### Strategic Realignment, Flexibility, and Firm Scope

Esteban Hnyilicza CENTRUM, PUCP

December 12, 2007 XXV Encuentro de Economistas, BCRP

#### KEY LINK = ASSET REDEPLOYMENT ASSET REDEPLOYMENT = FLEXIBILITY

#### SYNTHESIS BETWEEN I AND II COORDINATION AND INTEGRATION

BRANCH I—Firm Scope BRANCH II--Authority and Delegation

#### ORGANIZATIONAL ECONOMICS

"Only when the need to make unprogrammed adaptations is introduced does the market versus internal organization issue become engaging."

Williamson, O. (1971). "The Vertical Integration of Production: Market Failure Considerations." *American Economic Review*, 61, (May), 112-123. Strategic Management

--Resource Based View (RBV)

--Competitive Analyisis

Organizational Economics

 Boundaries of the Firm (TCE, PRT)
 Internal Organization
 Authority/Delegation
 Centralization/Decentralization

- Mergers: Vertical or Horizontal Integration
- Realignment:

Diversification (product/market) Divestiture (disinvestment)

- Adaptation: Resource Redeployment
   Favorable states—positive shocks
   Adverse states---negative shocks
- Organizational inertia vs. proactive change
   Internal agency conflicts

- Do mergers promote inertia or proactive change?
- How are these choices affected by uncertainty?
- How are these choices affected by adaptation capabilities or flexibility?
- How are these choices affected by internal agency conflicts?

**INTERNAL CAPITAL MARKETS Diversification Premium & Discount** (Scharfstein and Stein, 2000) REDEPLOYABILITY Redeployment Surplus as Synergy Integration activates potential for redeployment

### Firm F—Airline fleet owner Firm G---O&M: pilot, crew, maintenance

Incentives to invest under stand-alone Incentives to invest under integration

> Scale of investment—TCE, PRT Flexibility of investment---?

### Mergers and Strategic Shifts

Mailath, G.J., Nocke, V., Postlewaite, A. (2005). "Business Strategy, Human Capital and Managerial Incentives." *Journal of Economics and Management Strategy*, 13(4)

Strategic shift (new product/market) in F causes cannibalization of demand on G.

Under independent operation, external effect does not affect strategic choice

Under integration, negative externality must be internalized as a cost of realignment. Added cost of realignment

### Mergers and Strategic Shifts

 Fulghieri, P., and Hodrick, L.S. (2006). Synergies and Internal Agency Conflicts: the Double-Edged Sword of Mergers, *Journal of Economics and Management Strategy*, 15 (3)

> Strategic realignment equals divestiture of F Divestiture = resource redeployment

Under integration, total synergies from F must be internalized as cost of divestiture Added cost of realignment

# Outline

- The Basic Model
- Simultaneous Investment by CEO and Manager
- Sequential Investment: Bounded Rationality and Binary Options
- Sequential Investment: Forward-Looking Coasian Bargaining

### THE BASIC MODEL

- Endogenous Externalities
- Uncertainty and Flexibility determine trade-offs between Firm Scope and Strategy

### Two Firms: F and G

### DECISION LEVELS

- Board of Directors decides on: Merger versus Stand Alone Status Quo versus Realignment
- CEO and Manager decide on: Inertial Investment in Flexibility Proactive Investment in Flexibility

- Tactical Flexibility  $\theta_{S}$  and  $\theta_{R}$
- Agency Conflict between CEO and Manager
- Strategic Flexibility = Value of Option to Switch

• 
$$\Omega(\theta_{S}, \theta_{R}) = -\Gamma(\theta_{S}, \theta_{R})$$
  
=  $p \alpha_{R} + \theta_{R}(1-p) \alpha_{R} + \theta_{R}(\omega_{R} - \phi_{R})$   
 $- p \alpha_{S} - \theta_{S}(1-p) \alpha_{S} - \theta_{S}(\omega_{S} - \phi_{S})$ 

