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Abstract

In a context of ongoing change, “nowcasting” models based on Machine Learning
(ML) algorithms deliver a noteworthy advantage for decision-making in both the public
and private sectors due to their flexibility and ability to drive large amounts of data.
This document introduces projection models designed for real-time forecasting of the
monthly Peruvian GDP growth rate. These models integrate structured macroeconomic
indicators with high-frequency unstructured sentiment variables. The analysis spans
from January 2007 to May 2023, encompassing a comprehensive set of 91 leading
economic indicators. Six ML algorithms were rigorously evaluated to identify the most
effective predictors for each model. The findings underscore the remarkable capability of
ML models to yield more precise and foresighted predictions compared to conventional
time series models. Notably, Gradient Boosting Machine, LASSO, and Elastic Net
emerged as standout performers, demonstrating a prediction error reduction of 20%
to 25% when contrasted with AR and various specifications of DFM. These results
could be influenced by the analysis period, which includes crisis events featuring high
uncertainty, where ML models with unstructured data improve significance.
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1 Introduction

Making decisions in real-time is a true challenge for policymakers, given that the primary
barrier they face is the usual delay in the availability of updated information about
macroeconomic aggregates. In most cases, the economic variables show a delay of between
30-45 days on average, including the time for revisions and retrospectives. Nevertheless, the
continuous stride forward in the new generation of high-frequency data has changed how
prediction models face the uncertainty inherent in this information. As a result, in the past
few years, both central banks and international institutions have adopted methodological
focuses that incorporate machine learning, and take advantage of the abundant quantity
of data that come from search engines and social media as is shown in Richardson and
Mulder (2018); Chakraborty and Joseph (2017); Araujo et al. (2023).

These automated learning techniques have gained great popularity in comparison
with the conventional focus of traditional time series models that project macroeconomic
variables. A characteristic of these algorithms that is often highlighted resides in their
capacity to formulate parametric selections in large amounts of data sets, which find their
base in training a specific percentage of the model’s information. Hence, the objective of this
document is to explore the benefits of utilizing several machine learning methodologies.
This will be done by combining the use of conventional leading indicators (structured
data) and sentiment data indexes (non-structured or unstructured data) to forecast in
real-time (nowcast) the monthly Peru’s real GDP (Gross Domestic Product) rate growth.
The data set consists of both local and international variables, which can be broken down
into 53 structured variables in 38 nonstructured variables, giving a total of 91 predictors.
These predictive variables are examined according to the model, to evaluate the optimum
performance of each variable between September 2014 and May 2023. Furthermore,
following C. Romer and D. Romer (2008), we perform an analysis of the evaluation of
predictive accuracy using two models as reference: the traditional autoregressive time
series, and a dynamic factor model, based on the leading indicator of production of
electricity used by the economic literature, which is commonly used by authorities in
the political and economic consulting Peruvian firms. This will facilitate an exhaustive
evaluation of the performance of machine learning algorithms.

The results indicate that immediate predictions of the machine learning models are
more solid in comparison with the benchmark auto-regressive model and display a better
performance compared to DFM. Specifically, the Random Forest, Gradient Boosting
Machine, and Adaptive Lasso show performance with a superior ability to reduce the
average error of projection in a range from 20%-25%. Additionally, it is corroborated
that following the methodology proposed by Armstrong (2001), the use of the average
value of projection of all the machine learning algorithms, adds a significant value to the
RMSE, which positively contributes to a more precise prediction of GDP. Even though
other methodologies, such as Ridge, LASSO and Elastic Net do not reach the same level of
predictive ability as the previously mentioned ML methodologies, they still outperform the
control model in terms of performance. Further, the proof of forecasting evaluation and
consistency assessment confirms that most of the machine learning models improve the
prediction significantly which is in line with previous literature applied in other contexts
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(Richardson and Mulder, 2018; H. Varian, 2014; Q. Zhang, Ni, and Xu, 2023).

This research document adds itself to the existing literature that highlights the success
of machine learning applications in contrast to more traditional methodologies. However,
given the lack of evidence in Latin America1, and in particular in Peru2, surrounding
the utilization of these algorithms in conjunction with non-structured data, this research
project also highlights the need to bring to the forefront of the discussion on what these
models entail. Barrios et al. (2021), Richardson and Mulder (2018) and Döpke, Fritsche,
and Pierdzioch (2017) have shown through the implementation of diverse machine learning
algorithms that these method’s results are more adequate in carrying out forecasts in
real-time when a large amount of information is available to the forecaster. For example,
Longo, Riccaboni, and Rungi (2022) carried out a forecast of quarterly GDP in the US
for the combination of a neuronal recurrent network, and a dynamic factor model with
a temporal variation of the median. This combination of models has demonstrated a
substantial decrease in the forecast error, also showing a notable capability of capturing
the period of recession caused by the COVID-19 pandemic and the economic recuperation
that came thereafter. Similarly, in the case of El Salvador and Belize, Barrios et al. (2021)
implemented a large array of machine, learning methods to forecast the quarterly growth
of GDP, using a large amount of predictive variables. The results of this research study
concluded that the application of these tools represents a robust alternative to prediction,
and its benefits suggest a recommendation for its use in other countries in the region.
Additionally, other researchers have extended the application of the machine, learning
models further from GDP, including forecasting, inflation, yield curve, and active prices.
These efforts have yielded notable results in precise forecasting (Medeiros et al., 2021;
Giglio, Kelly, and Xiu, 2022).

