Cointegrated TFP Processes and International Business Cycles

Pau Rabanal Juan F. Rubio-Ramírez Vicente Tuesta
La Caixa Duke University Deutsche Bank

October 15, 2008
A main puzzle in international macroeconomics is the volatility of the real exchange.
A main puzzle in international macroeconomics is the volatility of the real exchange.

International Real Business Cycle (IRBC) models have trouble explaining this fact. Heathcote and Perri (JME, 2002).
A main puzzle in international macroeconomics is the volatility of the real exchange.

International Real Business Cycle (IRBC) models have trouble explaining this fact. Heathcote and Perri (JME, 2002).

Most of these models, consider only stationary TFP shocks.
A main puzzle in international macroeconomics is the volatility of the real exchange.

International Real Business Cycle (IRBC) models have trouble explaining this fact. Heathcote and Perri (JME, 2002).

Most of these models, consider only stationary TFP shocks.

We study the TFP processes for the U.S. and the "rest of the world", and find that:
Introduction

- A main puzzle in international macroeconomics is the volatility of the real exchange.

- International Real Business Cycle (IRBC) models have trouble explaining this fact. Heathcote and Perri (JME, 2002).

- Most of these models consider only stationary TFP shocks.

- We study the TFP processes for the U.S. and the "rest of the world", and find that:

 - Have a unit root

 - Are cointegrated

 - The cointegrating vector is (1, -1): important for balanced growth.
Introduction

- A main puzzle in international macroeconomics is the volatility of the real exchange.
- International Real Business Cycle (IRBC) models have trouble explaining this fact. Heathcote and Perri (JME, 2002).
- Most of these models, consider only stationary TFP shocks.
- We study the TFP processes for the U.S. and the "rest of the world", and find that:
 1. Have a unit root
 2. Are cointegrated
Introduction

- A main puzzle in international macroeconomics is the volatility of the real exchange.

- International Real Business Cycle (IRBC) models have trouble explaining this fact. Heathcote and Perri (JME, 2002).

- Most of these models, consider only stationary TFP shocks.

- We study the TFP processes for the U.S. and the "rest of the world", and find that:

 1. Have a unit root
 2. Are cointegrated
 3. The cointegrating vector is (1, -1): important for balanced growth.
Introduction

Based on this evidence, we simulate a standard two-country two-good IRBC model where TFP follow a VECM.
Based on this evidence, we simulate a standard two-country two-good IRBC model where TFP follow a VECM.

Compared to a model with stationary TFP shocks, we can generate much higher volatility in the RER.
Based on this evidence, we simulate a standard two-country two-good IRBC model where TFP follow a VECM.

Compared to a model with stationary TFP shocks, we can generate much higher volatility in the RER.

It does well at matching other observed correlations.
Introduction

- Based on this evidence, we simulate a standard two-country two-good IRBC model where TFP follow a VECM.

- Compared to a model with stationary TFP shocks, we can generate much higher volatility in the RER.

- It does well at matching other observed correlations.

- Why? Because the VECM estimates smaller spillover than the standard VAR considered with stationary TFP shocks:
Based on this evidence, we simulate a standard two-country two-good IRBC model where TFP follow a VECM.

Compared to a model with stationary TFP shocks, we can generate much higher volatility in the RER.

It does well at matching other observed correlations.

Why? Because the VECM estimates smaller spillover than the standard VAR considered with stationary TFP shocks:

- High persistence of TFP shocks: high volatility of RER, low volatility of output.
Based on this evidence, we simulate a standard two-country two-good IRBC model where TFP follow a VECM.

Compared to a model with stationary TFP shocks, we can generate much higher volatility in the RER.

It does well at matching other observed correlations.

Why? Because the VECM estimates smaller spillover than the standard VAR considered with stationary TFP shocks:

- High persistence of TFP shocks: high volatility of RER, low volatility of output.
- High spillovers of TFP shocks: low volatility of RER, high volatility of output.
We also show that in the period know as "The Great Moderation" the relative volatility of the RER w.r.t output has increased.
The Great Moderation and the Real Exchange Rate

Figure: Standard Deviation of HP-Filtered Data. USA and UK.
The Great Moderation and the Real Exchange Rate

Figure: Standard Deviation of HP-Filtered Data. Canada and Australia.
Introduction

- We also show that in the period known as "The Great Moderation" the relative volatility of the RER w.r.t output has increased.

- We derive results that relate RER volatility with the parameters of the VECM.
Introduction

- We also show that in the period known as "The Great Moderation" the relative volatility of the RER w.r.t output has increased.

- We derive results that relate RER volatility with the parameters of the VECM.

- We show that the volatility increase can be related to changes in the parameter estimates of the VECM.
Related Literature

- Explaining RER volatility in DSGE models.
Related Literature

- Explaining RER volatility in DSGE models.

Explaining RER volatility in DSGE models.