Two production units F and G

In unit F, board must decide between: (i) project/strategy S Status Quo (ii) project/strategy R Realignment

- Manager invests in inertial flexibility  $\theta_S$
- CEO invests in proactive flexibility  $\theta_R$

### Agency Conflict: CEO vs Manager

Manager prefers Status Quo (Entrenchment) Invests in Inertial Flexibility  $\theta_s$ 

CEO prefers Realignment Invests in Proactive Flexibility  $\theta_R$ 

1.-Board of directors of F and G decide between Stand Alone and Merger

- 2.- CEO of F selects proactive flexibility investment  $\theta_{s}$  and manager of F selects inertial flexibility investment
- 3.- Expected payoffs computed
- 4.- Board chooses Status Quo or Realignment Strategy
- 5.- Uncertainties realized, payoffs distributed

- Simultaneous Investment and Uniform Prior Beliefs
- Sequential Investment, Bounded Rationality and Binary Options
- Sequential Investment: Forward-Looking Coasian Bargaining

- Two Divisions: F and G
- STAND ALONE

Value under Status Quo:  $V_F(S)$ Value under Realignment:  $V_F(R)$ Realign if  $V_F(R) > V_F(S)$ 

INTEGRATED

Value under Status Quo:  $V_F(S)$ Value under Realignment:  $V_F(R)$ Realign if

$$V_F(R) + \eta_R \ge V_F(S) + \eta_S$$

$$V_{F}(R) + \eta_{R} \ge V_{F}(S) + \eta_{S}$$
$$V_{F}(R) + \eta_{R} - \eta_{S} \ge V_{F}(S)$$

Strategic synergy premium  $\Delta \eta = \eta_R - \eta_S$ 

 $V_F(R) + \Delta \eta \ge V_F(S)$ 

Externality from Merger: Example-1 Mailath, Nocke and Postlewaite (2005)

Realignment = strategic shift in F causing cannibalization of demand in G.

Externality under realignment  $\eta_R = -\eta$ , under status quo  $\eta_S = 0$ , Strategic synergy premiun  $\Delta \eta = -\eta$ . Externality from Merger: Example-2

Fulghieri and Hodrick (2006)

Realignment = divestiture/spin-off

Externality under realignment  $\eta_R = 0$ under status quo  $\eta_S = -\eta$ Strategic synergy premiun  $\Delta \eta = -\eta$ .

# Flexibility as Adaptation

- $S_g$  p PROBABILITY OF GOOD STATE Ex-ante payoff  $\alpha_H$
- S<sub>b</sub> 1-p PROBABILITY OF BAD STATE Ex-ante payoff  $\alpha_L < \alpha_H$ Flexibility θ

Ex-post payoff of bad state

$$\begin{split} &W(S_{b,},\,\theta\,)=\,\theta\,\alpha_{H}\,\,+\,(1\!-\,\theta)\,\alpha_{L}\\ &W(S_{b,},\,1\,\,)=\alpha_{H}\\ &W(S_{b,},\,0\,\,)=\alpha_{L} \end{split}$$

### FLEXIBILITY = Capacity for Ex-post Resource Redeployment

Redeployment intensity—Examples

- Distribution of skills in human capital with varying absorptive capacities
- Distribution of distances in networks of agents
- Distribution of vintages in stocks of productive technologies
- Connectivity of work stations via ICT

#### Flexibility

 $\theta$  = Fraction of Assets

that are redeployable

 $\alpha_{\rm H}$  = Return in good state,

$$\alpha_L$$
 = Return in bad state,

Value of Flexibility

 $V(\theta) = \theta (1-p)(\alpha_H - \alpha_L)$ 

Switching Options

Bernanke's "Bad News Principle"

