XLI ENCUENTRO DE ECONOMISTAS DEL BANCO CENTRAL DE RESERVA DEL PERÚ

STUDY OF ARTIFICIAL INTELLIGENCE TOPOLOGIES FOR FORECASTING DESIGNING NEURAL NETWORKS FOR MACROECONOMIC FORECASTING *

Presenter:Andrew Garcia, Ph.D.Collaborator:Juan Aquino, Ph.D.

October 24, 2023

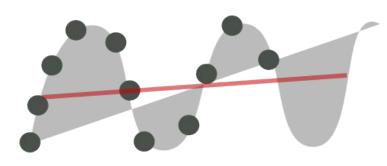
* The views expressed here are those of the authors and not necessarily of the BCRP

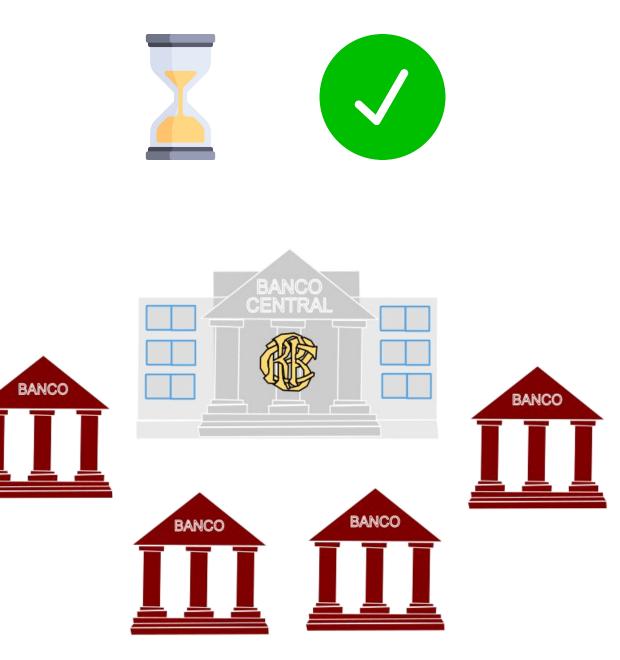
Objectives

- Develop specialized neural network architectures for forecasting.
- Explore the impact of different architectural paradigms on forecasting performance.
- Assess the influence of components like Time2Vec and non-local blocks.
- Conduct empirical evaluations using real-world data

Why Use Neural Networks for Macroeconomic Forecasting?

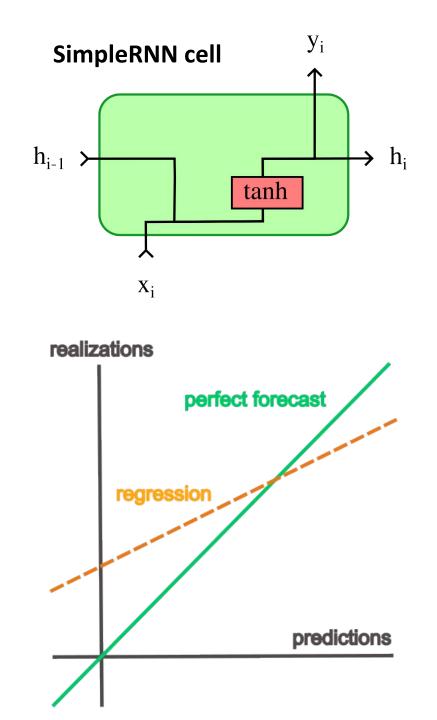
- **Timely and Accurate Decisions:** Central banks shape economic policies, requiring precise and timely decisions.
- Challenges in Traditional Methods: Traditional forecasting struggles with complex financial systems.
- Information Overload: Central banks manage massive datasets, requiring advanced tools.
- **Policy Formulation:** Al-driven forecasting aids adaptive policy formulation.
- **Competitive Advantage:** Central banks using AI gain a policy-making edge.