It is still important to highlight that these methods present challenges in their
implementation, which have led to some major debates surrounding the topic. In fact, Green
and S. Armstrong (2015), as well as Makridakis, Spiliotis, and Assimakopoulos (2018),
when comparing multiple models of machine learning, find that the deposition of the
forecasting is less significant in comparison with the statistical smoothing approaches, and
the ARIMA models. These authors warn that the computational complexity that is inherent
to the selection and use of variables in the machine learning model makes immediate
forecasting difficult and less practical for policymakers.

Finally, the rest of this document has the following sections. Initially, a literature review
is carried out that explores the relevance of the nowcasting methodology in the context of
machine learning and big data, both at the national and international levels. After this,
a section dedicated to the methodology is presented in which details are given about the
models that were utilised and the data sets. Afterwards, the results are displayed in a
specific section, followed by the robustness tests and the conclusion.

1See Barrios et al. (2021).
2See Escobal D’Angelo and Torres (2002); Pérez Forero (2018).
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2 Literature review

Economists aim to provide the most accurate GDP forecasts using the most efficient
approaches. Stock and Watson (1989) was the first to propose an economic cycle index
using factor models. However, a critical challenge is the increase in uncertainty in the
estimates, where traditional models, which use a limited set of variables, often fall short.
The literature has been implementing new models with machine learning techniques that
can address the trade-off between bias and variance.

To address the issue of extended delays in the publication of key economic aggregates,
the concept of nowcasting was proposed. This approach aims to predict the present, the
very near future and the very recent past (Bańbura, Giannone, et al., 2013). A traditional
reference nowcasting model is the Dynamic Factor Model, widely used in central banks
to predict GDP (Giannone, Reichlin, and Small, 2008; Bańbura and Rünstler, 2011; Bok
et al., 2018; Rusnák, 2016; González-Astudillo and Baquero, 2019). Two seminal articles
have formalized this process into statistical models. On one side, Giannone, Reichlin, and
Small (2008) proposed a methodology to assess the marginal impact of the publication of
monthly-updated data on forecasts of quarterly-published real Gross Domestic Product
(GDP) growth. The method presented by these authors was able to track the real-time
flow of information that central banks monitor by handling large datasets with staggered
publication dates. The proposed method works by updating primary forecasts (forecasts for
the current quarter) each time new higher-frequency data is published. This is done using
progressively larger datasets that reflect the unsynchronized data publication dates. On the
other hand, Evans (2005) do real-time estimations of the current state of the US economy.
This approach included data complexity and provided useful information about the
relationship between macroeconomics and asset prices. The author models monthly time
series with a dynamic factor model (Dynamic Factor Model - DFM) in a state space system.
Once the state space representation is settled, Kalman filter techniques are estimated
to make GDP forecasting, as they automatically adapt to changes according to the data
available. To this document concern, we perform DFM specifications as benchmark models
following Evans (2005) proposal and the implementation suggestions of Doz, Giannone,
and Reichlin (2012).

An additional bright side of the nowcasting models is the constant improvement
experienced from wider information availability and data frequency heterogeneity
(Q. Zhang, Ni, and Xu, 2023; González-Astudillo and Baquero, 2019). Thus recently,
machine learning methods are been incorporated enhances to the nowcasting approach.
The algorithms of machine learning (ML) deliver better performance in handling large
amounts of data, capturing non-linear relationships and adapting to changing economic
conditions.

Those methods provide more accurate predictions by incorporating various variables
and sources of unstructured data. As described Athey (2018), these techniques are divided
into two main brands, supervised and unsupervised ML. Athey (2018) explains that
unsupervised MLs are looking for groups of observations that are similar in terms of their
covariance. Thus, a “dimensionality reduction” can be performed. Unsupervised MLs
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commonly use videos, images, and text as a source of information, in techniques such as
grouping k-medias. For instance, Blei, Ng, and Jordan (2003) applied pooling models to
find “topics” in textual data. Another example is the paper written by Woloszko (2020).
Here, the author shows a weekly indicator of the economic activity for 46 OCDE countries
and the G20 using search data from Google Trends. This document showcases the power of
prediction of specific “topics”, including “bankruptcies”, “economic crises”, “investment”,
“baggage” and “mortgages”. Calibration is performed using a neural network that captures
nonlinear patterns, which are shown to be consistent with economic intuition using ML
Shapley values interpretation tools. On the other side, the supervised ML algorithms
as pointed out by H. Varian (2014) implies the use of a group of variables features or
variables to predict a specific indicator result. There is a variety of supervised ML methods
regressions such as LASSO, Ridge, Elastic Net, Random Forest, Regression Trees, Support Vector
Machines, Neural Nets, and Matrix Factorisation, among others as Model Averaging.

Several studies highlight the advantages of supervised ML models to forecast
macroeconomic series that overcome traditional methods. An application is the research of
Ghosh and Ranjan (2023), who present a compilation of Machine Learning techniques and
conventional time series methods to predict the Indian GDP. They estimate the ML in the
DFM context with financial and economic uncertainty data. They estimate Random Forest
and Prophet models along with conventional time series models such as ARIMA to nowcast
Indian GDP, where hybrid models stand out. Likewise, the results from Richardson and
Mulder (2018) showed better performance of the Ridge regression model to the nowcast
GDP of New Zealand over a Dynamic Factor Model. Muchisha et al. (2021) built and
compared ML models to forecast the GDP of Indonesia. They evaluate six ML algorithms:
Random Forest, LASSO, Ridge, Elastic Net, Neural Networks and Support Vector Machines.
They used 18 variables between 3Q2013 and 4Q2019. Their results make clear the
outstanding performance of ML than auto-regressive models, especially the Random Forest
model. Also, Q. Zhang, Ni, and Xu (2023) test ML, DFM and static factor and MIDAS
regression models to nowcast the GDP rate growth of China. They find superior accuracy of
ML compared to DFM. The ML model that deserved more attention was Ridge Regression,
which overcame the others based on prediction and early anticipation of crises such as the
global financial crisis and COVID-19. Kant, Pick, and Winter (2022) compares models to
the Netherlands economy between 1992 and 2018, where Random Forest algorithms stood
out. Suphaphiphat, Wang, and H. Zhang (2022) uses novel variables such as Google Search
and air quality. They run standard DFM and ML to European economies during normal
times and crises. They show that most MLs significantly outperform the AR(1) reference
model. They highlight that DFM tends to perform better in normal times, while many of
the ML methods have excellent performance in identifying turning points. Moreover, ML
can predict adequately in very disparate economies. Moreover, Barrios et al. (2021) assesses
adjusted machine learning models to Belize and El Salvador economies where ML delivers
good predictions, proving the effectiveness of ML algorithms in very different country
contexts.