Negative and Positive Shocks

Prob p Prob (1-p) Modeling Externalities Value of Switching Option  $\Omega = \Omega_R - \Omega_S \ge 0$ 

$$\begin{split} \Omega_{\text{R}} &= V(\text{R}) + \eta_{\text{R}}(\theta_{\text{R}}) \\ &= \pi_{\text{R}}(\theta_{\text{R}}) + \omega_{\text{R}}(\theta_{\text{R}}) - \phi_{\text{R}} \left| \theta_{\text{R}} - \theta_{\text{o}} \right| \\ \Omega_{\text{S}} &= V(\text{S}) + \eta_{\text{S}}(\theta_{\text{S}}) \\ &= \pi_{\text{S}}(\theta_{\text{S}}) + \omega_{\text{S}}(\theta_{\text{S}}) - \phi_{\text{S}} \left| \theta_{\text{S}} - \theta_{\text{o}} \right| \end{split}$$

- $\omega_R \, \omega_S$  redeployability coefficients
- $\phi_R\,\phi_S\,$  flexibility mismatch cost

$$\begin{split} & \textbf{Modeling Externalities} \\ & \Omega = \Omega_R - \Omega_S \ge 0 \\ & \pi_R(\theta_R) + \Delta \eta(\theta_S, \theta_R) \ge \pi_S(\theta_S) \end{split}$$

$$\Delta \eta(\theta_{\rm S}, \theta_{\rm R}) = \omega_{\rm R}(\theta_{\rm R}) - \varphi_{\rm R} |\theta_{\rm R} - \theta_{\rm o}| - \omega_{\rm S}(\theta_{\rm S}) + \varphi_{\rm S} |\theta_{\rm S} - \theta_{\rm o}|$$

Assuming  $\omega_{R}(\theta_{R}) = \omega_{R}\theta_{R}$ ,  $\omega_{S}(\theta_{S}) = \omega_{S}\theta_{S}$ and  $\theta_{o} = 0$ , *Strategic synergy premium*  $\Delta \eta(\theta_{S}, \theta_{R}) = (\omega_{R} - \phi_{R})\theta_{R} - (\omega_{S} - \phi_{S})\theta_{S}$  Expected payoff of Status Quo Strategy

$$V_{F}(S) = p \alpha_{S} + \theta_{S}(1-p) \alpha_{S} + \theta_{S} (\omega_{S} - \varphi_{S})$$

Expected payoff of Realignment Strategy

$$V_F(R) = p \alpha_R + \theta_R(1-p) \alpha_R + \theta_R (\omega_R - \phi_R)$$

 $\theta_{S}$ ,  $\theta_{R}$  —Flexibility

 = fraction that can be redeployed from low to high payoff following resolution of uncertainty

Ex-ante resource specificity is  

$$\Gamma o = p \alpha_{S} - p \alpha_{R}$$
Ex-Post Resource Specificity  

$$\Gamma(\theta_{S}, \theta_{R}) = \pi_{S}(\theta_{S}) - \pi_{R} (\theta_{R})$$

$$= p \alpha_{S} + \theta_{S}(1-p) \alpha_{S} + \theta_{S} (\omega_{S} - \phi_{S}) - p \alpha_{R} - \theta_{R}(1-p) \alpha_{R} - \theta_{R}(\omega_{R} - \phi_{R})$$

Value of Option to Switch

$$\begin{split} \Omega(\theta_{\rm S}, \theta_{\rm R}) &= -\Gamma(\theta_{\rm S}, \theta_{\rm R}) \\ &= p \, \alpha_{\rm R} + \theta_{\rm R}(1 \text{-} p) \, \alpha_{\rm R} + \theta_{\rm R}(\omega_{\rm R} - \phi_{\rm R}) \\ &- p \alpha_{\rm S} - \theta_{\rm S}(1 \text{-} p) \alpha_{\rm S} - \theta_{\rm S} (\omega_{\rm S} - \phi_{\rm S}) \end{split}$$

### STATUS QUO If $\Gamma(\theta_{S}, \theta_{R}) \ge 0$ $\Omega(\theta_{S}, \theta_{R}) \le 0$

REALIGN If  $\Gamma(\theta_{S}, \theta_{R}) \leq 0$   $\Omega(\theta_{S}, \theta_{R}) \geq 0$ 

# SIMULTANEOUS INVESTMENTS AND UNIFORM PRIOR BELIEFS

1.- CEO and Manager have uniform prior beliefs about probability of a good state  $p \in [0,1]$ 

2.- Conditionally on preferences and distribution rules,  $\theta_{s}$  and  $\theta_{R}$  are selected.