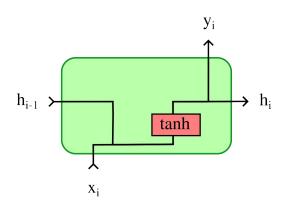
Agenda

- Recurrent Neural Network Architectures
 - Overview
 - FixedSeq and Seq2Seq Networks
 - Component Integrations
- Research Methodology
 - Data Collection and Processing
- Model Performance Evaluation
 - Learning Curves and Methodology
 - Forecast Evaluation
 - Horizon MSE between Realizations and
 - E|Random Walk|, E|Autoregression|
 - Neural Network Predictions
- Results
 - Key Findings

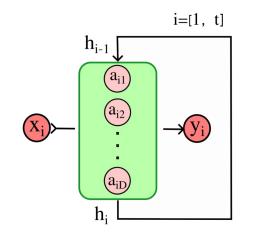


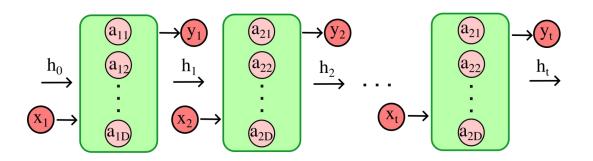
Recurrent Neural Networks

- Specialized to process sequential data
- Key Features
 - Cell States
 - Memory of network
 - Hidden States
 - Output sent from one cell to the next
 - Outputs
 - Each cell state gives an output
 - Sequential Propagation
 - Continuum of information from one cell to the next



recurrent unit representation

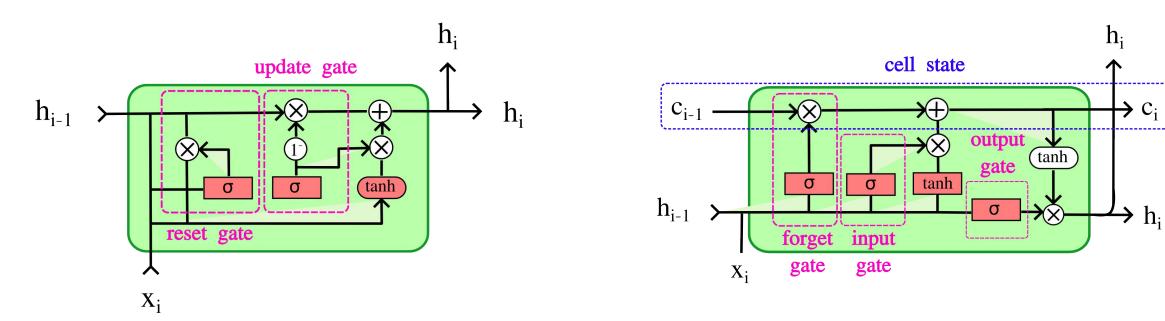




unfolded network

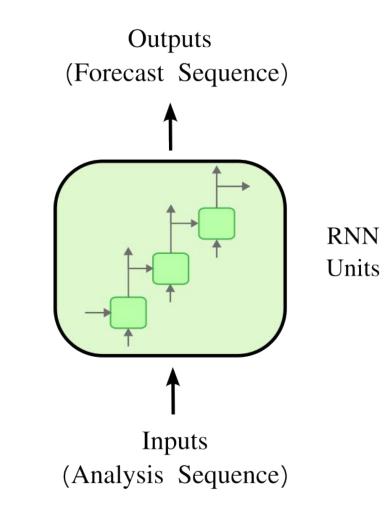
Advanced RNN Units

- **Recurrent neural networks with gates:** regulate information flow to capture and retain long-term dependencies
- Two Explored
 - Long Short-Term Memory (LSTM): Fundamental components of the LSTM include the input, forget, and output gates, and cell state.
 - Used in Seq2Seq networks
 - Gated Recurrent Unit (GRU): merges the cell state and hidden state and uses fewer gates.
 - Used in FixedSeq networks



