Impact of Monetary Policy Shocks in the Peruvian Economy Over Time *

Flavio Perez Rojo ¹ Gabriel Rodriguez ²

¹BCRP-PUCP

 2 PUCP

October 24, 2023

^{*} The views expressed here are those of the authors and not necessarily of the BCRP

Contents

- Motivation
 - Objective
 - Literature Review
- Metodology
 - Models
 - Data
- Results
- Results: Resume

Objective

We investigate the evolution of the impact of monetary policy shocks in Peru using a set of time-varying parameter vector autoregressive models with stochastic volatility (TVP-VAR-SV)

Literature Review

- Cogley & Sargent (2005) TVP-VAR-SV. US
- Nakajima (2011) ZLB-TVP-VAR-SV. Japan
- Castillo et al. (2016) TVP-VAR-SV. Peru
- Portilla & Rodriguez (2022) TVP-VAR-SV. Peru

TVP-VAR-SV

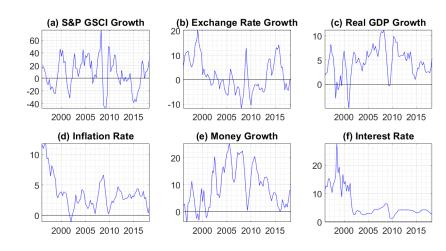
$$\mathbf{B}_{0,t}\mathbf{y}_t = \mu + \sum_{j=1}^p \mathbf{B}_{j,t}\mathbf{y}_{t-j} + \epsilon_t, \tag{1}$$

where $\epsilon_t \sim \mathbf{N}(\mathbf{0}, \Sigma_t)$ y $\Sigma_t = diag\left(\exp\left(\mathbf{h}_{1t}\right), ..., \exp\left(\mathbf{h}_{nt}\right)\right)$. Furthermore, $\mathbf{h}_t = \mathbf{h}_{t-1} + \zeta_t$ y $\zeta_t \sim \mathbf{N}\left(\mathbf{0}, \Sigma_h\right)$.

Grouping everything in a state-space form:

$$\mathbf{y} = \mathbf{X}\boldsymbol{\theta} + \boldsymbol{\epsilon},$$
 (2) $\mathbf{H}_{\boldsymbol{\theta}}\boldsymbol{\theta}_{t} = \widetilde{\boldsymbol{\alpha}}_{\boldsymbol{\theta}} + \boldsymbol{\eta},$

TVP-VAR-SV models

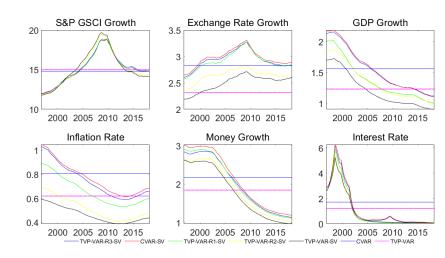

TVP-VAR-SV	TVP-VAR with Stochastic Volatility
TVP-VAR	Same as TVP-VAR-SV but $\mathit{h}_t = \mathit{h}_0$
TVP-VAR-R1-SV	Same as TVP-VAR-SV but $eta_t = eta_0$
TVP-VAR-R2-SV	Same as TVP-VAR-SV but $\gamma_t=\gamma_0$
TVP-VAR-R3-SV	Same as TVP-VAR-SV but only intercepts are time varying
CVAR-SV	Same as TVP-VAR-SV but $eta_t = eta_0$ and ${\gamma}_t = {\gamma}_0$
CVAR	Constant coefficients VAR with $ heta_t = heta_0$ and $h_t = h_0$

Sample

Between 1996Q1 and 2018Q2:

- S&P GSCI Growth
- Nominal Exchange Rate Growth
- Real GDP Growth
- Inflation
- Currency in Circulation Growth
- Interest Rate (2003Q3)

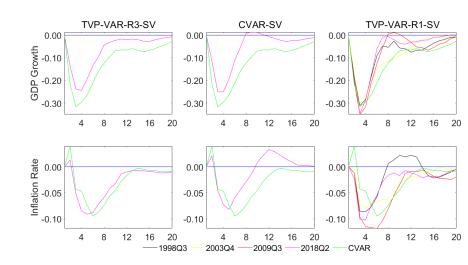
Annual Growth Rates

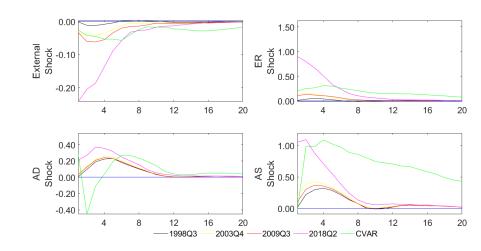


Tests for Time Variation in the Coefficients and Volatilities

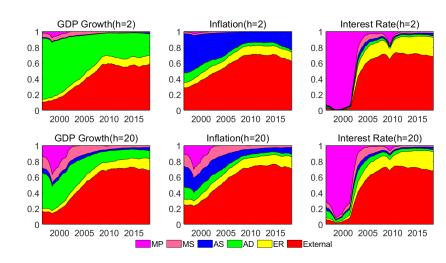
- The trace test shows that the trace of the posterior median of h_t is statistically significant but small. Both the KS-test and the t-test show that all elements of h_t vary over time
- ② Under the KS-test and the t-test, all elements of γ_t change over time in both comparison groups.
- lacktriangledown Most elements of eta_t vary under KS-test and t-test

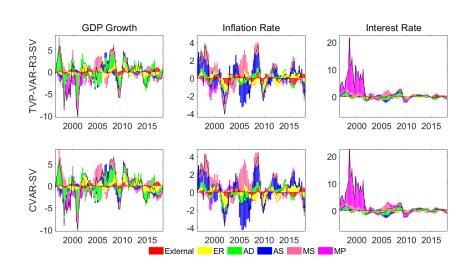
In sum, these results suggest that all volatilities and most of the parameters change over time.


Standard Deviations


Model Selection

Model	$Log\text{-}ML_\mathit{CE}$	SD	Rank	DIC	SD	Rank
TVP-VAR-SV	-1506.455	0.288	5	2533.232	1.155	5
TVP-VAR	-1580.195	0.194	6	2633.436	2.949	7
TVP-VAR-R1-SV	-1483.666	0.264	1	2411.979	0.514	3
TVP-VAR-R2-SV	-1502.186	0.397	4	2498.542	1.657	4
TVP-VAR-R3-SV	-1484.715	0.282	2	2390.006	0.531	2
CVAR-SV	-1486.077	0.073	3	2346.120	6.300	1
CVAR	-1584.832	0.023	7	2562.849	0.351	6


IRF to Monetary Policy Shocks



IRF of Interest Rate

FEVD

Results: Resume

- The volatilities, intercepts, and contemporaneous coefficients change more gradually than VAR coefficients over time
- The volatility of MP shocks falls during the Inflation Targeting (IT) regime
- A contractionary MP shock decreases both GDP growth and inflation
- The interest rate reacts faster to aggregate supply shocks than to both aggregate demand shocks and exchange rate shocks
- MP shocks explain less the uncertainty in GDP growth, inflation and the interest rate under the IT regime in comparison to the pre-IT regime