3.- Probability p is revealed. Board of directors computes expected payoffs.

4.- Board selects between status quo S and realignment R strategies

5.- Payoffs Distributed—Distribution Rules

For each pair  $\theta_{\rm S} \theta_{\rm R}$ , there exist threshold values  $\Gamma^*_{o}(\theta_{\rm S}, \theta_{\rm R}) > 0$  for ex-ante resource specificities such that:

For  $\Gamma_0 \ge \Gamma_0^*$  status quo S For  $\Gamma_0 \le \Gamma_0^*$  realignment R

Ex-ante resource specifcity  $\Gamma o = p \alpha_{S} - p \alpha_{R}$ 

### **Threshold Resource Specificities**

**DECISION RULES** Under stand-alone If  $\Gamma_0 \leq \Gamma_{SA}^*(\theta_S, \theta_R)$  Realign If  $\Gamma_{\Omega} \geq \Gamma_{\Omega} (\theta_{\Omega}, \theta_{R})$  Status Quo Under merger If  $\Gamma_{\Omega} \leq \Gamma_{M}^{*}(\theta_{S}, \theta_{R})$  Realign If  $\Gamma_{\Omega} \geq \Gamma M^*(\theta_{S}, \theta_{R})$  Status Quo

Net synergy gap  $S_G = \Gamma_M^*(\theta_S, \theta_R) - \Gamma_{SA}^*(\theta_S, \theta_R)$  $\Gamma_M^*(\theta_S, \theta_R) = \Gamma_{SA}^*(\theta_S, \theta_R) + S_G$ 

Proposition

If  $S_G \ge 0$  then  $\Gamma_M^*(\theta_S, \theta_R) \ge \Gamma_{SA}^*(\theta_S, \theta_R)$ , merger increases threshold and is *proactive* 

If  $S_G \leq 0$  then  $\Gamma_M^*(\theta_S, \theta_R) \leq \Gamma_{SA}^*(\theta_S, \theta_R)$ merger decreases threshold and is *inertial*.

#### Specificity thresholds under merger

$$\Gamma^*_{M}(1, 1) = \omega_{R} - \varphi_{R} - (\omega_{S} - \varphi_{S})$$

- $\Gamma^*_{M}(1, 0) = (p 1) \alpha_{S} (\omega_{S} \varphi_{S})$
- $\Gamma^*_{M}(0, 1) = (1 p) \alpha_R + (\omega_R \phi_R)$
- Γ\*<sub>M</sub> (0, 0) = 0
- Specificity thresholds under stand-alone
- Γ\*<sub>SA</sub> (1, 1) = 0

- $\Gamma^*_{SA}(0, 1) = (1-p) \alpha_R$
- Γ\*<sub>SA</sub> (0, 0) = 0

EXPECTED PAYOFFS FOR (0,1) For realignment under merger  $p \alpha_{s} + \theta_{s}(1-p) \alpha_{s} + \theta_{s} (\omega_{s} - \phi_{s}) - p \alpha_{R} - \theta_{R}(1-p) \alpha_{R} - \theta_{R}(\omega_{R} - \phi_{R}) \leq 0$ 

$$\begin{split} & \Gamma_{o} = p \alpha_{S} - p \alpha_{R} \leq \Gamma_{M}^{*}(0,1) \\ & \Gamma^{*}_{M} (0, 1) = (1 - p) \alpha_{R} + (\omega_{R} - \varphi_{R}) \\ & p \leq p^{*}(0,1) \\ & p^{*}(0,1) = (\alpha_{R} + \delta_{R})/\alpha_{S} \\ & \delta_{R} = \omega_{R} - \varphi_{R} \end{split}$$

