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Abstract

In this paper we introduce information heterogeneity in the FX market in line with
Bacchetta and Wincoop (2006) in attempt to extend their results to a DSGE framework.
We show that the introduction of information heterogeneity, in the shape of both dispersed
information about fundamentals and non-fundamental based shocks, generates a magnifica-
tion effect that can help obtaining a better approximation to the empirical moments. Also,
FX intervention can improve the connection between the exchange rate and its fundamen-
tals. Finally, in the methodological front, we extend the procedure proposed by Townsend
(1983) to solve dynamic stochastic general equilibrium (DSGE) models with heterogeneous
expectations.

Key words: Foreign exchange microestructure, Exchange rate dynamics, Exchange Rate
Intervention, Monetary policy.

JEL Classification: E4, E5, F3, G15.

1



The microstructure approach to exchange rates literature has given economists key insights

to understand the behaviour of exchange rates. The limited explanatory power that observed

macro fundamentals have on the exchange rate, coined ‘the exchange rate determination puzzle’,

has found answers in the microstructure literature. As Evans and Lyons (2002) found, exchange

rate movements can be explained largely by order flows. Orders received by dealers and the

exchange rate have a direct connection through portfolio balance effects. Nonetheless, this

channel is not the sole one through which order flows affect exchange rate prices. As Lyons

(2006) explains, order flows convey private information. The author identifies at least three

different channels at work. The first one, is related to information about transitory risk premia,

as dealers possess better information about their own inventories and the inventories of other

dealers. Using this information dealers possess an informative advantage over the general public.

The second channel is related to the aggregate position of dealers, reflected in the portfolio

balance, which in the eyes of the dealers, are changes in the aggregate position which are

undiversifiable across themselves. As Vitale (2011) explains, heterogeneous information might

emerge in relation to this channel as certain dealers can have superior information regarding

the aggregate position of the market, such as the case when Central Banks intervene through a

subset of dealers. The third one is related to asset payoffs. Dealers could have as well private

information regarding future interest rate differentials or, perhaps closer to reality, dealers

could either interpret this information in a different way or have access to different information

regarding other dealers’ expectations about the future differentials.

As Bacchetta and van Wincoop (2011) explain, typically in macroeconomic models foreign

exchange (FX) market participants are assumed to: i) have identical information; ii)perfectly

know the model; iii) use the available information at all times. Assumptions that are quite in-

consistent with the way FX markets operate. The authors show that relaxing these assumptions

allows explaining various exchange rate puzzles, such as the disconnection between exchange

rates and fundamentals and the forward premium puzzle. In this line, we extend the model

introduced Montoro and Ortiz (2016) by relaxing the first assumption, acknowledging that FX

dealers can have access to different sources of information and can have different expectations

about future macroeconomic variables. As shown by Bacchetta and Wincoop (2006) in a more

tractable model, these characteristics magnify the response of the exchange rate to unobserved

variables and generate a disconnection in the short run between the exchange rate and observed

fundamentals. In a related work, Vitale (2011) extends Bacchetta and Wincoop (2006) model

in a partial equilibrium framework to analyse the impact of FX intervention on FX markets.

The resulting model is useful to analyse how FX intervention influences exchange rates via both

a portfolio-balance and an information related channel.

The goal of the present paper is twofold. First, to introduce information heterogeneity into

a Neo-Keynesian general equilibrium model and verify the role it plays in the determination

of exchange rates and the disconnection puzzle. The second objective is to understand the
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role of FX interventions in this setup. Different from previous research, we treat information

heterogeneity in a model where the interest rate is endogenous and reacts to the exchange rate

through the effects the latter has on inflation.

In this way, there is an explicit channel through which the FX market microstructure, FX

interventions and monetary policy interact; a channel we consider worthwhile studying in more

detail.1

On the technical side, the presence of heterogeneous information poses a challenge in terms

of the solution method. Now, the variance of exchange rate changes will not only affect the risk

premium charged by dealers for holding foreign currency assets in their portfolio, but will be

a key element in the information extraction exercise that dealers perform. For this reason we

follow an approach in line with Townsend (1983) and Bacchetta and Wincoop (2006). We solve

a signal extraction problem of the investors to calculate the average expected depreciation rate

in the modified uncovered interest parity (UIP) condition with an endogenous risk premium,

which feeds from the rational expectations solution of the model.