Another relevant aspect is Big Data due to its benefits of broadening the range and
use of available data that can provide some valid information on the behaviour of the
economy to anticipate certain economic indicators (Einav and Levin, 2014). As mentioned
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in Eberendu et al. (2016), the digital era has allowed the emergence of news channels
and social network technologies, mobile phones and online advertising. Nevertheless, the
source of new types of data without a pre-fixed format raises new challenges. This data
is available in formats like text, XML, email, images, videos, etc. Eberendu et al. (2016)
gives and general description of this type of data. Some studies show relevant results on
the use of these techniques. For instance, H. Varian (2014) indicate how the search related
to the “initial claims for unemployment” in Google Trends are good candidates to forecast
unemployment, CPI and consumer confidence in countries such as the US, UK, Canada,
Germany and Japan. They focus on immediate out-of-sample forecasting and extend the
Bayesian structural time series model using the Hamiltonian sampler for variable selection.
These authors obtain good results for unemployment, while for CPI or consumer confidence
not so good.

Previous works applied to the Peruvian economy are focused on the anticipated
estimation of monthly GDP growth based on a set of leading indicators (structured data).
However, a scarce application of machine learning models and the inclusion of unstructured
data in GDP forecasting is evident. In particular, Escobal D’Angelo and Torres (2002) built
a joint leading indicator that allows the tracking of Peruvian GDP with only 14 variables.
On the other hand, Kapsoli Salinas and Bencich Aguilar (2002) perform forward GDP
estimation with a nonlinear neural network model. Additionally, Etter, Graff, et al. (2011)
propose a leading indicator with the expectations survey conducted by the Central Bank of
Peru (BCRP). Also, Martınez and Quineche (2014) forecast the growth rate of GDP based
only on the electric production indicator. Following to Aruoba, Diebold, and Scotti (2009),
Forero, Aguilar, and Vargas (2016) propose a leading indicator of Peruvian economic
activity. This indicator is obtained as a common unobservable component that explains the
co-movement among six variables: electricity production, domestic cement consumption,
adjusted domestic IGV, chicken sales, mining metal production and real GDP. Finally,
Pérez Forero (2018) try to solve the difficulties about best leading indicators selection under
the approach of H. Varian (2014). Perez Forero estimated a stade state system through
the Bayesian Gibbs-Sampling methods and the spike-and-slab to the stochastic selection
variables (SSVS) and calculated the probability of the inclusion of a large set of variables in
the best model to predict GDP.

3 Methodology

This section briefly describes the different regularization methods and decision trees
used to select the best predictors for the monthly nowcasting model and calibrate the
hyperparameters, in a series from January 2007 to May 2023. The six methods that are
used are Random Forest (RF), Gradient Boosting Machine (GBM), LASSO regression, Ridge,
Elastic Net, and as a benchmark, an autoregressive (AR) and dynamic factor model (DFM)
are utilized.
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3.1 Autoregressive Model (AR)

As a starting point for our reference, we establish an autoregressive AR model for the
monthly GDP growth (yt), which reflects the value of a variable in terms of its previous
values. A model of order 1, following these characteristics, exhibits the following structure:

yt = β0 + β1yt−1 + et (1)

where β0 is a constant term, β1 is a parameter, and et is a term that represents the error
and captures the randomness of the model.

3.2 Dynamic Factor Model (DFM)

DFMs are estimated in the form of state-space systems and can be estimated using the
Kalman filter and various types of algorithms. One of the most popular in the economic
literature is the Expectation Maximization algorithm, due to its robust numerical properties
following the proposal by Doz, Giannone, and Reichlin (2011), which is an efficient
estimation to bigger datasets.

The canonical reference DFM can be described as follows:

xt = C0ft + et et ∼N (0,R) (2)

ft =
p∑

j=1

Ajft−j +ut ut ∼N (0,Q0) (3)

Where equation 2 is identified as the measurement equation and equation 3 as
the transition equation, allowing the unobservable factor ft to evolve as in a vector
autoregressive model. These equations do not include trends or intercepts, as the included
data must be stationary and standardized before estimation.

The matrix system is as follows:

xt: a vector of n×1 observable time series at time t : (xt, ...,xnt)′, which allows for missing
data.

ft: a vector of r × 1 factors at time t : (ft, ..., frt)′.
C0: a matrix of n× r observable time series with lag j.
Q0: a matrix of r × r state covariances.
R: a matrix of r × r measurement covariances. This matrix is diagonal under

the assumption that all covariances between the series are explained by the factors
E[xit | x−i,t, ft] = c0ift,∀i, where c0i is the i − th row of C0.