Realign if 
$$p \le p^*(0,1)$$
  
 $p^*(0,1) = (\alpha_R + \delta_R)/\alpha_S$   
 $\delta_R = \omega_R - \phi_R$ 

 $\begin{aligned} p^*(0,1) &= 1 & \text{if } \alpha_R + \delta_R > \alpha_S \\ p^*(0,1) &= (\alpha_R + \delta_R)/\alpha_S & \text{if } \alpha_R + \delta_R < \alpha_S \\ p^*(0,1) &= 0 & \text{if } \alpha_R + \delta_R < 0 \end{aligned}$ 

PAYOFFS For  $p \le p^*$   $\Pi = \Pi_R = \alpha_R + \delta_R$ For  $p > p^*$   $\Pi = \Pi_S = p\alpha_S$ 

 $p^*(0,1) \in (0,1)$  if and only if  $0 < \alpha_R + \delta_R < \alpha_S$ 

$$p^*(0,1) = (\alpha_R + \delta_R)/\alpha_S$$

$$\sigma^*(0,1) = (\alpha_R + \delta_R)/\alpha_S$$

$$\begin{split} \mathsf{E}[\Pi \ (0,1)] &= \mathsf{p}^* \Pi_\mathsf{R}(0,1) + (1-\mathsf{p}^*) \Pi_\mathsf{S}(0,1) \\ \mathsf{E}[\Pi \ (0,1)] &= (\alpha_\mathsf{R} + \delta_\mathsf{R})^2 / \alpha_\mathsf{S} \ + [\alpha_\mathsf{S} \ - \ \alpha_\mathsf{R} - \delta_\mathsf{R}] \ \mathsf{p} \ \alpha_\mathsf{S} \\ \delta_\mathsf{R} &= \omega_\mathsf{R} \ - \phi_\mathsf{R} \end{split}$$

$$Pr[α = R] = Pr[p ≤ p^*] = min {1, p^*}$$
  
 $Pr[α = S] = Pr[p ≥ p^*] = max {0, 1 - p^*}$ 

### **Expected Payoffs**

If  $p^*(0,1) \ge 1$ , REALIGN E[ $\Pi$  (0,1)] =  $\Pi_R = \alpha_R + \delta_R$ 

If  $p^*(0,1) \in (0,1)$ , WEIGHTED AVERAGE  $E[\Pi (0,1)] = (\alpha_R + \delta_R)^2 / \alpha_S + [\alpha_S - \alpha_R - \delta_R] p \alpha_S$   $p^*(0,1) \le 0$ , STATUS QUO  $E[\Pi (0,1)] = p \alpha_S$ 

# **Distribution of Payoffs**

Similarly, compute E[Π (1,1)] E[Π (1,0)] E[Π (0,1)] E[Π (0,0)]

Distribution Rules:

- (1)Nash Bargaining, Exogenous Threat Points
- (2)Endogenous Bargaining Power β
- (3) Winner-Takes-All (S or R Preference)
- (4) Private Benefits Plus Pecuniary Benefits

# SIMULTANEOUS INVESTMENT, BOUNDED RATIONALITY AND BINARY OPTIONS

#### Bounded Rationality

- CEO invests in flexibility θ<sub>R</sub> ε {0,1} only if it switches preferred choice from S to R
- Manager invests in flexibility  $\theta_R \in \{0,1\}$  only if it switches preferred choice from R to S
- Non-concave and discontinuous utility function creates hysteresis: ordering of decisions matters

- Decision rights are assumed to be assigned so that the manager chooses  $\theta_{S}$  and the CEO chooses  $\theta_{R.}$
- Equilibrium levels of investment depend on the sequence of decisions: whether the manager or the CEO moves first makes a difference on equilibrium flexibility.
- Whether inertial flexibility  $\theta_s$  and proactive flexibility  $\theta_R$  are *complements* or *substitutes* depends on the value of resource specificity and on the order in which the manager and the CEO make investment decisions.