FixedSeq Network

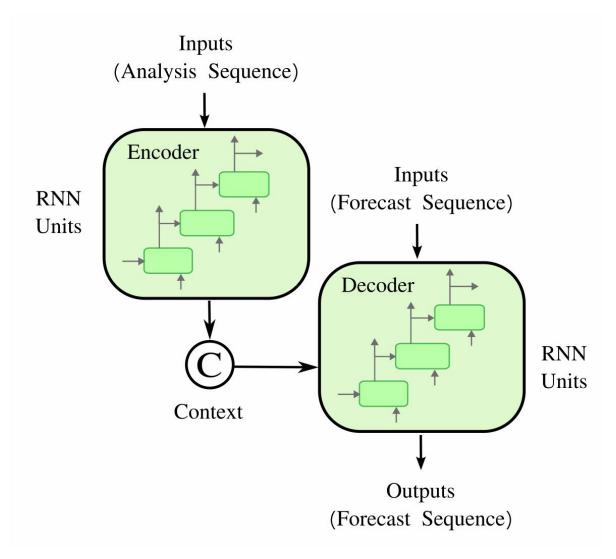
- FixedSeq is composed of a set of GRU units alone
- Fixed length constraint: Inputs (X) must have the length as Outputs (y)
- Inputs (X) : Sequential data to infer from
 - Analysis time windows
- Outputs (y): Sequential data to fit / predict
 - Forecast time windows



Seq2Seq Network

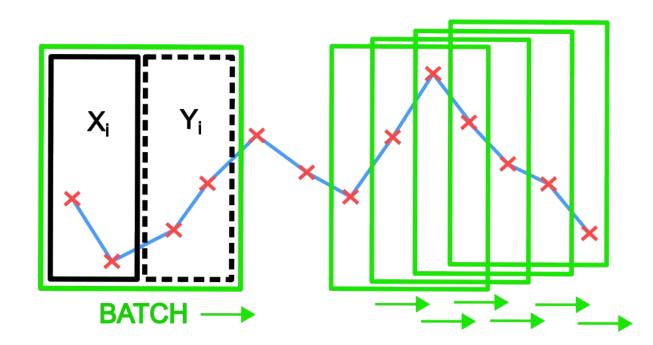
- Seq2Seq is consists of an encoder-decoder mechanism
- Flexible length features: Inputs (X)
 can have different lengths as Outputs
 (y)
- Encoder: Composed of LSTM units

 Inputs are fed and Cell State is
 output as "Context"
- **Decoder**: Composed of LSTM units
 - Context from Encoder block is fed and final Outputs (y) are released



Data Collection and Processing

- Baseline: 20-year dataset of monthly inflation index data from Peru, spanning until October 2023
- Sliding window batches: Multiple sequential sector pairs
 - Sector 1: analysis time window
 - Sector 2: forecast time window
- Random shuffling of above batches for training and testing sets



```
import bcrpy
banco = bcrpy.Marco()
banco.codigos = ['PN01273PM']
banco.fechaini = '2003-10'
banco.fechafin = '2023⊢10'
df = banco.GET()
```

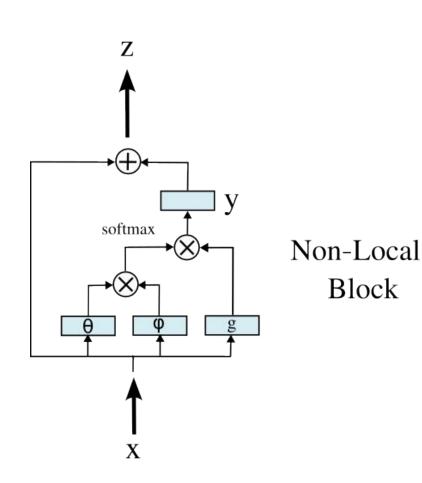
Non-Local Blocks (Component Integrations)

- Inspired by Transformer architecture's Attention Layers
 - Multihead attention layers are specialized to process embedded string information ('words')
- Non-local blocks process numerical data
 - Developed by Facebook Research (2017) to capture
 long-range dependencies of spatial information
- Here used to prove whether they can further improve capturing long-range dependencies in time series

$$f(\mathbf{x}_i, \mathbf{x}_j) = e^{\theta(\mathbf{x}_i)^T \phi(\mathbf{x}_j)}$$