This model can be estimated using a classical form of the Kalman Filter and the
Maximum Likelihood estimation algorithm, after transforming it into a State Space model.
In a VAR expression, it would be as follows:

xt = CFt + et et ∼N (0,R) (4)

Ft = AFt−1 +ut ut ∼N (0,Q) (5)
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As a benchmark model, we use the efficient estimation of a Dynamic Factor Model
via the EM Algorithm - on stationary data with time-invariant system matrices and
classical assumptions while permitting missing data following the approach of Bańbura
and Modugno (2014).

3.3 Penalized Regression Models

These methodologies are employed to optimize the selection of predictor variables
and control the model’s complexity, which is crucial in preventing overfitting in
high-dimensional settings. The literature suggests various forms of penalization to estimate
the parameters βj accurately. We will briefly explore the characteristics of the Ridge, Lasso,
Elastic Net, and Adaptive Lasso models, emphasizing how these techniques allow for proper
weighting of coefficients and how their application impacts the inclusion and relevance of
variables in the final model.

3.3.1 Ridge Regression

The Ridge model is defined by adding a penalty based on the sum of squares of the
coefficients of the predictor variables. This penalty compels the coefficients to be very small,
preventing them from taking extremely high values, thus reducing the influence of less
relevant variables. To estimate the coefficients β̂Ridge, the equation must be expressed as:

min
β

 n∑
i=1

(yi − β0 −
p∑

j=1

xijβj)
2 +λ

p∑
j=1

β2
j

 (6)

Where yi is the observed value of the dependent variable for observation i, xij is the value
of predictor variable j in observation i, βj is the coefficient associated with predictor variable
j, p is the number of predictor variables, and λ is the regularization hyperparameter that
controls the magnitude of the penalty. The sum of the terms β2

j in the penalty prevents the
coefficients from reaching large values, thereby contributing to stability and reducing the
risk of overfitting.

3.3.2 LASSO Regression

The LASSO (Least Absolute Shrinkage and Selection Operator) model, introduced by
Tibshirani (1996), employs a penalty based on the sum of the absolute values of the
coefficients of the predictor variables. This penalty has the property of forcing some
coefficients to exactly reach zero, resulting in the automatic selection of a subset of
more relevant predictor variables and the elimination of less significant ones. The Lasso
coefficients β̂Lasso are estimated:

min
β

 n∑
i=1

(yi − β0 −
p∑

j=1

xijβj)
2 +λ

p∑
j=1

|βj |

 (7)

The change lies in the hyperparameter λ which, by summing the absolute values of the
coefficients |βj | in the penalty, leads to model selection and simplification by allowing some
coefficients to be zero. This provides a more precise variable selection approach regarding
the degree of importance of all variables.
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3.3.3 Elastic Net Regression

The Elastic Net model appropriately combines the constraints of both the LASSO and Ridge
models. In particular, Zou and Hastie (2005) mention that its advantage lies in correcting
the model when the number of regressors exceeds the number of observations (p > n), which
improves variable grouping. The penalty includes both the sum of the absolute values of
the coefficients and the sum of the squares of the coefficients of the predictor variables. The
equation for estimating the coefficients β̂Enet is expressed as:

min
β

 n∑
i=1

(yi − β0 −
p∑

j=1

xijβj)
2 +λ

p∑
j=1

(
α|βj |+ (1−α)β2

j

) (8)

where λ is the global regularization hyperparameter and α is the hyperparameter that
controls the mix between Lasso (α = 1) and Ridge (α = 0) penalties. The combination of
both penalties in the Elastic Net model allows for a higher degree of flexibility in variable
selection and coefficient alignment.

3.3.4 Adaptive Lasso Regression

Following Zou (2006), the Adaptive LASSO model is a variant of the LASSO model that
introduces a penalty approach which adaptively adjusts the magnitude of the penalties
for each coefficient of the predictor variables. This adaptation allows for penalties to
be different for different coefficients, potentially resulting in a more precise selection of
relevant variables. Liu (2014), indicate that this process can be efficiently performed using
the LARS algorithm. The equation for the Adaptive LASSO model (β̂AdL) is expressed as:

min
β

 n∑
i=1

(yi − β0 −
p∑

j=1

xijβj)
2 +λ

p∑
j=1

wj |βj |

 (9)

where λ is the regularization hyperparameter, and wj is the adaptation factor for the
coefficient βj . It is important to note that the exact form of the adaptation factors wj depends
on the specific implementation and may vary. In general, these factors are calculated based
on the absolute values of the coefficients in previous iterations of the algorithm.

3.4 Decision Tree Models

Decision Tree models are machine learning algorithms that represent decisions and actions
in the form of a tree. In this case, we will present two algorithms where each internal
node of the tree represents a feature or attribute, and each branch represents a decision or
rule based on that attribute. The training data is divided based on these decisions until it
reaches leaf nodes, which correspond to the predictions, in our case, related to monthly GDP
growth. Additionally, the use of these trees allows for an improvement in variable selection
by handling non-linear relationships in the model.

3.4.1 Random forest

This method is based on constructing decision trees using variables from a matrix X and a
random selection of features. Additionally, it involves randomly selecting subsets of data
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from X with replacement to train each tree in the ensemble, distinguishing it from other
tree-based techniques. Each tree generates a prediction of the target variable (in this case,
monthly GDP), and the final model selects the most voted prediction in the ensemble of
trees (Breiman, 2001). According to Tiffin (2016), Random Forest has the advantage of
combining predictions from multiple trees and selecting those with lower error, thereby
reducing the influence of potential individual errors (if the correlation between trees is low).
In summary, this method recursively divides the data in X into optimized regions and uses
variable-based criteria to forecast the target variable, then calculates the dependent variable
as the average of these regions.

f̂ (x) =
∑
m

ĉmI(x ∈ Xr); ĉm = avg(yi |xi ∈ Xr) (10)

The algorithm has certain advantages, such as being efficient in handling large datasets
with many variables, providing an estimation of variable importance, and offering an
unbiased estimation of generalization error during its construction (Breiman, 2001).
However, it has disadvantages like difficulty in interpreting results beyond predictions and
a computationally intensive demand for training and hyperparameter tuning. Therefore,
for this model, it was necessary to fine-tune it through cross-validation, achieving better
performance on unseen data.