### Binary option: Bounded rationality as adjustment cost

Current choice is  $\theta_o$  and  $\kappa$  is cost of change

 $θ_o \text{ will change to } θ^* = \arg \max u(θ, Γ)$ if and only if  $u(θ^*, Γ) - u(θ_o, Γ) > κ$ 

- Ex-ante: first agent (M or C) makes investment decision
- Ex-interim: second agent (C or M) makes investment selection
- Ex-post: equilibrium value function determined
- Flexibility choice of first agent shifts ex-interim resource specificity and therefore choice of investment faced by the second agent.
- Ex-interim resource specificity depends on

   (a) ex-ante resource specificity and
   (b) on the flexibility level selected by the agent to move first

- The Realignment Value Function
   Ψi = Λ(θ<sub>R</sub>,θ<sub>S</sub>) μ<sub>i</sub>θ<sub>j</sub>, i ε{M,C}, j ε{S,R}, μ<sub>i</sub> is the marginal cost of flexibility investment
- The Realignment Index  $\Lambda$

For each pair  $(\theta_R, \theta_S)$  the index is an integer N  $\in \{0, 1\}$  defined by:

 $\begin{array}{l} \Lambda(\theta_{\mathsf{R}}, \theta_{\mathsf{S}}) \ = 0 \ \text{if} \ \pi_{\mathsf{R}}(\theta_{\mathsf{R}}) \ < \ \pi_{\mathsf{S}}(\theta_{\mathsf{S}}) \ \text{and} \\ \Lambda(\theta_{\mathsf{R}}, \theta_{\mathsf{S}}) \ = 1 \ \text{if} \ \pi_{\mathsf{R}}(\theta_{\mathsf{R}}) \ > \ \pi_{\mathsf{S}}(\theta_{\mathsf{S}}). \end{array}$ 

## Manager moves first

If manager moves first and selects  $\theta_{s}$ , then CEO chooses flexibility  $\theta_{R}$  to maximize

$$V(\theta_{S}, \theta_{R}) = \Psi_{C}(\theta_{R}, \theta_{S}) - \Psi_{C}(0, \theta_{S})$$
$$= \Lambda(\theta_{R}, \theta_{S}) - \Lambda(0, \theta_{S}) - \mu_{C}\theta_{R} + \mu_{C}0$$

### Four Sub-Games

(a) Sub-game G1 = (P,M): Positive resource specificity, manager invests first (b) Sub-game G2 = (P, C): Positive resource specificity, CEO invests first (c) Sub-game G3= (N,M): Negative resource specificity, manager invests first (d) Sub-game G4= (N,C): Negative resource specificity, CEO invests first

• 
$$\Delta \Psi_{C}(1/0, \Sigma^{+}) = \Psi_{C}(1,0) - \Psi_{C}(0,0)$$
  
=  $\Lambda(1,0) - \Lambda(0,0) - \mu_{C}.1 + \mu_{C}.0 = 1 - \mu_{C}$   
•  $\Delta \Psi_{C}(0/1, \Sigma^{+}) = \Psi_{C}(0,1) - \Psi_{C}(0,1)$   
=  $\Lambda(0,1) - \Lambda(0,1) - \mu_{C}.0 + \mu_{C}.0 = 0$   
•  $\Delta \Psi_{C}(1/1, \Sigma^{+}) = \Psi_{C}(1,1) - \Psi_{C}(0,1)$   
=  $\Lambda(1,1) - \Lambda(0,1) - \mu_{C}.1 + \mu_{C}.0 = -\mu_{C}$ 