The Model

- Standard IRBC model. Two countries, two final goods, two intermediate goods.
The Model

- Standard IRBC model. Two countries, two final goods, two intermediate goods.
- Intermediate goods are tradable, final goods are not.
The Model

- Standard IRBC model. Two countries, two final goods, two intermediate goods.
- Intermediate goods are tradable, final goods are not.
- Households make decisions in consumption, investment, labor supply, and holdings of bonds. They rent capital to firms.
The Model

- Standard IRBC model. Two countries, two final goods, two intermediate goods.
- Intermediate goods are tradable, final goods are not.
- Households make decisions in consumption, investment, labor supply, and holdings of bonds. They rent capital to firms.
- Incomplete markets.
The Model

- Standard IRBC model. Two countries, two final goods, two intermediate goods.
- Intermediate goods are tradable, final goods are not.
- Households make decisions in consumption, investment, labor supply, and holdings of bonds. They rent capital to firms.
- Incomplete markets.
- Firms in the intermediate and final goods sectors operate under perfect competition.
The Model

- Standard IRBC model. Two countries, two final goods, two intermediate goods.
- Intermediate goods are tradable, final goods are not.
- Households make decisions in consumption, investment, labor supply, and holdings of bonds. They rent capital to firms.
- Incomplete markets.
- Firms in the intermediate and final goods sectors operate under perfect competition.
- Departure from the literature: TFP processes are C(1,1) and can be characterized with a VECM.
The Model: Households

\[
\max E_0 \sum_{t=0}^{\infty} \beta^t \frac{\left\{ C(s^t)^\tau [1 - L(s^t)]^{1-\tau} \right\}^{1-\sigma}}{1 - \sigma}
\]

s.t.

\[
P(s^t) \left[C(s^t) + X(s^t) \right] + P_H(s^t) Q(s^t) D(s^t) \leq P_H(s^t) D(s^{t-1}) + P(s^t) \left[W(s^t) L(s^t) + R(s^t) K(s^{t-1}) \right] - P_H(s^t) \Phi(D(s^t)),
\]

and

\[
K(s^t) = (1 - \delta) K(s^{t-1}) + X(s^t),
\]
The Model: Final Goods Producers

\[\max P (s^t) Y (s^t) - P_H (s^t) Y_H (s^t) - P_F (s^t) Y_F (s^t) \]

s.t.

\[Y (s^t) = \left[\omega \frac{1}{\theta} Y_H (s^t) \frac{\theta - 1}{\theta} + (1 - \omega) \frac{1}{\theta} Y_F (s^t) \frac{\theta - 1}{\theta} \right]^{\frac{\theta}{\theta - 1}} \]
The Model: Intermediate Goods Producers

\[
\begin{align*}
\text{Max} & \left\{ \begin{array}{c}
P_H(s^t) [Y_H(s^t) + Y^*_H(s^t)] - \\
P(s^t) [W(s^t) L(s^t) + R(s^t) K(s^{t-1})]
\end{array} \right\} \\
\text{s.t.} & \\
Y_H(s^t) + Y^*_H(s^t) = A(s^t)^{1-\alpha} K(s^{t-1})^\alpha L(s^t)^{1-\alpha}
\end{align*}
\]
The Model: TFP

\[
\begin{pmatrix}
\Delta \log A(s^t) \\
\Delta \log A^*(s^t)
\end{pmatrix}
= \begin{pmatrix}
c \\
c^*
\end{pmatrix} + \rho(L) \begin{pmatrix}
\Delta \log A(s^{t-1}) \\
\Delta \log A^*(s^{t-1})
\end{pmatrix}
+ \begin{pmatrix}
\kappa \\
\kappa^*
\end{pmatrix} \left[\log A(s^{t-1}) - \gamma \log A^*(s^{t-1}) - \log \xi \right] + \begin{pmatrix}
\varepsilon^a(s^t) \\
\varepsilon^{a,*}(s^t)
\end{pmatrix}
\]

- Implies that:
 - \(\Delta \log A(s^t)\)
 - \(\Delta \log A^*(s^t)\), and
 - \(\log A(s^{t-1}) - \gamma \log A^*(s^{t-1})\) are stationary processes.
The Model: Equilibrium Conditions

\[U_C (s^t) = \lambda (s^t), \]

\[U_L (s^t) \left(\frac{U_C (s^t)}{U_C (s^t)} \right) = W (s^t), \]

\[\lambda (s^t) = \beta E_t \left\{ \lambda (s^{t+1}) [R (s^{t+1}) + (1 - \delta)] \right\}, \]

\[K (s^t) = (1 - \delta) K (s^{t-1}) + X (s^t), \]
The Model: Equilibrium Conditions

\[\bar{Q}(s^t) = \beta E_t \left[\frac{\lambda(s^{t+1})}{\lambda(s^t)} \frac{\tilde{P}_H(s^{t+1})}{\tilde{P}_H(s^t)} \right] - \frac{\Phi'[D(s^t)]}{\beta} \]

