caracterización genética poblacional del camu camu

- Certificación de la identidad genética.
- Bases para el mejoramiento genético.

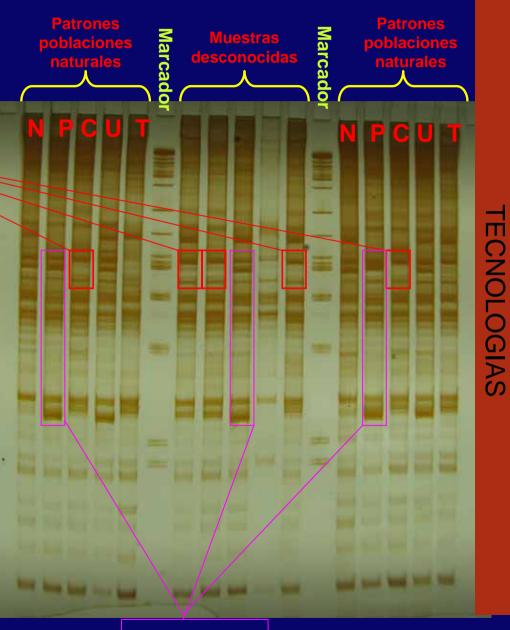
Técnica molecular : DALP ()



CURARAY

N = Napo, P = Putumayo,

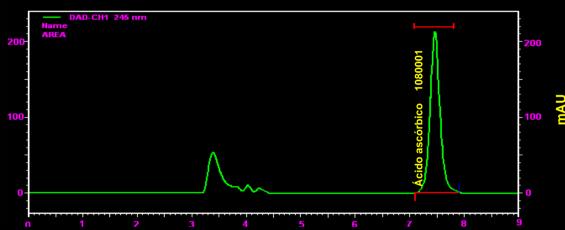
C = Curaray, U = Ucayali

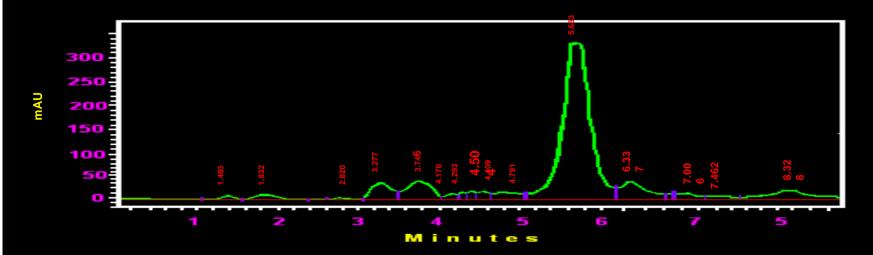

T = Tigre

Ucayali
Curaray
Putumayo
Tigre
No ident.

Ucayali
Curaray
Putumayo
Tigre
No ident.

 Bases para el mejoramiento genético.


Putumayo


TECNOLOGIAS

Estudio de moléculas bioactivas en frutales amazónicos

Cuantificación de la concentración de ácido ascórbico mediante HPLC

TECNOLOGIAS

ALGUNAS EXPERIENCIAS EN EL CONTROL DE PLAGAS

Plaga relacionada con la alta humedad en los viveros

Bajar la humedad

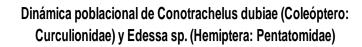
- Propiciar mayor ingreso de luz
- Reducir la densidad
- Quitar techo o tinglado