We are not the first ones to treat the exchange rate disconnection puzzle from a general

equilibrium perspective. Wang (2007) studies the role that the home-bias effect in consumption

has in the ratio of volatilities between the exchange rate and the macroeconomic variables,

though the results are driven by ad-hoc UIP shocks. Evans and Lyons (2007) work a two-country

general equilibrium model with initially not publicly observed information that is assimilated

by the exchange rate at a slow pace. In this model dealers form heterogeneous expectations

about central bank reactions to changes in the economy and revise their expectations using the

information contained in the order flow. Gabaix and Maggiori (2015), Itskhoki and Mukhin

(2017) and Cavallino (2019) present models in which exchange rate fluctuations are driven by

capital flows, while Fanelli and Straub (2016) depict a model in which the Central Bank portfolio

can affect the interest rate differential in a small open economy with incomplete capital markets

and impact the behaviour of carry-traders. A model with collateral constraints is introduced

by Chang (2018) in which FX intervention is effective only when these constraints bind. Alla

et al. (2017) present a model in which FX intervention can reduce the volatility of the economy

in presents of risk appetite shocks. Finally, Adler et al. (2016) work in a small open economy

setup in which agents learn if the central bank follows a Taylor rule or a ‘fear of floating’ type

of behaviour.

This paper is connected to some other strands of the literature such as the models of noisy

rational expectations (see Brunnermeier (2001) for a survey) and imperfect information (see

Woodford (2001), Mankiw and Reis (2007) and Sims (2003)).

In the next section, the model in Montoro and Ortiz (2016) is extended to take into account

1In countries with a dollarized financial system and agents with dollarized liabilities an additional channel
is present. In this case exchange rate fluctuations generate balance sheet effects on households and firms, with
consequences for interest rates in the banking sector. For a discussion of this channel, see Céspedes et al. (2004).
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information heterogeneity in the dealers’ market. Section 3 discusses the solution method. In

section 4 we present the results of the model. The last section concludes.

1 The model

The model describes a small open economy with nominal rigidities, in line with the con-

tributions from Obstfeld and Rogoff (1995), Chari et al. (2002), Gaĺı and Monacelli (2005),

Christiano et al. (2005) and Devereux et al. (2006), with the key difference that the exchange

rate is determined in a market of risk adverse dealers. Different from the model seen in Mon-

toro and Ortiz (2016), now dealers in the FX market will receive heterogeneous information,

as in Bacchetta and Wincoop (2006), raising an information extraction problem that will affect

exchange rate dynamics.

1.1 Dealers

As in the baseline model, there is a continuum of dealers in the interval [0, 1] operating in

the domestic economy. Each dealer ι receives $ι
t and $ι,cb

t in domestic bond sale and purchase

orders from households and the central bank, and $ι∗
t and $ι∗,cb

t in foreign bond sale orders

from foreign investors and the central bank, respectively. These orders are exchanged among

dealers, that is $ι
t +$ι,cb

t + St

(
$ι∗
t +$ι∗,cb

t

)
= Bι

t + StB
ι∗
t , where Bι

t and Bι∗
t are the ex-post

holdings of domestic and foreign bonds by dealer ι, respectively. The exchange rate St is defined

as the price of foreign currency in terms of domestic currency, such that a decrease (increase)

of St corresponds to an appreciation (depreciation) of the domestic currency. At the end of the

period, any profits -either positive or negative- are transferred to the households.2

Dealers are risk-averse and short-sighted. They select an optimal portfolio allocation in

order to maximise the expected utility of their end-of-period returns, where their utility is given

by a CARA utility function. The one-period dealer’s horizon gives tractability and captures the

feature that FX dealers tend to unwind their FX exposure at the end of any trading period, as

explained by Vitale (2011). The problem of dealer ι is

max
Bι∗t
−Eιte−γΩιt+1

subject to:

$ι
t −$

ι,cb
t + St

(
$ι∗
t +$ι∗,cb

t

)
= Bι

t + StB
ι∗
t (1)

where γ is the coefficient of absolute risk aversion and Eιt is the rational expectations operator

conditional on the information that dealer ι possesses at time t, Iιt , thus:

Eιt [·] ≡ E[· | Iιt ]
2Under the present formulation FX transactions carried out for commercial purposes will only affect the

exchange rate through their impact in the domestic interest rate though not through variations in the order flow
faced by dealers.
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Ωι
t+1 represents total investment after returns, given by:

Ωι
t+1 = (1 + it)B

ι
t + (1 + i∗t )St+1B

ι∗
t

≈ (1 + it)
[
$ι
t −$

ι,cb
t + St

(
$ι∗
t +$ι∗,cb

t

)]
+ (i∗t − it + st+1 − st)Bι∗

t

where we have made use of the resource constraint of dealers. We have log-linearised the excess

of return on investing in foreign bonds and st = lnSt. Since the only non-predetermined variable

is st+1, assuming it is normal distributed with time-invariant variance, the first order condition

for the dealers is:

0 = −γ (i∗t − it + Eιtst+1 − st) + γ2Bι∗
t σ

2

where σ2 = vart (∆st+1) is the conditional variance of the depreciation rate. Then, the demand

for foreign bonds by dealer ι is given by the following portfolio condition:

Bι∗
t =

i∗t − it + Eιtst+1 − st
γσ2

(2)

1.2 FX market equilibrium

Foreign bonds equilibrium in the domestic market should sum FX market orders from foreign

investors (capital inflows) and central bank FX intervention, that is:∫ 1

0
Bι∗
t dι =

∫ 1

0

(
$ι∗
t +$ι∗,cb

t

)
dι = $∗t +$∗,cbt .