\[\tilde{P}_H(s^t) \bar{Q}(s^t) D(s^t) \quad = \quad \tilde{P}_H(s^t) Y^*_H(s^t) - \tilde{P}_F^*(s^t) RER(s^t) Y_F(s^t)
+ \tilde{P}_H(s^t) D(s^{t-1}) - \tilde{P}_H(s^t) \Phi [D(s^t)] \]

\[E_t \left[\frac{\lambda^*(s^{t+1})}{\lambda^*(s^t)} \frac{\tilde{P}_H(s^{t+1})}{\tilde{P}_H(s^t)} \right] \frac{RER(s^t)}{RER(s^{t+1})} - \frac{\lambda(s^{t+1})}{\lambda(s^t)} \frac{\tilde{P}_H(s^{t+1})}{\tilde{P}_H(s^t)} \]
\[= - \frac{\Phi'[D(s^t)]}{\beta} \]
The Model: Equilibrium Conditions

\[W(s^t) = (1 - \alpha) \tilde{P}_H(s^t) A(s^t)^{1-\alpha} K(s^{t-1})^\alpha L(s^t)^{-\alpha}, \]

\[R(s^t) = \alpha \tilde{P}_H(s^t) A(s^t)^{1-\alpha} K(s^{t-1})^{\alpha-1} L(s^t)^{1-\alpha}, \]

\[Y_H(s^t) = \omega \tilde{P}_H(s^t)^{-\theta} Y(s^t), \]

\[Y_F(s^t) = (1 - \omega) \left(\tilde{P}_F^*(s^t) RER(s^t) \right)^{-\theta} Y(s^t), \]
The Model: Equilibrium Conditions

\[C \left(s^t \right) + X \left(s^t \right) = Y \left(s^t \right), \]

\[Y \left(s^t \right) = \left[\omega^{\frac{1}{\theta}} Y_H \left(s^t \right)^{\frac{\theta-1}{\theta}} + \left(1 - \omega \right)^{\frac{1}{\theta}} Y_F \left(s^t \right)^{\frac{\theta-1}{\theta}} \right]^{\frac{\theta}{\theta-1}}, \]

\[Y_H \left(s^t \right) + Y_H^* \left(s^t \right) = A \left(s^t \right)^{1-\alpha} K \left(s^{t-1} \right)^{\alpha} L \left(s^t \right)^{1-\alpha}, \]

\[Y_F \left(s^t \right) + Y_F^* \left(s^t \right) = A^* \left(s^t \right)^{1-\alpha} K^* \left(s^{t-1} \right)^{\alpha} L^* \left(s^t \right)^{1-\alpha}, \]

and

\[D \left(s^t \right) + D^* \left(s^t \right) = 0. \]
The Model: Balanced Growth

- Preferences and technology satisfy King, Plosser, and Rebelo (1988) restrictions for the existence of a balanced growth path in the closed economy.
Preferences and technology satisfy King, Plosser, and Rebelo (1988) restrictions for the existence of a balanced growth path in the closed economy.

But in the open economy we need an additional restriction

\[
\hat{Y}_F (s^t) = (1 - \omega) \left[\tilde{P}_F^* (s^t) \text{RER} (s^t) \right]^{-\theta} \hat{Y} (s^t) \frac{A(s^{t-1})}{A^*(s^{t-1})}
\]

where \(\hat{Y}_F (s^t) = Y_F (s^t) / A^* (s^{t-1}) \), \(\hat{Y} (s^t) = Y (s^t) / A (s^{t-1}) \).
The Model: Balanced Growth

- Preferences and technology satisfy King, Plosser, and Rebelo (1988) restrictions for the existence of a balanced growth path in the closed economy.

- But in the open economy we need an additional restriction

\[
\hat{Y}_F (s^t) = (1 - \omega) \left[\tilde{P}_F^* (s^t) RER (s^t) \right]^{-\theta} \hat{Y} (s^t) \frac{A (s^{t-1})}{A^* (s^{t-1})}
\]

where \(\hat{Y}_F (s^t) = Y_F (s^t) / A^* (s^{t-1}) \), \(\hat{Y} (s^t) = Y (s^t) / A (s^{t-1}) \).

- \(\frac{A (s^{t-1})}{A^* (s^{t-1})} \) is stationary if \(\gamma = 1 \).
Estimation of the VECM for TFP

- Take U.S. data for real GDP (BEA) and employment (Payroll Survey).
Estimation of the VECM for TFP

- Take U.S. data for real GDP (BEA) and employment (Payroll Survey).

- Rest of the world: Euro Area, Canada, Japan, Australia, and the UK. Also Mexico and South Korea.
Estimation of the VECM for TFP

- Take U.S. data for real GDP (BEA) and employment (Payroll Survey).

- Rest of the world: Euro Area, Canada, Japan, Australia, and the UK. Also Mexico and South Korea.

- Aggregate GDPs using PPP-adjusted exchange rates. We aggregate number of employees.
Estimation of the VECM for TFP

- Take U.S. data for real GDP (BEA) and employment (Payroll Survey).

- Rest of the world: Euro Area, Canada, Japan, Australia, and the UK. Also Mexico and South Korea.