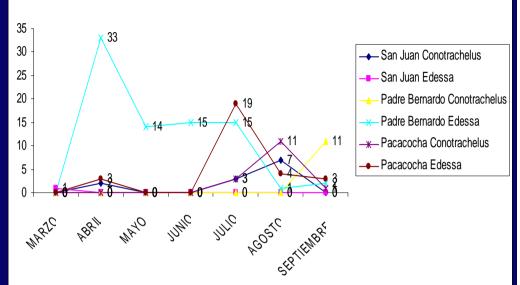
No hacer viveros debajo de árboles

Piojo arenoso

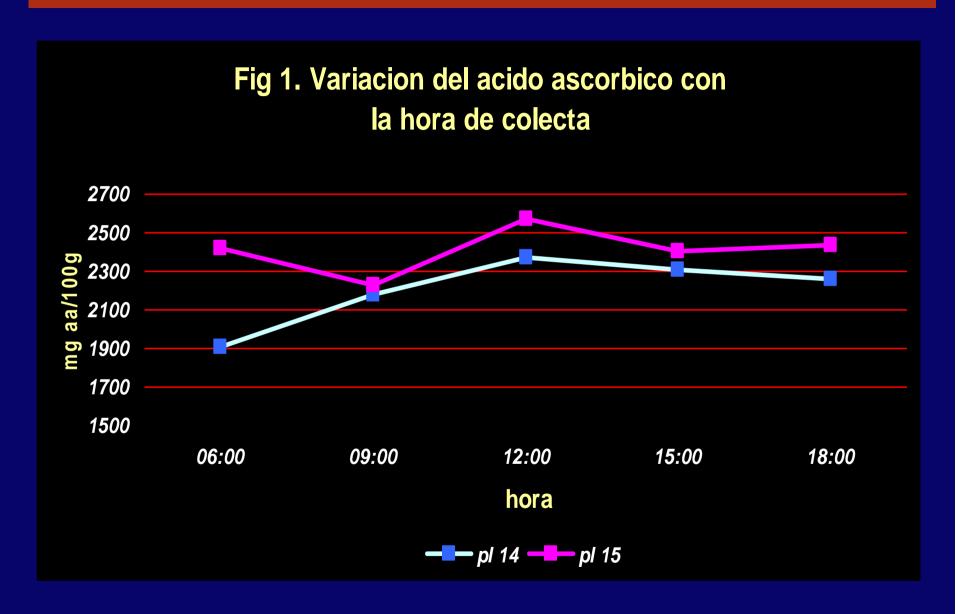
(Dysmicoccus brevipes).

- Se encuentran en las semillas.
- -Bajar la humedad
 - Propiciar mayor ingreso de luz.
 - Reducir la densidad.
 - Quitar tinglado
- -Barbasco (polvo) 3:1
- -Cebo (leche + insecticida).

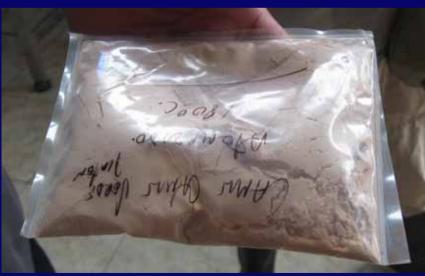

Picudo del fruto (Conotrachelus dubiae)


A nivel de larvas

- -Cosechar todos los frutos
- -No dejar en el suelo frutos caídos.
- -Destruir los frutos con larvas
- -Rastrilléo del suelo


Evaluación de plantas superiores en parcelas de productores.

- Evaluación de productividad: Numero y peso de frutos.
- Análisis de ácido ascórbico.
- Incidencia plagas y su manejo integrado.