Figure 1: Simple Representation of the Random Forest Algorithm

Source: Own elaboration

3.4.2 Gradient Boosting Machine

This algorithm builds a sequence of decision trees, where each tree is fitted to the residual
errors of the previous tree. Therefore, each iteration obtains a new tree that minimizes the
remaining error. These prediction models are trained using the errors from the accumulated
set of weak predictions3 in a way that provides a progressive improvement in regression
performance compared to the initial model (Natekin and Knoll, 2013).

3Brownlee (2016), indicates that weak models do not necessarily mean they are better than accurate models,
as they have the advantage of being able to correct the overfitting problem.
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Figure 2: Simple Representation of the Gradient Boosting Machine Algorithm

Source: According to Boehmke and Greenwell (2020)

In essence, each tree in this algorithm contributes its prediction, which is added to the
sequence of predictions from previous trees to enhance the final prediction of the model.
Boehmke and Greenwell (2020), mentions that this method can be summarized by the
following equation.

F(x) =
Z∑
z=1

Fz(x) (11)

where z is the number of trees that cumulatively add up the errors from all preceding
trees. That is, the first tree y = F1(x), then the second tree will be F2(x) = F1(x) + e1 and so
on, successively, to minimize F(x) as the following expression:

L =
∑
z

L(yz,Fz(x)) (12)

Therefore, as new decision trees are incorporated, the accuracy of the final projection
improves gradually, resulting in more precise forecasts for monthly GDP.

3.5 Data

The model’s database comprises a variety of variables, ranging from macroeconomic and
financial data to unstructured information related to sentiment or “trend” (See Tables
6, 7, and 8). This information set encompasses consumption indicators, such as credits,
deposits, chicken sales, consumer surveys, and local activity indicators, including electricity
production, hydrocarbons, economic expectations, and others. Investment indicators are
also incorporated, such as internal cement consumption, capital goods imports, and so
forth. A set of monetary indicators covering consumer and producer price indices, among
others, is included. It is important to highlight the inclusion of economic sector variables
related to fishing and agricultural production, which constitutes a unique feature compared
to other nowcasting models. Furthermore, the database covers information on foreign
trade, the labour market, and climate data.
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In addition to conventional variables, we have incorporated unstructured data related
to perception in various areas, such as the economy, consumption, labour market, politics,
tourism, government support, and natural phenomena. These variables can capture the
general sentiment of the population and its potential influence on economic indicators.
In particular, the use of massive search engines, such as Google, stands out as a powerful
tool for providing real-time information. Scott and Varian (2013) has pointed out that
the inclusion of online searches as variables provides substantial benefits to short-term
forecasting models, especially in detecting periods of high volatility. This is demonstrated
in the ability to anticipate both the recession caused by the COVID-19 pandemic and
the subsequent period of economic recovery. Consequently, the effectiveness of this
approach has been widely investigated and adopted by central banks and international
institutions. Thus, we estimate 10 groups (See Table 6) of variables that aim to track
Google search queries, which are updated daily and can be downloaded from Google
Trends. The selection of these words (variables) aims to convey different aspects of the
economy, such as the consumption-related group, which is constructed based on searches
for words like “Kia”, “Restaurants”, “Toyota”, “Credits”, “Loans”, “Deals”, “Mortgages”,
and “Cinema”. Once this textual data is converted into numerical data, the inclusion of
these series is evaluated in the estimations of an optimal model using Gibbs sampling
following the findings of Garcia-Donato and Martinez-Beneito (2013) and using 50,000
iterations, an initial burning of 1,000 iterations, and constant beta priors (see Figure 10).
This indicates that there is a high relevance of the group of unstructured variables such
as the search frequency for “flights”, “peruflight us”, “visa”, or “El Niño”, which would
reflect the dynamics of tourism and climatic conditions, among others. Furthermore, we
compare the results of this estimation with another one by reducing the sample to 2019
(see Figure 11), where unstructured data becomes more important when incorporating the
pandemic period into the sample, which is in line with the findings of Richardson and
Mulder (2018) and Woloszko (2020). Additionally, a contemporaneous correlation analysis
of these variables against the monthly GDP is also performed, obtaining that more than
50% of the unstructured sample correlates greater than 30%.

The data frequency ranges from daily to monthly records in constructing the model.
Each variable was assessed in terms of its predictive ability regarding monthly GDP
growth. Then, to facilitate comparison and analysis, we transformed these variables into
annualized monthly percentage changes and standardized them. This standardization
process allows us to maintain a common reference framework and ensure that different
variables contribute equitably to the model.

Ultimately, we have a total set of 91 predictors spanning from January 2008 to May
2023. The evaluation and selection of optimal predictors will be conducted independently
for each machine learning algorithm employed. We will specify how we handle the data for
the forecast update process in section 4.1 and how we test the model accuracy comparison in
section 4.2. This approach will enable us to refine the process of choosing the most efficient
prediction model, thereby achieving enhanced performance.
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3.6 Strategy of the forecast evaluation

The method that will assess the accuracy in the projection of each model will be done
through the root mean square error (RMSE), following the equation:

RMSE =

√√√
1
T

T∑
t=1

(yt − ŷt)2 (13)

where yt represents the observed value of monthly GDP growth, ŷt is the forecasted
value, and T is the total number of projections made. Following this initial assessment
of prediction fit, we will employ the method proposed by Diebold and Mariano (1995) to
determine if the projections generated by each machine learning model significantly differ
from the benchmark model.