- Aggregate GDPs using PPP-adjusted exchange rates. We aggregate number of employees.

- Follow Heathcote and Perri (2002)

\[
\log A(s^t) = \left[\log Y(s^t) - (1 - \alpha) \log L(s^t) \right] / (1 - \alpha)
\]

\[
\log A^*(s^t) = \left[\log Y^*(s^t) - (1 - \alpha) \log L^*(s^t) \right] / (1 - \alpha)
\]
Estimation of the VECM for TFP
Unit root tests: we cannot reject a unit root for the level of (log) TFP processes. We can reject a unit root for their first difference. TFP’s are I(1).
Estimation of the VECM for TFP

- Unit root tests: we cannot reject a unit root for the level of (log) TFP processes. We can reject a unit root for their first difference. TFP’s are I(1).

- Using Johansen’s test, we cannot reject the existence of one cointegrating relationship. Hence, the TFP processes are C(1,1).
Unit root tests: we cannot reject a unit root for the level of (log) TFP processes. We can reject a unit root for their first difference. TFP’s are I(1).

Using Johansen’s test, we cannot reject the existence of one cointegrating relationship. Hence, the TFP processes are C(1,1).

We estimate the VECM with 2 lags and cannot reject that $\gamma = 1$.
Estimation of the VECM for TFP

- Unit root tests: we cannot reject a unit root for the level of (log) TFP processes. We can reject a unit root for their first difference. TFP’s are $I(1)$.
- Using Johansen’s test, we cannot reject the existence of one cointegrating relationship. Hence, the TFP processes are $C(1,1)$.
- We estimate the VECM with 2 lags and cannot reject that $\gamma = 1$.
- We run several likelihood ratio tests to test for symmetry.
Estimation of the VECM for TFP

\[
\begin{pmatrix}
\Delta \log A(s^t) \\
\Delta \log A^*(s^t)
\end{pmatrix}
= \begin{pmatrix}
c \\
c^*
\end{pmatrix} + \rho_1 \begin{pmatrix}
\Delta \log A(s^{t-1}) \\
\Delta \log A^*(s^{t-1})
\end{pmatrix} \\
+ \rho_2 \begin{pmatrix}
\Delta \log A(s^{t-2}) \\
\Delta \log A^*(s^{t-2})
\end{pmatrix} \\
+ \begin{pmatrix}
\kappa \\
\kappa^*
\end{pmatrix} \left[\log A(s^{t-1}) - \gamma \log A^*(s^{t-1}) - \log \xi \right] + \begin{pmatrix}
\varepsilon^a(s^t) \\
\varepsilon^{a,*}(s^t)
\end{pmatrix}
\]
Table 4: Likelihood ratio tests.

<table>
<thead>
<tr>
<th>Restriction</th>
<th>Likelihood value</th>
<th>Degrees of freedom</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>None</td>
<td>744.18</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>$\gamma = 1$</td>
<td>743.33</td>
<td>1</td>
<td>0.19</td>
</tr>
<tr>
<td>$\kappa = -\kappa^*$</td>
<td>741.71</td>
<td>2</td>
<td>0.09</td>
</tr>
<tr>
<td>$c = c^*$</td>
<td>740.43</td>
<td>3</td>
<td>0.06</td>
</tr>
<tr>
<td>Symmetry across VAR coefficients</td>
<td>736.51</td>
<td>7</td>
<td>0.032</td>
</tr>
</tbody>
</table>
Table 5: Parameter Estimates, VECM model

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Estimate 1980 – 2007</th>
</tr>
</thead>
<tbody>
<tr>
<td>c</td>
<td>0.0071* (5.83)</td>
</tr>
<tr>
<td>κ</td>
<td>-0.0045^* (2.65)</td>
</tr>
<tr>
<td>ρ_{11}^{1}</td>
<td>0.2041* (2.97)</td>
</tr>
<tr>
<td>ρ_{11}^{2}</td>
<td>0.1026 (1.54)</td>
</tr>
<tr>
<td>ρ_{12}^{1}</td>
<td>0.1035 (1.55)</td>
</tr>
<tr>
<td>ρ_{12}^{2}</td>
<td>-0.1497^* (2.40)</td>
</tr>
</tbody>
</table>

T-statistics in parenthesis.

* means significance at the 5 percent level.
Table 6: Calibration

<table>
<thead>
<tr>
<th>Preferences</th>
<th>$\beta = 0.99$</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>$\mu = 0.34$</td>
</tr>
<tr>
<td></td>
<td>$\sigma = 2$</td>
</tr>
<tr>
<td></td>
<td>$\phi = 0.01$</td>
</tr>
<tr>
<td>Technology</td>
<td>$\alpha = 0.36$</td>
</tr>
<tr>
<td></td>
<td>$\delta = 0.025$</td>
</tr>
<tr>
<td></td>
<td>$\omega = 0.9$</td>
</tr>
<tr>
<td></td>
<td>$\theta = [0.85, 0.62]$</td>
</tr>
<tr>
<td></td>
<td>σ_Y</td>
</tr>
<tr>
<td>------------------</td>
<td>------------</td>
</tr>
<tr>
<td>Data</td>
<td>1.25</td>
</tr>
<tr>
<td>Coint. TFP, $\theta = 0.85$</td>
<td>0.81</td>
</tr>
<tr>
<td>Coint. TFP, $\theta = 0.62$</td>
<td>0.70</td>
</tr>
<tr>
<td>Stat. TFP, $\theta = 0.85$</td>
<td>1.19</td>
</tr>
<tr>
<td>Stat. TFP, $\theta = 0.62$</td>
<td>1.12</td>
</tr>
</tbody>
</table>