 $\mathbf{z}_i = W_z \mathbf{y}_i + \mathbf{x}_i$

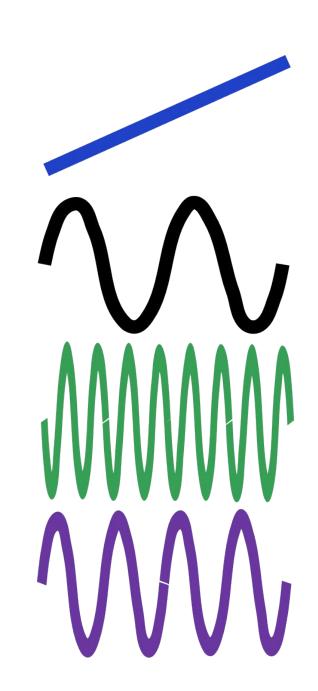
$$\mathbf{y}_i = \frac{1}{\mathcal{C}(\mathbf{x})} \sum_{\forall j} f(\mathbf{x}_i, \mathbf{x}_j) g(\mathbf{x}_j).$$



Time2Vec Time Encoding (Component Integrations)

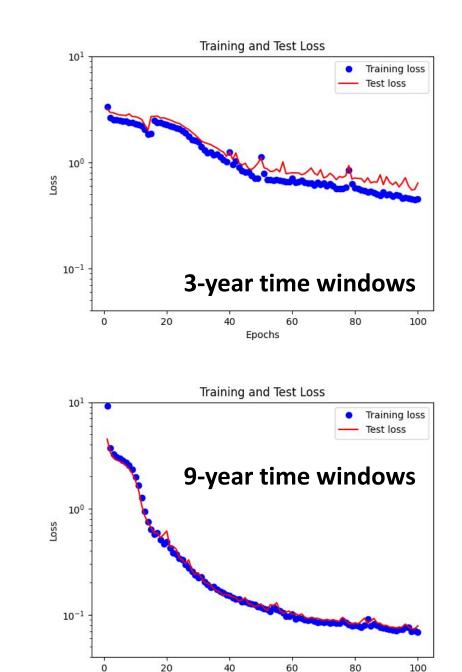
- Developed by Borealis AI (2019)
- Reported to learn features of time (progression, periodicity, scale) through time encoding
- The Time2Vec encoder may take a time series (or scalar notion of time) and encode it to a series of vectors with the same length:
 - Trend Component (one vector)
 - Periodic Components (custom number of vectors)

$$\mathbf{t2v}(au)[i] = egin{cases} \omega_i au + \phi_i, & ext{if} \quad i=0.\ \mathcal{F}(\omega_i au + \phi_i), & ext{if} \quad 1\leq i\leq k. \end{cases}$$



Bare FixedSeq

- Effect of analysis [time] window lengths
- Hypothesis: Providing more information to neural network will result in improved data inferences
- **FixedSeq network using the longest monthly** analysis windows top-performing according to learning curves.
 - Lowest overall MSF loss Ο
 - More narrow training-testing loss gap Ο
 - Implies better generalization from unseen data
- Shortcomings of long windows:
 - More Information is demanded \bigcirc
 - Less training and testing batches Ο



40

60

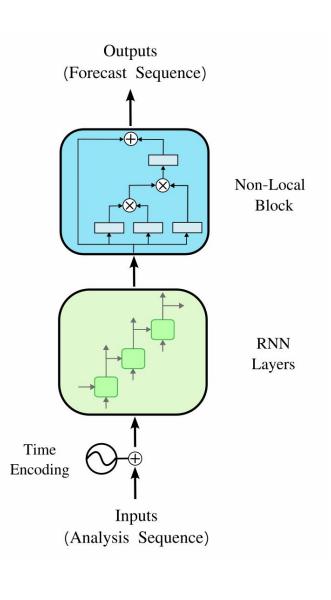
Epochs

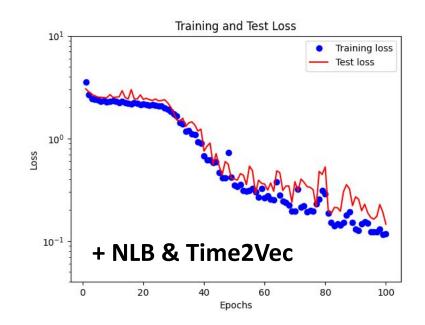
80

100

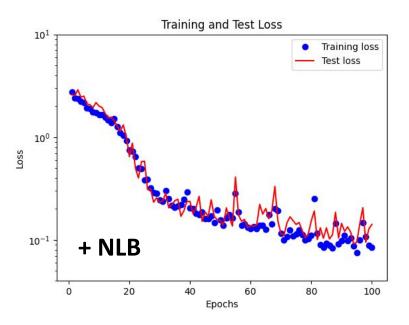
FixedSeq with Component Integrations

- Lesser performing RNN with non-local block and time encoding
 - FixedSeq-FULL (top)
- And with nonlocal block alone
 - FixedSeq-NLB (bottom)
- Both show dramatic improvement, though FixedSeq-NLB shows superior performance