4 Results

This section begins by providing a brief description of the database training period, and
hyperparameter optimization estimation, and finishes with a thorough analysis of the
results.

4.1 Estimation and hyperparameters calibration

To estimate machine learning models, the selection of hyperparameters plays a crucial role
in terms of efficiency and accuracy.

The optimal determination of these values requires the split of the sample data into
three parts: i) a training set, ii) a validation set, and iii) a testing set. Initially, the model is
estimated with the training set (in-sample) which turns out the first set of hyperparameters.
Then, the cross-validation method is used to calculate the best hyperparameters with the
validation set. This process involves training and validation of the ML model in 5 folds, by
using every partition or fold as the validation set and the others as the training set on each
iteration. Hence, we obtain 5 performance metrics, one by each fold, which are averaged.
Also, to identify the optimal hyperparameters, we will run the cross-validation Bayesian
optimization algorithm, following closely Snoek, Larochelle, and Adams (2012).

Then, the search process of the optimal values that minimize the mean quadratic error
of projections (MSE4), through cross-validation techniques. The cross-validation consists
of forecasting the growth (yt+h) to time with the available data at time t (yt+h|It)5, with
the hyperparameters obtained by each fold 6. Once it is identified the optimal values,
the accuracy of the model is assessed in the testing set (out-sample), evaluating the MSE
between the projection growth with the available at time t (yt+h|It) and with the available
data at time t + h (yt+h|It+h). This is repeated to reach the minimization of the value of the

4Indicator that measures the average of the squared errors between the predictions of a model and the real
values, without applying the square root, used for validation of parameters in ML models.

5I is the available information set where we get the full available data of 91 predictors variables.
6The h can be interpreted as the horizon to forecast, where in a nowcasting context it usually is h = 1.
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MSE as shown in figures 6 to 9 for each type of ML model7.

In addition, to prevent overfitting in the ML models the hyperparameters are bounded
within ranges recommended by the reviewed literature (See Zou and Hastie (2005)).
This approach contributes significantly to the model’s ability to make robust predictions,
allowing for more effective exploration in estimating monthly GDP rate growth without the
risk of overfitting.

Table 1: The strategy of testing estimations

Training dataset Testing set
2008m1-2014m08 2014m09-2023m5

←→ ↔
Fold 1 Fold 2 Fold 3 Fold 4 Fold 5
Source: Own elaboration

Table 2: Priors and hyperparameter ranges

Model Hyperparameter Range Optimised Value

Lasso Lambda 0.001 to 0.009 0.007
Ridge Lambda 0.01 to 0.09 0.310

Elastic Net
Alpha 0.1 to 0.9 0.500

Lambda 0.01 to 0.09 0.040

Adaptive Lasso
Lambda 0.01 to 0.09 0.670
Omega 0.1 to 0.9 0.340

Random Forest # Trees 1 to 400 281
Gradient
Boosting
Machine

# Trees 1 to 5000 19
Distribution Normal Bernoulli

Shrinkage 0.001 to 0.009 0.300
Source: Own elaboration

4.2 Model comparison

A comparison of the prediction performance of the ML and benchmark models for the test
set from September 2009 to May 2023 is presented in Table 3. In terms of the forecast
evaluation using the RMSE, the ML models manage to significantly minimize the projection
error in comparison with the benchmark AR model and the three different specifications
of dynamic factor models 8. Every projection model compares the forecast with the full
available data set at time t + h with the actual GDP rate growth at time t + h.

7In case of the partial availability of the information set or not full available data of 91 predictors variables,
the lack variables could be estimated by others techniques such as DFM with the modified EM algorithm of
Bańbura and Modugno (2014) which also accounts for missing data in the EM iterations.

8Bańbura and Modugno (2014).
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Table 3: Evaluation of model and benchmark forecasts
2014m09-2023m05

Model RMSE RMSE (Rel. to AR)9 p-value

Lasso 0.26 0.10 0.014
Ridge 0.34 0.13 0.043
Elastic Net 0.28 0.11 0.039
Adaptive Lasso 0.68 0.27 0.126
Random Forest 0.45 0.18 0.089
Gradient Boosting Machine 0.17 0.07 0.016
DFM full 10 0.93 0.36 0.005
DFM best 11 0.72 0.28 0.004
DFM structured 12 1.05 0.41 0.003
AR 2.55 0.00
Source: Own elaboration. 9/ RMSE(Model)i /RMSE(AR). 10/ DFM full, use the 91 variables
within unstructured as well as structured data. 11/ DFM best, uses variables within unstructured
data and structured selected by the Gibbs sampling as best estimators to predict GDP. 12/ DFM
structured, use only 56 structured variables.

Between the models that stand over the others, we get the Gradient Boosting Machine,
LASSO and Elastic Net that archive to reduce the forecast error by around 20% to 25%.
Also, Diebold-Mariano statistic13 concludes that most of the ML models are statistically
significant, in line with previous research. (Richardson and Mulder, 2018; H. Varian, 2014;
Q. Zhang, Ni, and Xu, 2023).

On the other hand, it is important to highlight that real-time forecasts presented in
this document successfully anticipated the economic contraction caused by the COVID-19
pandemic in March 2020 in the Peruvian context, and also accurately captured the
subsequent economic recovery period in March of the following year, which supports the
usefulness and effectiveness of using penalty models and/or decision trees to forecast
high-frequency economic variables.