$^+$ denotes relative to output.
<table>
<thead>
<tr>
<th>Full Sample</th>
<th>CORR(Y,N)</th>
<th>CORR(Y,C)</th>
<th>CORR(Y,X)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Data</td>
<td>0.79</td>
<td>0.81</td>
<td>0.91</td>
</tr>
<tr>
<td>Coint. TFP, $\theta = 0.85$</td>
<td>0.94</td>
<td>0.95</td>
<td>0.97</td>
</tr>
<tr>
<td>Coint. TFP, $\theta = 0.62$</td>
<td>0.92</td>
<td>0.93</td>
<td>0.95</td>
</tr>
<tr>
<td>Stat. TFP, $\theta = 0.85$</td>
<td>0.97</td>
<td>0.93</td>
<td>0.97</td>
</tr>
<tr>
<td>Stat. TFP, $\theta = 0.62$</td>
<td>0.97</td>
<td>0.93</td>
<td>0.97</td>
</tr>
</tbody>
</table>
Explaining the Mechanism

- Estimated stationary TFP shocks imply somewhat high persistence and fast spillovers (Heathcote and Perri, 2002).
Explaining the Mechanism

- Estimated stationary TFP shocks imply somewhat high persistence and fast spillovers (Heathcote and Perri, 2002).

- Estimated non-stationary TFP shocks find high persistence (by definition there is one unit root) and slow spillovers.
Explaining the Mechanism

- Estimated stationary TFP shocks imply somewhat high persistence and fast spillovers (Heathcote and Perri, 2002).

- Estimated non-stationary TFP shocks find high persistence (by definition there is one unit root) and slow spillovers.

- First, we discuss the role of persistence in a stationary model. Then we discuss the role of spillovers in a non-stationary model.
Explaining the Mechanism

- When persistence increases at home, there is a stronger income effect at home. Hence:
Explaining the Mechanism

- When persistence increases at home, there is a stronger income effect at home. Hence:

 - Labor supply decreases, and output at home increases less on impact.
Explaining the Mechanism

- When persistence increases at home, there is a stronger income effect at home. Hence:

 - Labor supply decreases, and output at home increases less on impact.

 - Consumption increases, leading to more demand of the foreign intermediate good.
Explaining the Mechanism

- When persistence increases at home, there is a stronger income effect at home. Hence:

 - Labor supply decreases, and output at home increases less on impact.

 - Consumption increases, leading to more demand of the foreign intermediate good.

 - Lower production of home intermediate good and higher production of foreign intermediate good lead to larger RER and TOT depreciation.
Explaining the Mechanism

- When persistence increases at home, there is a stronger income effect at home. Hence:
 - Labor supply decreases, and output at home increases less on impact.
 - Consumption increases, leading to more demand of the foreign intermediate good.
 - Lower production of home intermediate good and higher production of foreign intermediate good lead to larger RER and TOT depreciation.

- Hence higher persistence leads to higher RER volatility.
Figure: Impulse Response to a Home-Country TFP shock. Model with stationary TFP shocks.
Explaining the Mechanism

Figure: Impulse Response to a Home-Country TFP shock. Model with stationary TFP shocks.
Explaining the Mechanism

- Now we switch to the model with VECM shocks:

\[
\begin{align*}
\Delta a_t &= -\kappa(a_{t-1} - a^*_{t-1}) + \varepsilon^a_t \\
\Delta a^*_t &= \kappa(a_{t-1} - a^*_{t-1}) + \varepsilon^{a^*}_t
\end{align*}
\]

Increased \(\kappa \) implies a stronger “news channel” in the foreign country:
- Labor supply and investment decreases, and output in the foreign country decreases on impact.
- Consumption increases, leading to more demand of the home intermediate good.
- Lower production of foreign intermediate good and higher production of home intermediate good lead to RER and TOT appreciation.