Replacing the FX market equilibrium condition in the aggregate demand for foreign bonds

yields the following arbitrage condition:

Ētst+1 − st = it − i∗t + γσ2($∗t +$∗,cbt ) (3)

where Ētst+1 is the average rational expectation of the next period exchange rate across

all dealers. Given that dealers have access to different sets of information, expected exchange

rate depreciation would differ among them as well. Condition (3) determines the exchange rate,

and adds three new elements to the traditional uncovered interest rate parity condition.3 On

the right-hand side, we note the presence of central bank market orders, reflecting the portfolio

balance effect of FX interventions. The second novel element is the presence of the exchange

rate volatility, which scales the impact of interventions and portfolio capital flows shocks in the

exchange rate. We call this the volatility channel.

Finally, on the left-hand side we find the average rational expectation of the next period

exchange rate, reflecting the presence of heterogeneous information. In our model, dealers will

form both conditional moments present in condition (3) through a signal extraction problem.

As we discuss, the way in which the central bank intervenes could affect both in the manner in

which information is processed and in the information available to agents.

3See Obstfeld and Rogoff (1995) for an example of the standard UIP condition.
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1.3 Information structure

Two sources of information heterogeneity among dealers are considered: first, we assume

dealers face idiosyncratic shocks in the amount of customer orders from foreign investors and,

second, they will also receive noisy signals about some future shocks. The later assumption

seems reasonable, since regularly dealers form their own forecasts from different models or own

experiences, generating heterogeneity in spite of having access to the same data.

In particular, we assume the foreign investor exposure for each dealer is equal to the average

plus an idiosyncratic term:

$ι∗
t = $∗t + ειt (4)

where ειt has an infinite support, so that knowing one‘s own foreign investor exposure pro-

vides no information about the average exposure as in Bacchetta and Wincoop (2006). $∗t is

unobservable and follows an AR(1) process:

$∗t = ρ$∗$∗t−1 + ε$
∗

t (5)

where ε$
∗

t ∼ N
(
0, σ2

$∗
)
. We consider the case in which this autoregressive process is known by

all agents.

We assume that dealers observe past and current fundamental shocks, while they also receive

private signals about some future shocks. More precisely, we assume dealers receive one signal

each period about the foreign interest rate one period ahead.4 That is, at time t dealer ι receives

a signal

vιt = i∗t+1 + εvιt , ε
vι
t ∼ N

(
0, σ2

vι

)
(6)

where εvιt is independent from i∗t+1 and other agents’ signals. This idiosyncratic signal can be

reconciliated with the fact that dealers have different models to forecast future fundamentals,

so each can imperfectly observe future variables with an idiosyncratic noise. We also assume

that the average signal received by investors is i∗t+1, that is

∫ 1

0
vιtdι = i∗t+1. The foreign interest

rate follows an AR(1) process known by dealers:

i∗t = ρi∗i
∗
t−1 + εi

∗
t (7)

where εi
∗
t ∼ N

(
0, σ2

i∗
)
. Dealers solve a signal extraction problem for the unknown innovations(

ε$
∗

t , εi
∗
t+1

)
, given the observed depreciation rate and signal

(
∆st, v

d
t

)
.5

As Bacchetta and Wincoop (2006), we consider a common knowledge (CK) benchmark. In

this case, the signal about future interest rates becomes public, but remains noisy. Agents only

4This assumption can be extended to the case where dealers receive each period a vector of signal of a set of
fundamental variables.

5As explained by Bacchetta and Wincoop (2006), if the B(L) polynomial in equation (15) is invertible, knowl-
edge of the depreciation rate at times t−1 and earlier and of the interest rate shocks at time t and earlier, reveals
the shocks ε$

∗
at times t− 1 and earlier. That is, ε$

∗
t−s becomes observable at time t for s ≥ 1.

6



extract information from this signal, since the equilibrium exchange rate stops being informative.

For a detailed description see Section 2.B.3 in the appendix.