13Diebold and Mariano (1995).
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Figure 3: ML model projection and GDP

(a) LASSO and GDP (b) Ridge and GDP

(c) Adaptive LASSO and GDP (d) Elastic Net and GDP

(e) Random Forest and GDP (f) Gradient Boosting Machine and GDP
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4.3 Consistency

To test the consistency of the results and determine if the ML model projections contribute
positively to the accuracy predictions of monthly GDP over the benchmark models, we use
the C. Romer and D. Romer (2008) approach, instead of using an officials prediction, we
replace to a DFM estimation that incorporates the electricity production as main leading
indicator, which popular among Economic Studies Department in Peru. We estimate the
following regression model:

yt = β1DFMEt + β2MLit + et (14)

Where yt represents the real monthly GDP growth, DFMEt is the dynamic factor
model estimated with electricity production and MLi is the out-sample prediction for
each machine learning model. The results obtained indicate that all the projections of
machine learning contribute significantly to the GDP projection, with the best model being
the Gradient Boosting Machine according to the Akaike criterion. Likewise, analyzing the
estimation errors of the models generated by equation 14, we applied the test proposed by
Harvey, Leybourne, and Newbold (1997) with a long run variance autocorrelation estimator
from Diebold and Mariano (1995), to evaluate the accuracy gains in the estimates by
including the results of the ML models. The p − value is shown in the last column of
Table 4, where the alternative hypothesis is that the models in equation 14, which include
the ML model projection, are more accurate than the predictions under the dynamic factor
model alone. These values indicate a superior accuracy of the models incorporating Machine
Learning at a 10% confidence level in the case of the Lasso and Ridge model but at 5% in
the others.

Table 4: βe
2 value and validation criteria

Models Estimated value AIC p-value p-value (DM)
Lasso 0.714 520.32 0.000 0.079
Ridge 0.936 554.73 0.000 0.057
Elastic Net 0.839 549.80 0.000 0.055
Adaptive Lasso 0.703 517.49 0.000 0.046
Random Forest 0.783 534.20 0.000 0.049
Gradient Boosting Machine 0.810 492.09 0.000 0.041
Source: Own elaboration
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5 Conclusions

In this article, we evaluated the prediction accuracy of the most popular Machine Learning
algorithms to do the nowcasting (tracking in real-time) of the monthly growth rate of
Peruvian GDP. The analysis window was between 2008 and 2023 and worked with several
leading indicators to assess the dynamic of the GDP’s components measured by the
expenditure and productive sector approach. Furthermore, it is worth mentioning that we
have enriched our approach by incorporating a sentiment data index built through Google
Trends, that shown to be helpful to predict in advance economic activity. The Machine
Learning approach allows the use of 91 variables simultaneously between structured
data and non-structured data, one of the documents that use a larger dataset used for
the Peruvian GDP prediction case. The evaluation results and consistency exercise show
evidence of the positive contribution of ML models and sentiment data significantly
improve the model accuracy and allow the early detection of periods of high volatility, an
aspect that conventional models often fail to capture.

Our results shed light on outperforming machine learning over the AR and DFM models
in prediction accuracy, which opens a new agenda for emerging economies to improve
the forecast of relevant macroeconomic variables such as consumption, employment, and
investment, among others.

As these models have been implemented in the Department of Macroeconomic
Projections of the Ministry of Economics and Finance of Peru with successful performance
and incorporated into the monthly duties, we point out three specific pending agendas
regards based on our application expertise. First, there is a need to analyze the marginal
prediction gains from the inclusion of unstructured data in reducing forecast error. Since
our results have shown improvements in the accuracy. However, one question arises. Would
the analyzed period influence those results? given that between 2004 and 2023 which
includes high volatility events such as the pandemic, the global financial crisis and various
climate shocks in 2017 and 2023, where ML models with data that do not structured
gain greater predictive capacity by being able to track daily frequency data from Google
Trend searches. This could be achieved by performing a variance analysis of the projection
errors comparing ML models with other more traditional ones during a period of relative
normality and other periods of crisis. Second, a fact we observed in the estimates of
the unsynchronized availability of the variables (91), which represented challenges and
difficulties, which raises the question of whether consistent results are equally obtained with
a smaller number of variables, we estimate this in roughly 45% of the 91 variables of the
dataset. This proportion could be evaluated in subsequent studies reducing the software
requirements. Third, the treatment of the unstructured data could be improved. In this
document, we use a simple and didactic management of no-structured data, but it might
be considered monthly weighting of searched words in GoogleTrend to smooth the high
variability related to this type of data.
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Barrios, Juan José et al. (2021). “Nowcasting para predecir actividad económica en tiempo
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6 Appendix

Table 5: Literature on Nowcasting

International

Nowcasting
Author Year Methodology Country

Banbura and others 2013 DFM Europe
Evans 2005 DFM US
Giannone and others 2008 DFM US

Nowcasting with machine learning
Richardson and others 2018 Various models ML New Zealand
Giannone and others 2008 DFM US
Ghosh and Ranjan 2023 various ML India
Muchisha and others 2020 various ML vs DFM Indonesia
Zhang, Ni and Xu 2023 various ML China
Kant and others 2022 various ML Netherlands
Suphaphiphat and others 2022 various ML Europe

Nowcasting with big data
Blei, Ng and Jordan 2003 LDA US
Athey, Mobius and Pal 2017 Google News Spain
Woloszko 2020 Google Trends USA
Niesert and otros 2020 Google Trends Advanced Economies

Peruvian main references
Escobal and Torres 2002 DFM Peru
Pérez Forero 2016 DFM Peru
Kapsoli and Bencich 2002 Neuronal Networks Peru
Pérez Forero 2018 Bayesian VAR Peru
Etter and Graff 2011 Surveys Peru
Martinez and Quineche 2014 Neuronal Networks Peru
Source: Own elaboration
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Table 6: List of no structured variables included in the model