Hence higher speed of convergence leads to lower RER volatility.
Explaining the Mechanism

- Now we switch to the model with VECM shocks:

\[
\Delta a_t = -\kappa (a_{t-1} - a_{t-1}^*) + \varepsilon_t^a
\]

\[
\Delta a_t^* = \kappa (a_{t-1} - a_{t-1}^*) + \varepsilon_t^{a^*}
\]

- Increased \(\kappa \) implies a stronger “news channel” in the foreign country:
Explaining the Mechanism

- Now we switch to the model with VECM shocks:

\[
\Delta a_t = -\kappa(a_{t-1} - a^*_{t-1}) + \varepsilon_t^a
\]
\[
\Delta a_t^* = \kappa(a_{t-1} - a^*_{t-1}) + \varepsilon_t^{a,*}
\]

- Increased \(\kappa \) implies a stronger “news channel” in the foreign country:
 - Labor supply and investment decreases, and output in the foreign country decreases on impact.
Explaining the Mechanism

Now we switch to the model with VECM shocks:

\[
\begin{align*}
\Delta a_t &= -\kappa (a_{t-1} - a^*_{t-1}) + \varepsilon^a_t \\
\Delta a^*_t &= \kappa (a_{t-1} - a^*_{t-1}) + \varepsilon^{a,*}_t
\end{align*}
\]

Increased \(\kappa \) implies a stronger “news channel” in the foreign country:

- Labor supply and investment decreases, and output in the foreign country decreases on impact.
- Consumption increases, leading to more demand of the home intermediate good.
Explaining the Mechanism

- Now we switch to the model with VECM shocks:

\[
\Delta a_t = -\kappa (a_{t-1} - a_{t-1}^*) + \varepsilon_t^a
\]

\[
\Delta a_t^* = \kappa (a_{t-1} - a_{t-1}^*) + \varepsilon_t^a^*
\]

- Increased \(\kappa \) implies a stronger “news channel” in the foreign country:
 - Labor supply and investment decreases, and output in the foreign country decreases on impact.
 - Consumption increases, leading to more demand of the home intermediate good.
 - Lower production of foreign intermediate good and higher production of home intermediate good lead to RER and TOT appreciation.

P. Rabanal, J. Rubio-Ramírez and V. Tuesta

Cointegrated TFP Processes.

October 15, 2008
Explaining the Mechanism

Now we switch to the model with VECM shocks:

\[
\Delta a_t = -\kappa(a_{t-1} - a_{t-1}^*) + \varepsilon_t^a
\]

\[
\Delta a_t^* = \kappa(a_{t-1} - a_{t-1}^*) + \varepsilon_t^{a,*}
\]

Increased \(\kappa \) implies a stronger “news channel” in the foreign country:

- Labor supply and investment decreases, and output in the foreign country decreases on impact.
- Consumption increases, leading to more demand of the home intermediate good.
- Lower production of foreign intermediate good and higher production of home intermediate good lead to RER and TOT appreciation.

Hence **higher speed of convergence leads to lower RER volatility.**
Explaining the Mechanism

Figure: Impulse Response to a Home-Country TFP shock. Model with cointegrated TFP shocks.
Explaining the Mechanism

Figure: Impulse Response to a Home-Country TFP shock. Model with cointegrated TFP shocks.
Explaining the Mechanism

Table 8: Changing ρ_a and κ

<table>
<thead>
<tr>
<th>ρ_a</th>
<th>$SD(RER)$</th>
<th>$SD(Y)$</th>
<th>$SD(RER)^+$</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.9</td>
<td>1.43</td>
<td>1.33</td>
<td>1.07</td>
</tr>
<tr>
<td>0.95</td>
<td>1.96</td>
<td>1.2</td>
<td>1.64</td>
</tr>
<tr>
<td>0.975</td>
<td>2.47</td>
<td>1.06</td>
<td>2.33</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>κ</th>
<th>$SD(RER)$</th>
<th>$SD(Y)$</th>
<th>$SD(RER)^+$</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.005</td>
<td>1.98</td>
<td>0.64</td>
<td>3.1</td>
</tr>
<tr>
<td>0.05</td>
<td>1.02</td>
<td>0.82</td>
<td>1.25</td>
</tr>
<tr>
<td>0.25</td>
<td>0.71</td>
<td>0.86</td>
<td>0.82</td>
</tr>
</tbody>
</table>
Therefore, one unit root in the joint process of TFP across countries is not enough. We need the second root to be very close to one.

\[
\begin{pmatrix}
 a_t \\
 a_t^*
\end{pmatrix} = \begin{pmatrix}
 1 - \kappa & \kappa \\
 \kappa & 1 - \kappa
\end{pmatrix} \begin{pmatrix}
 a_{t-1} \\
 a_{t-1}^*
\end{pmatrix} + \begin{pmatrix}
 \varepsilon_t^a \\
 \varepsilon_t^{a,*}
\end{pmatrix}.
\]
Explaining the Mechanism

Therefore, one unit root in the joint process of TFP across countries is not enough. We need the second root to be very close to one.

\[
\begin{pmatrix}
a_t \\
a_t^*
\end{pmatrix} = \begin{pmatrix}
1 - \kappa & \kappa \\
\kappa & 1 - \kappa
\end{pmatrix} \begin{pmatrix}
a_{t-1} \\
a_{t-1}^*
\end{pmatrix} + \begin{pmatrix}
\varepsilon_t^a \\
\varepsilon_t^{a,*}
\end{pmatrix}.
\]