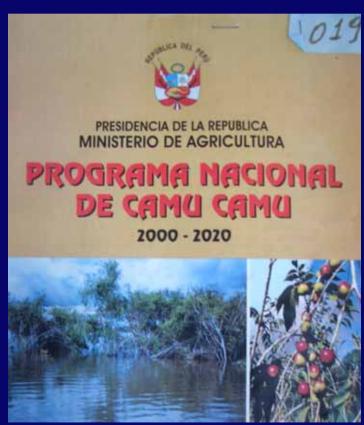
Avances en valor agregado

El Camu-camu en Loreto: Investigacion-Abonamiento Organico

EXPERIMENTANDO CON ABONOS EN RESTINGA ALTA

El Camu-camu en Loreto: Promocion

EVENTOS RECIENTES

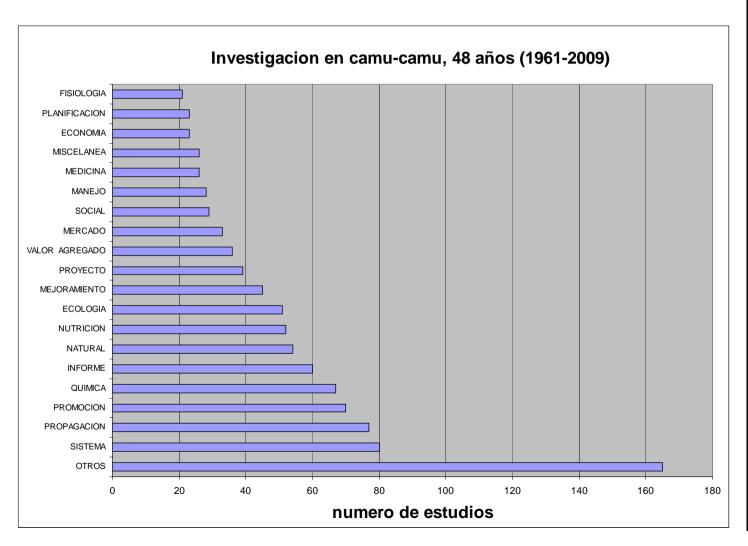

- INVOLUCRAMIENTO GOBIERNOS REGIONALES Y LOCALES
- INCREMENTO DEL CREDITO
- DIVERSIFICACION ASESORIA TECNICA

El Camu-camu en Loreto: Promocion

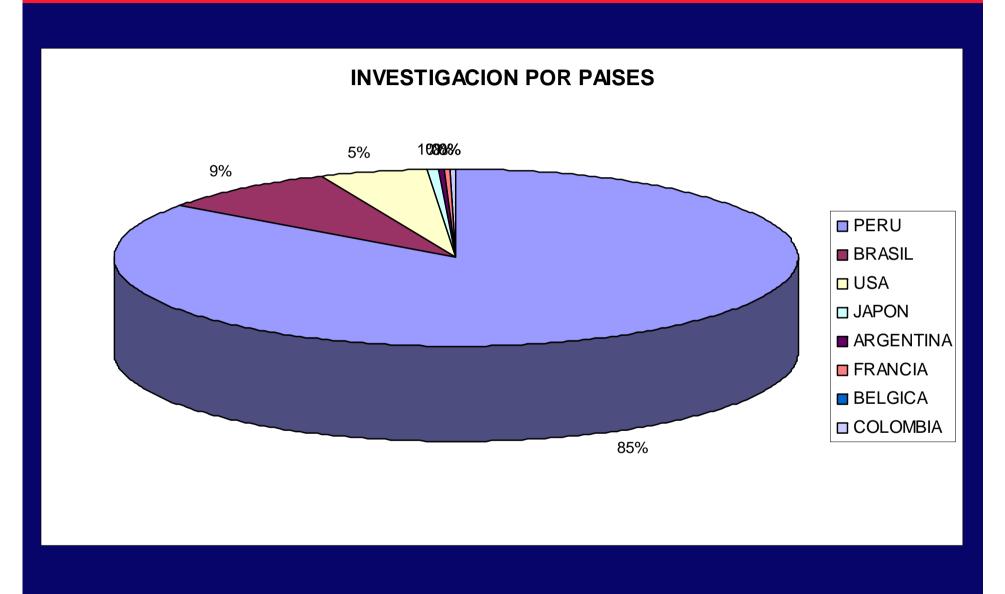
PROMOCION

LIMITACION SOCIAL PARA EL INCREMENTO MASIVO DE AREA

Departamento	Población total	Población rural			Familias Potencialmente
		%	Población	Familias	Productoras
Loreto	919,505	43.3	398,431	66,405	9,960
Ucayali	460,557	36.5	167,983	27,997	4,199
Madre de Dios	102,174	39.4	40,224	6,704	1,005
Total	1′482,236		606,638	101,106	15,164



