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Objectives
• Develop specialized neural network architectures for forecasting.
• Explore the impact of different architectural paradigms on 

forecasting performance.
• Assess the influence of components like Time2Vec and non-local 

blocks.
• Conduct empirical evaluations using real-world data



• Timely and Accurate Decisions: Central banks 
shape economic policies, requiring precise 
and timely decisions.

• Challenges in Traditional Methods: 
Traditional forecasting struggles with complex 
financial systems.

• Information Overload: Central banks manage 
massive datasets, requiring advanced tools.

• Policy Formulation: AI-driven forecasting aids 
adaptive policy formulation.

• Competitive Advantage: Central banks using 
AI gain a policy-making edge.

Why Use Neural Networks for Macroeconomic Forecasting?
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SimpleRNN cell



Recurrent Neural Networks
• Specialized to process sequential data 
• Key Features

○ Cell States
■ Memory of network

○ Hidden States
■ Output sent from one cell to the next

○ Outputs 
■ Each cell state gives an output

○ Sequential Propagation 
■ Continuum of information from one 

cell to the next

unfolded network

recurrent unit representation



Advanced RNN Units

• Recurrent neural networks with gates: regulate information flow to capture and retain 
long-term dependencies

• Two Explored
○ Long Short-Term Memory (LSTM): Fundamental components of the LSTM include the 

input, forget, and output gates, and cell state.
■ Used in Seq2Seq networks

○ Gated Recurrent Unit (GRU): merges the cell state and hidden state and uses fewer gates.
■ Used in FixedSeq networks



FixedSeq Network

• FixedSeq is composed of a set of GRU 
units alone 

• Fixed length constraint: Inputs (X) 
must have the length as Outputs (y)

• Inputs (X) : Sequential data to infer 
from 
○ Analysis time windows 

• Outputs (y): Sequential data to fit / 
predict 
○ Forecast time windows



Seq2Seq Network

• Seq2Seq is consists of an 
encoder-decoder mechanism

• Flexible length features: Inputs (X) 
can have different lengths as Outputs 
(y)

• Encoder: Composed of LSTM units
○ Inputs are fed and Cell State is 

output as “Context”
• Decoder: Composed of LSTM units

○ Context from Encoder block is fed 
and final Outputs (y) are released



Data Collection and Processing

• Baseline: 20-year dataset of 
monthly inflation index data from 
Peru, spanning until October 2023

• Sliding window batches: Multiple 
sequential sector pairs
○ Sector 1: analysis time window
○ Sector 2: forecast time window

• Random shuffling of above batches 
for training and testing sets



Non-Local Blocks (Component Integrations)

• Inspired by Transformer architecture’s Attention Layers 
○ Multihead attention layers are specialized to process 

embedded string information (‘words’)
• Non-local blocks process numerical data 

○ Developed by Facebook Research (2017) to capture 
long-range dependencies of spatial information 

• Here used to prove whether they can further improve 
capturing long-range dependencies in time series



Time2Vec Time Encoding (Component Integrations)

• Developed by Borealis AI (2019) 
• Reported to learn features of time (progression, periodicity, 

scale) through time encoding
• The Time2Vec encoder may take a time series (or scalar 

notion of time) and encode it to a series of vectors with the 
same length: 
○ Trend Component (one vector)
○ Periodic Components (custom number of vectors)



Bare FixedSeq

• Effect of analysis [time] window lengths
• Hypothesis: Providing more information to 

neural network will result in improved data 
inferences

• FixedSeq network using the longest monthly 
analysis windows top-performing according to 
learning curves. 
○ Lowest overall MSE loss
○ More narrow training-testing loss gap

■ Implies better generalization from 
unseen data 

• Shortcomings of long windows:
○ More Information is demanded
○ Less training and testing batches 

3-year time windows

9-year time windows



FixedSeq with Component Integrations

3-year time windows

+ NLB & Time2Vec

+ NLB 

• Lesser performing RNN 
with non-local block and 
time encoding
○ FixedSeq-FULL (top)

• And with nonlocal block 
alone 
○ FixedSeq-NLB (bottom)

• Both show dramatic 
improvement, though 
FixedSeq-NLB shows 
superior performance



Bare Seq2Seq - 1-year forecast windows

1-year analysis windows

6-year analysis windows

• Reducing the forecast time 
windows to 12 months 
(1-year) while changing the 
analysis time window size. 

• Both cases show significant 
improvement to the 
analogous FixedSeq results 

• Longer analysis time windows  
give better learning curve 
performance
○ Lower errors
○ Better generalization



Forecast Evaluations

• Develop a methodology inspired by Mincer 
and Zarnowitz (1969) to compare forecasting 
error of RNN against benchmarks
○ Across-time comparison of errors 

between realizations (ground-truth) and 
predictions

Random Walk Autoregression

Batches



Forecast Evaluations

• Most information-intensive model 
○ Bare FixedSeq, 9-year (108 months) 

analysis & forecast windows 
• Beats the random walk and  AR(1) 

benchmarks at longer times
• Fails to do so at earlier forecast time 

regimes
○ Compare against other 

better-performing designs



Forecast Evaluations

• Compare the latter model, 
○ bare FixedSeq (top), to a
○ FixedSeq-NLB with 3-year analysis 

/ forecast windows (bottom)
• bare FixedSeq noise attributed to 

significantly lower batch density 
○ Less power to report accurate 

forecast
• Model # 2 surpasses random walk 

and AR(1) with greater confidence
○ Mean and deviation significantly 

lower to benchmarks

FixedSeq 9-year windows

FixedSeq-NLB 3-year windows



Forecast Evaluations - Seq2Seq

• Best performing Seq2Seq along with 
FixedSeq counterpart
○ Same Forecast Window Size 

(1-year)
• FixedSeq cannot take longer Analysis 

Windows than its Forecast Length
• Significant overperformance of 

Seq2Seq
○ Beats benchmarks after 2 months 
○ FixedSeq unable to beat 

benchmarks

Seq2Seq 1-year forecast windows

FixedSeq 1-year forecast windows

and
6-year monthly analysis 
windows



Conclusion
• Developed a methodology for assessing forecasting accuracy for neural 

networks
• Choice of neural network architecture and input characteristics significantly 

impacts forecasting performance
• Seq2Seq models demonstrate superior performance for cases where data 

availability is limited
• Adoption of specific architectural components can optimize forecasting 

accuracy 
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