With \(\kappa = 0.0045 \) we have that \(\lambda_1 = 1, \lambda_2 = 1 - 2\kappa = 0.991 \).
Explaining the Mechanism

- Therefore, one unit root in the joint process of TFP across countries is not enough. We need the second root to be very close to one.

\[
\begin{pmatrix}
 a_t \\
 a^*_t
\end{pmatrix} =
\begin{pmatrix}
 1 - \kappa & \kappa \\
 \kappa & 1 - \kappa
\end{pmatrix}
\begin{pmatrix}
 a_{t-1} \\
 a^*_{t-1}
\end{pmatrix} +
\begin{pmatrix}
 \varepsilon^a_t \\
 \varepsilon^{a*,t}
\end{pmatrix}.
\]

- With \(\kappa = 0.0045 \) we have that \(\lambda_1 = 1, \lambda_2 = 1 - 2\kappa = 0.991 \).

- BKK implies \(\lambda_1 = 0.994, \lambda_2 = 0.812, \) and correlation between innovations of 0.26. Rel RER volatility: 0.65.
Explaining the Mechanism

Therefore, one unit root in the joint process of TFP across countries is not enough. We need the second root to be very close to one.

\[
\begin{pmatrix}
 a_t \\
 a_t^*
\end{pmatrix}
= \begin{pmatrix}
 1 - \kappa & \kappa \\
 \kappa & 1 - \kappa
\end{pmatrix}
\begin{pmatrix}
 a_{t-1} \\
 a_{t-1}^*
\end{pmatrix}
+ \begin{pmatrix}
 \varepsilon_t^a \\
 \varepsilon_t^{a,*}
\end{pmatrix}.
\]

With \(\kappa = 0.0045\) we have that \(\lambda_1 = 1, \lambda_2 = 1 - 2\kappa = 0.991\).

BKK implies \(\lambda_1 = 0.994, \lambda_2 = 0.812\), and correlation between innovations of 0.26. Rel RER volatility: 0.65.

Heathcote and Perri (2002) \(\lambda_1 = 0.995, \lambda_2 = 1 - 2\kappa = 0.945\), and innovations have correlation of 0.29.
Therefore, one unit root in the joint process of TFP across countries is not enough. We need the second root to be very close to one.

\[
\begin{pmatrix}
 a_t \\
 a^*_t
\end{pmatrix} =
\begin{pmatrix}
 1 - \kappa & \kappa \\
 \kappa & 1 - \kappa
\end{pmatrix}
\begin{pmatrix}
 a_{t-1} \\
 a^*_{t-1}
\end{pmatrix} +
\begin{pmatrix}
 \varepsilon^a_t \\
 \varepsilon^{a,*}_t
\end{pmatrix}.
\]

- With \(\kappa = 0.0045 \) we have that \(\lambda_1 = 1, \lambda_2 = 1 - 2\kappa = 0.991 \).
- BKK implies \(\lambda_1 = 0.994, \lambda_2 = 0.812 \), and correlation between innovations of 0.26. Rel RER volatility: 0.65.
- Heathcote and Perri (2002) \(\lambda_1 = 0.995, \lambda_2 = 1 - 2\kappa = 0.945 \), and innovations have correlation of 0.29.
- Heathcote and Perri (2008) \(\lambda_1, \lambda_2 = 0.91 \). Rel RER volatility: 1.05.
A VAR in levels or a VECM?

- In principle we could have estimated a VAR in levels instead of a VECM.
A VAR in levels or a VECM?

- In principle we could have estimated a VAR in levels instead of a VECM.

- Engle and Granger (1987), Engle and Yoo (1987) and LeSage (1990): if the system includes integrated variables and cointegrating relationships, it is better to estimate a VECM than a VAR.
A VAR in levels or a VECM?

- In principle we could have estimated a VAR in levels instead of a VECM.

- Engle and Granger (1987), Engle and Yoo (1987) and LeSage (1990): if the system includes integrated variables and cointegrating relationships, it is better to estimate a VECM than a VAR.

- Engle and Granger (1987): small sample improvements from estimating a VECM, estimating a VAR in levels leads to ignoring important constraints that are only satisfied asymptotically.
The Great Moderation and the Real Exchange Rate

Figure: Standard Deviation of HP-Filtered Data. USA and UK.
Figure: Standard Deviation of HP-Filtered Data. Canada and Australia.
Estimation of the VECM for TFP

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>c</td>
<td>0.007*</td>
<td>0.008*</td>
</tr>
<tr>
<td>κ</td>
<td>$-0.008*$</td>
<td>-0.003</td>
</tr>
<tr>
<td>ρ_{11}</td>
<td>0.22*</td>
<td>0.13</td>
</tr>
<tr>
<td>ρ_{11}</td>
<td>0.07</td>
<td>0.12</td>
</tr>
<tr>
<td>ρ_{11}</td>
<td>0.07</td>
<td>0.13</td>
</tr>
<tr>
<td>ρ_{12}</td>
<td>0.01</td>
<td>$-0.36*$</td>
</tr>
</tbody>
</table>