PROMOCION


INVESTIGACION

Inventario de la investigación en camu-camu Temas y formatos – 48 años (1961-2009) 499 titulos

Temas	Numero
SISTEMA	80
PROPAGACION	77
PROMOCION	70
QUIMICA	67
INFORME	60
NATURAL	54
NUTRICION	52
ECOLOGIA	51
MEJORAMIENTO	45
PROYECTO	39
VALOR AGREGADO	36
MERCADO	33
SOCIAL	29
MANEJO	28
MEDICINA	26
MISCELANEA	26
ECONOMIA	23
PLANIFICACION	23
FISIOLOGIA	21
COSECHA	19
GENETICA	17
TESIS	15
PLAGA	13
BOTANICA	12
SUELO	12
BIOTECNOLOGIA	11
MANUAL	11
COBERTURA	8
ENFERMEDAD	8
ZONIFICACION	8
FERTILIZACION	7
SEMILLAS	7
MALEZA	5
INVESTIGACION	
PERIODICO	3 3 2
ETNOBOTANICA	2
LEY	2
PODA	2
. 00/1	

INVESTIGACION

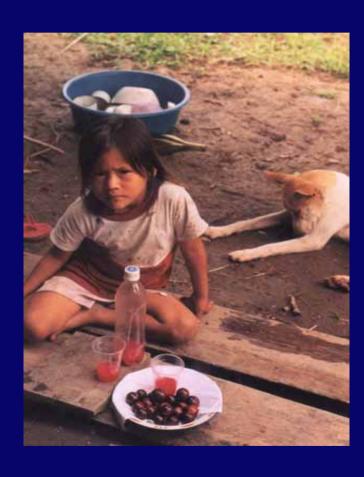
LOGROS 35 AÑOS

- Estrategias promoción
- Germoplasma
- Tecnologías agrícolas
- Desarrollo comercial
- Valor agregado
- Impacto social
- Desarrollo industrial
- Marco legal
- Político
- Nueva cultura

LOGROS 35 AÑOS

- Macro y micro zonificacion
- Métodos para propagación y clonación
- Técnicas de vivero
- Manejo Integrado de plagas
- Semilla mejorada
- Caracterización ADN
- Protocolos para valor agregado

CONCLUSIONES



- ➤Se cuenta con valiosas herramientas producto de la investigación y promoción que debe ser aprovechado
- >Hay mercado y rentabilidad
- Es urgente incrementar plantaciones
- ➤ La producción debe ser orgánica
- ▶Priorizar restingas bajas

LECCIONES APRENDIDAS

- Socialmente selectiva y desencadenante
- Mucho mejor en restinga baja
- Evitar suelos de mal drenaje
- Priorizar ríos de agua blanca
- Fortalecer los componentes temporales
- Plantones grandes
- Viveros centralizados
- Formar cuadros

TEMAS PRIORITARIOS

- Debilidad del mercado
- Marginalidad de Loreto en el mercado
- Dispersion Tecnica-Politica
- Contaminacion aguas arriba
- Deficit en la produccion de semilla mejorada
- El 20% de lo instalado sobrevive, sin subsidio
- Adopción acelerada
- Bajo nivel de cosecha a los 10 años

de 39 53

CONCLUSIONES

- Camu-camu esta funcionando como una opcion productiva sostenible y para aliviar la probreza
- Alivio al cambio climatico por evitamiento de deforestacion y recuperacion de areas deforestadas (purmas)
- La tendencia de rapido crecimiento 2004-2007, podria volver a partir del 2010 y ser una opcion alternativa a la madera
- Se requiere diversificar productos (mercado e industria) y mercados

MUCHAS GRACIAS