3-year time windows

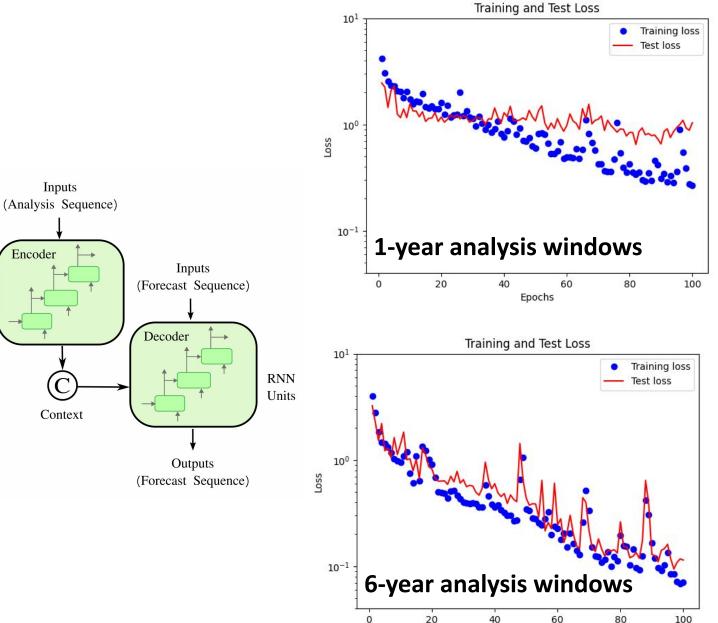


Bare Seq2Seq - 1-year forecast windows

RNN

Units

- Reducing the forecast time windows to 12 months (1-year) while changing the analysis time window size.
- Both cases show significant improvement to the analogous FixedSeq results
- Longer analysis time windows give better learning curve performance
 - Lower errors
 - Better generalization



Epochs

Forecast Evaluations

- Develop a methodology inspired by Mincer and Zarnowitz (1969) to compare forecasting error of RNN against benchmarks
 - Across-time comparison of errors between realizations (ground-truth) and predictions