* means significance at the 5 percent level
Table 7a: Results

<table>
<thead>
<tr>
<th></th>
<th>σ_Y</th>
<th>σ_C^+</th>
<th>σ_X^+</th>
<th>σ_N^+</th>
<th>σ_{RER}^+</th>
<th>$\rho(RER)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>1980-1993</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Data</td>
<td>1.57</td>
<td>0.80</td>
<td>3.08</td>
<td>0.89</td>
<td>3.97</td>
<td>0.85</td>
</tr>
<tr>
<td>Coint. TFP, $\theta = 0.85$</td>
<td>1.12</td>
<td>0.63</td>
<td>2.17</td>
<td>0.25</td>
<td>1.33</td>
<td>0.72</td>
</tr>
<tr>
<td>Coint. TFP, $\theta = 0.62$</td>
<td>0.95</td>
<td>0.65</td>
<td>2.15</td>
<td>0.25</td>
<td>3.17</td>
<td>0.71</td>
</tr>
<tr>
<td>1994-2007</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Data</td>
<td>0.83</td>
<td>0.76</td>
<td>4.20</td>
<td>0.96</td>
<td>5.17</td>
<td>0.81</td>
</tr>
<tr>
<td>Coint. TFP, $\theta = 0.85$</td>
<td>0.64</td>
<td>0.55</td>
<td>2.74</td>
<td>0.38</td>
<td>2.04</td>
<td>0.71</td>
</tr>
<tr>
<td>Coint. TFP, $\theta = 0.62$</td>
<td>0.62</td>
<td>0.43</td>
<td>3.01</td>
<td>0.42</td>
<td>5.06</td>
<td>0.69</td>
</tr>
</tbody>
</table>

$^+$ denotes relative to output.
<table>
<thead>
<tr>
<th></th>
<th>CORR(Y,N)</th>
<th>CORR(Y,C)</th>
<th>CORR(Y,X)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1980-1993</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Data</td>
<td>0.82</td>
<td>0.82</td>
<td>0.93</td>
</tr>
<tr>
<td>Coint. TFP, $\theta = 0.85$</td>
<td>0.93</td>
<td>0.96</td>
<td>0.97</td>
</tr>
<tr>
<td>Coint. TFP, $\theta = 0.62$</td>
<td>0.91</td>
<td>0.96</td>
<td>0.96</td>
</tr>
<tr>
<td>1994-2007</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Data</td>
<td>0.71</td>
<td>0.76</td>
<td>0.90</td>
</tr>
<tr>
<td>Coint. TFP, $\theta = 0.85$</td>
<td>0.89</td>
<td>0.82</td>
<td>0.94</td>
</tr>
<tr>
<td>Coint. TFP, $\theta = 0.62$</td>
<td>0.94</td>
<td>0.78</td>
<td>0.97</td>
</tr>
</tbody>
</table>
Concluding Remarks

- In this paper, we document two empirical facts:
In this paper, we document two empirical facts:

- TFP processes of the U.S. and the “rest of the world” are cointegrated with cointegrating vector $(1, -1)$ and
Concluding Remarks

- In this paper, we document two empirical facts:
 - TFP processes of the U.S. and the “rest of the world” are cointegrated with cointegrating vector $(1, -1)$ and
 - The relative volatility of the real exchange rate with respect to output has increased in the United States, the United Kingdom, Canada, and Australia during the last 20 years.
In this paper, we document two empirical facts:

- TFP processes of the U.S. and the “rest of the world” are cointegrated with cointegrating vector \((1, -1)\) and
- The relative volatility of the real exchange rate with respect to output has increased in the United States, the United Kingdom, Canada, and Australia during the last 20 years.

We have shown that introducing cointegrated TFP processes in an otherwise standard IRBC model increases the ability of the model to explain real exchange rate volatility.
Concluding Remarks

- In this paper, we document two empirical facts:
 - TFP processes of the U.S. and the “rest of the world” are cointegrated with cointegrating vector $\{1, -1\}$ and
 - The relative volatility of the real exchange rate with respect to output has increased in the United States, the United Kingdom, Canada, and Australia during the last 20 years.

- We have shown that introducing cointegrated TFP processes in an otherwise standard IRBC model increases the ability of the model to explain real exchange rate volatility.

- If we allow the speed of convergence to the cointegrating vector to change as it does in the data, the model can also explain the observed increase in the relative volatility of the real exchange rate.
In this paper, we document two empirical facts:

- TFP processes of the U.S. and the “rest of the world” are cointegrated with cointegrating vector \((1, -1)\) and
- The relative volatility of the real exchange rate with respect to output has increased in the United States, the United Kingdom, Canada, and Australia during the last 20 years.

We have shown that introducing cointegrated TFP processes in an otherwise standard IRBC model increases the ability of the model to explain real exchange rate volatility.

If we allow the speed of convergence to the cointegrating vector to change as it does in the data, the model can also explain the observed increase in the relative volatility of the real exchange rate.

Cointegration of TFP processes should be introduced in larger-scale models (Adolfson et al., 2007)