 $\Delta \Psi_{\rm C}(0/0, \Sigma^+) = \Psi_{\rm C}(1,0) - \Psi_{\rm C}(0,0)$ 

•

MANAGER MOVES FIRST and 
$$\Gamma o > 0$$
,  
 $\Gamma o \in \Sigma + = {\Gamma o : 0 \le \Gamma o \le (1-p) \alpha R}$ 

 $= \Lambda(0,0) - \Lambda(0,0) - \mu_{\rm C}.0 + \mu_{\rm C}.0 = 0$ 

 $( \circ \circ )$ 

• 
$$\Delta \Psi_{C}(0/0, \Sigma_{-}) = \Psi_{C}(1,0) - \Psi_{C}(0,0)$$
  
  $= \Lambda(0,0) - \Lambda(0,0) - \mu_{C}.0 + \mu_{C}.0 = 0$   
•  $\Delta \Psi_{C}(1/0, \Sigma_{-}) = \Psi_{C}(1,0) - \Psi_{C}(0,0)$   
  $= \Lambda(1,0) - \Lambda(0,0) - \mu_{C}.1 + \mu_{C}.0 = -\mu_{C}$   
•  $\Delta \Psi_{C}(0/1, \Sigma_{-}) = \Psi_{C}(0,1) - \Psi_{C}(0,1)$   
  $= \Lambda(0,1) - \Lambda(0,1) - \mu_{C}.0 + \mu_{C}.0 = 0$   
•  $\Delta \Psi_{C}(1/1, \Sigma_{-}) = \Psi_{C}(1,1) - \Psi_{C}(0,1)$   
  $= \Lambda(1,1) - \Lambda(0,1) - \mu_{C}.1 + \mu_{C}.0 = 1 - \mu_{C}$ 

• MANAGER MOVES FIRST and  $\Gamma o < 0$ ,  $\Gamma o \in \Sigma = {\Gamma o : - (1-p) \alpha S \le \Gamma o \le 0}$  Proposition

Let  $V_C$  (i,j; S)  $\equiv \Delta \Psi_C$ (i/j, S), i,j  $\in \{0,1\}$  and S  $\in \{\Sigma+, \Sigma-\}$ .

If S =  $\Sigma$ + then the value function V<sub>C</sub> (., S), defined on the lattice L = {(1,1), (0,0), (1,0), (0,1)} is *submodular* and investment decisions in inertial flexibility  $\theta_{\rm S}$  and proactive flexibility  $\theta_{\rm R}$  are *strategic substitutes*.

If S =  $\Sigma$ - then the value function V<sub>C</sub> (., S), is supermodular and investment decisions in inertial flexibility  $\theta_S$  and proactive flexibility  $\theta R$ are strategic complements.

#### Manager Moves First, $\Gamma o \ge 0$



Table 3.1 Payoffs to Flexibility Investment under Positive Resource Specificity

#### Manager Moves First, $\Gamma o \leq 0$



Table 3.2 Payoffs to Flexibility Investment under Negative Resource Specificity

#### CEO Moves First, $\Gamma o \ge 0$



Table 3.3 Payoffs to Flexibility Investment under Positive Resource Specificity

#### CEO Moves First, $\Gamma o \leq 0$



Table 3.4 Payoffs to Flexibility Investment under Negative Resource Specificity

### SEQUENTIAL INVESTMENT FORWARD-LOOKING COASIAN BARGAINING

- Coasian Bargaining between CEO and Manager for Distribution of the Surplus
- Endogenous Threat Points: Solution to Bounded Rationality Model serves as Disagreement Game

## Extensions

- Flexibility coordination between units F and G
- Repeated games with reputational considerations
- Payoffs with trade-offs between costs and benefits of flexibility (adaptation vs productivity)

### Strategic Realignment, Flexibility, and Firm Scope

Esteban Hnyilicza CENTRUM, PUCP

December 12, 2007 XXV Encuentro de Economistas, BCRP