$$g(e) = \frac{1}{n} \sum_{i=1}^{n} E(A_i - P_i)^2$$

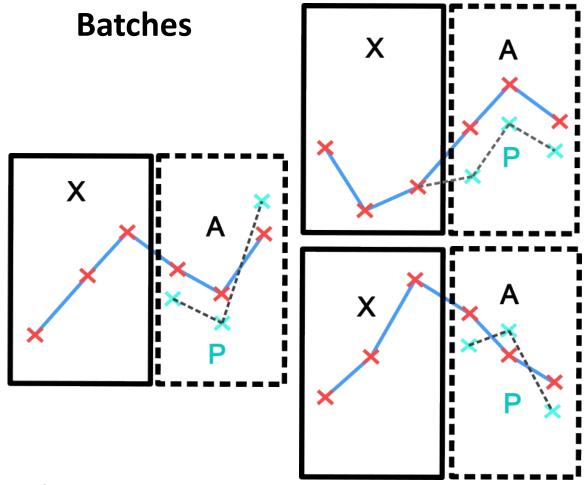
Random Walk

 $A_t = A_{t-1} + \epsilon_t$ $E(A_t^{rw}) = A_{t-1}$

Autoregression

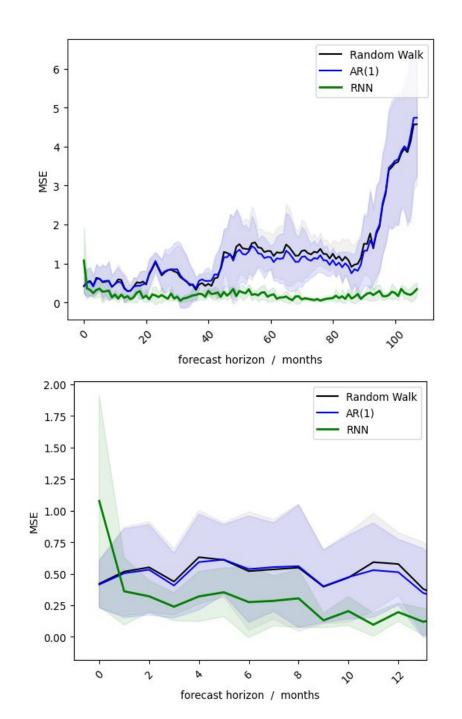
$$A_t = \alpha + \beta_1 A_{t-1} + \epsilon_t$$

 $E(A_t^{ar1}) = \alpha + \beta_1 A_{t-1}$



Forecast Evaluations

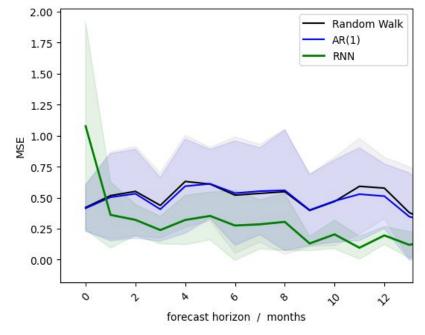
- Most information-intensive model
 - Bare FixedSeq, 9-year (108 months) analysis & forecast windows
- Beats the random walk and AR(1) benchmarks at longer times
- Fails to do so at earlier forecast time regimes
 - Compare against other better-performing designs



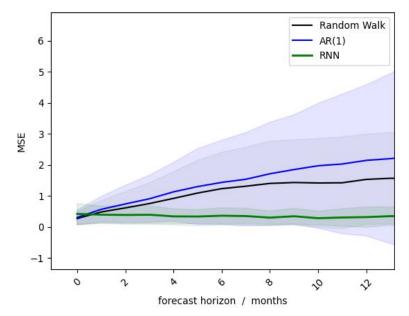
Forecast Evaluations

- Compare the latter model,
 - bare FixedSeq (top), to a
 - FixedSeq-NLB with 3-year analysis
 / forecast windows (bottom)
- bare FixedSeq noise attributed to significantly lower batch density
 - Less power to report accurate forecast
- Model # 2 surpasses random walk and AR(1) with greater confidence
 - Mean and deviation significantly lower to benchmarks

FixedSeq 9-year windows



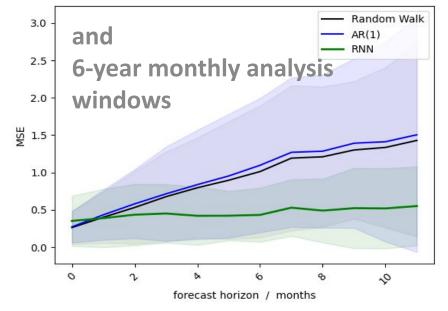
FixedSeq-NLB 3-year windows



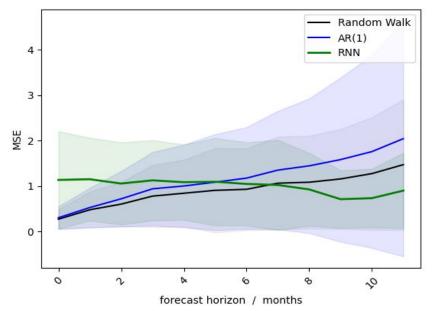
Forecast Evaluations - Seq2Seq

- Best performing Seq2Seq along with FixedSeq counterpart
 - Same Forecast Window Size
 (1-year)
- FixedSeq cannot take longer Analysis Windows than its Forecast Length
- Significant overperformance of Seq2Seq
 - Beats benchmarks after 2 months
 - FixedSeq unable to beat benchmarks

Seq2Seq 1-year forecast windows



FixedSeq 1-year forecast windows



Conclusion

- Developed a methodology for assessing forecasting accuracy for neural networks
- Choice of neural network architecture and input characteristics significantly impacts forecasting performance
- Seq2Seq models demonstrate superior performance for cases where data availability is limited
- Adoption of specific architectural components can optimize forecasting accuracy

THANK YOU