Unstructured variable details
Units of Measure Frequency Source

Search Index (0 to 100) Daily Google Trends
Variables

1.- Searched Words on Economic
Inflation Recession

2.- Searched Words on Consumption
kia toyota Movies

Restaurants Credits Loans
Mortgages Deals

3.- Searched Words on Labor Market
Employment Unemployment Labor

4.- Searched Words on Sectorial Industry
Mining Investment

5.- Searched Words on Current Situation
Peruvian Crisis Bankruptcy Economy
Economic Crisis

6.- Searched Words on Real Estate Market
Land Real Estate

7.- Searched Words on Politics
Elections

8.- Searched Words on Tourism
Travel Machu Picchu Flights
Visa Flights to the US Accommodations

Hotels Vacations

9.- Searched Words on Bonds and Pensions
Bonds CTS AFP

10.- Searched Words on Weather and Natural Phenomena
Rains ENSO Droughts
Frosts Huaico

Source: Own elaboration
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Table 7: List of structured variables included in the model (a)

No. Variable Units of Measure Frequency Source

Main Indicator
1 GDP Index 2007 = 100 Monthly INEI

Consumption Indicators
2 Credit S/ Millions Monthly BCRP
3 Credit US$ Millions Monthly BCRP
4 Credit (constant exchange rate) S/ Millions Monthly BCRP
5 Consumer credits S/ Millions Monthly BCRP
6 Mortgage Loans S/ Millions Monthly BCRP
7 Deposits S/ Millions Monthly BCRP
8 Deposits S/ Millions Monthly BCRP
9 Sales of chickens Metric Tons Daily MIDAGRI
10 Consumer Confidence Index Points Monthly Apoyo Consultoria

Activity Indicators
11 Electricity Production Monthly INEI
12 Hydrocarbon Production Daily MINEM
13 3-Month Economic Expectations Points Monthly BCRP
14 Oil B/D Daily MINEM
15 Natural Gas MCF Daily MINEM

Investment Indicators
16 Domestic Cement Consumption Index Weekly INEI
17 Import of Intermediate Inputs Index Weekly INEI
18 Import of Capital Goods Index Weekly INEI

Labor Market Indicators

19 Employed Labor Force Thousands Monthly INEI
20 Properly Employed Population 14 Thousands Monthly INEI

Public Investment Indicators
21 Non-Financial Gov. Expenditures S/ Millions Monthly BCRP
22 IAFO Index Monthly INEI

Foreign Trade Indicators
23 Volume of Imported Inputs Index Monthly INEI
24 Terms of Trade Index Monthly BCRP
25 IPX Index Monthly BCRP
26 IPM Index Monthly BCRP

Finacial Indicators
27 General Stock Market Index15 Percentages Daily Bloomberg
28 Liquidity Millions of Soles Monthly BCRP

Monetary Indicators
29 CPI Index Monthly INEI
30 Non Food and Energy Price Index Index Monthly BCRP
31 Wholesale Price Index Index Monthly BCRP
32 Core CPI Index Monthly BCRP
Source: Own elaboration
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Table 8: List of structured variables included in the model(b)

Structured variables

International Indicators
33 Multilateral Real Exchange Rate (2009=100) Monthly BCRP
34 EMBIG Perú Pbs Daily BCRP
35 Oil WTI Dollars per Barrel Daily Bloomberg
36 USIPC Index Monthly FRED
37 Industrial Production Index YoY Quarterly Bloomberg
38 Copper cUS$/lb. Daily Bloomberg
39 Gold US$/oz.tr. Daily Bloomberg
40 US Manufacturing PMI Points Monthly Bloomberg
41 FED Interest Rate (Upper Limit) Percentages Monthly Bloomberg
42 VIX Index Percentages Daily Bloomberg
43 Spread 2Y-5Y Monthly Bloomberg
44 China Industrial Production YoY Monthly Bloomberg
45 PPI by All Commodities (1982=100) Monthly FRED

Climate Indicators
46 ATSM Degrees Celsius Monthly IMARPE

Fishery Indicators
47 Anchoveta Landing Metric Tons Daily IMARPE
48 Logarithm of Anchoveta Landing Daily Own elaboration
49 Anchoveta Landing16 Daily Own elaboration
50 Variation Anchoveta Landing17 Daily Own elaboration

Agricultural Indicators
51 Paddy Rice production Tons Monthly MIDAGRI
52 Potato production Tons Monthly MIDAGRI
53 Onion production Tons Monthly MIDAGRI
54 Tomato production Tons Monthly MIDAGRI
Source: Own elaboration

14Metropolitan Lima.
15Lima.
16Seasonally Adjusted.
17Seasonally Adjusted.
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Figure 4: Gibb sampling (2004-2023) - probability of inclusion in optimal model
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Figure 5: Gibb sampling (2004-2019) - probability of inclusion in optimal model
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Figure 6: LASSO Optimal Parameters

(a) Coef. (e) by hyperparameter range (b) Optimal hyperparameter vs. MSE

Figure 7: Ridge Optimal Parameters

(a) CCoef. (e) by hyperparameter range (b) Optimal hyperparameter vs. MSE
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Figure 8: Elastic Net Optimal Parameters

(a) Coef. (e) by hyperparameter range (b) Optimal hyperparameter vs. MSE

Figure 9: Adaptive LASSO Optimal Parameters

(a) Coef. (e) by hyperparameter range (b) Optimal hyperparameter vs. MSE
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Figure 10: Dynamic correlations of the structured variables

Source: Own elaboration
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Figure 11: Correlations of the main nonstructured variables

Source: Own elaboration
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