1.3.1 FX intervention

We describe two different FX intervention strategies for the central bank, aside of the no

intervention scenario. First, the central bank can perform a rule based intervention taking into

account the changes in the exchange rate. We call this strategy “the ∆s rule”.

$∗cbt = φ∆s∆st + εcb,1t (8)

According to this rule, when there are depreciation (appreciation) pressures on the domestic

currency, the central bank sells (purchases) foreign bonds to prevent the exchange rate from

fluctuating. φ∆s captures the intensity of the response of the FX intervention to pressures in

the FX market. Second, the monetary authority can take into account misalignments of the

real exchange rate as a benchmark for FX intervention. We call this strategy “the RER rule”.

$∗cbt = φrerrert + εcb,2t (9)

The rest of the model describes the behaviour of households, firms, the external sector and a

monetary policy authority, which participates actively in the FX market through discretionary

or rule-based interventions. We refer the reader to Montoro and Ortiz (2016), for a complete

description of the model and a thorough explanation of the differences among these three FX

intervention strategies.

2 Computational strategy

The computational strategy consists of dividing the system of log-linearized equations into

two blocks. In the first block we take into account all the equations but the risk-premium

adjusted UIP, which is included in the second block. Then, we solve for the rational expectations

equilibrium of the first block taking the depreciation rate as an exogenous variable. This solution

feeds into the second block to solve for the policy function of the depreciation rate. Note that

with this computational strategy we are also eliminating any informational spillovers between

dealers and other economic agents, such as households and firms. However, the segmented

information in the FX market seems a reasonable assumption, since it takes into account that

dealers have access to private information, which is not known by other economic agents.

Accordingly, in the first block the depreciation rate only appears in the real exchange rate

equation:

rert = rert−1 + ∆st + π∗t − πt (10)

This system of equations can be written as:

A0

 Xt

EtYt+1

 = A1

 Xt−1

Yt

+A2∆st +B0εt (11)

7



where Xt = [rert, it, π
∗
t , w

∗
t , i
∗
t , ...]

′ is a size n1 vector of backward looking variables, Yt = [πt, ...]
′

is a size n2 vector of forward looking variables, such as nT = n1 + n2 + 1 is the number of

endogenous variables. εt is the vector of observable shocks in the model. A2 = [1, 0..0]′ is a

(n1 + n2)× 1 matrix.6

The second block corresponds to the risk-premium adjusted UIP condition:

Et∆st+1 = it − i∗t + γσ2
(
$∗t +$∗,cbt

)
(12)

In the first stage we find the rational expectations solution of the system in (11) using the

perturbation method, taking as exogenous ∆st.
7 That is, we find the policy functions:

Yt = M1Xt−1 (13)

Xt = M2Xt−1 +M3∆st +M4εt (14)

In the second stage we use the previous solution to find the policy function of ∆st using

Townsend (1983) method. More precisely, we conjecture a solution for ∆st as a function of

infinite lag polynomials of the shocks in the model.

∆st = A(L)εi
∗
t+1 + B(L)ε$

∗
t +D(L)ζt (15)

where εi
∗
t+1 is an innovation to the future foreign interest rate (i∗t+1), the fundamentals over

which agents receive a signal, and ε$
∗

t is the shock to the unobservable capital flow ($∗t ), which

can be inferred with a lag. A(L) and B(L) are infinite lag polynomials, while D(L) is a vector

of infinite lag polynomials operating ζt, the vector of remaining shocks. 8

In the second stage we solve for the signal extraction problem of the dealers for the un-

observed innovations
(
ε$

∗
t , εi

∗
t+1

)
, using both the depreciation rate and their private signal(

∆st, v
d
t

)
, which serves to calculate the average expectation of the future depreciation rate

and its conditional variance in equation (12) as functions of shocks.9

The next step involves relating the coefficients of (12) to those on the conjectured solution

(15). This yields a system of non-linear equations on the unknown coefficients of A(L), B(L)

and D(L). Although this is an infinite-order set of equations, we can exploit the recursive

pattern present among the coefficients. We are able to solve the system through a numerical

approach that limits the number of lags affecting the solution, effectively imposing zeros after

a certain lag. This lag is determined numerically, through an iterative process. See appendix B

for details on the computational strategy.

6Since information heterogeneity only enters the model through the exchange rate, the unobservable shocks
are excluded from the first step.

7We use Dynare to solve for the rational expectations of the first block. More information see: Villemont
(2011) and Adjemian et al. (2012).

8Notice that εt and ζt are not exactly the same, since the latter can also include FX intervention shocks.
9In turn, given the solution of the first block, we can express the endogenous variables in (12) as function of

shocks as well.
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3 Model Dynamics

Our interest lies in understanding first and foremost, how information heterogeneity affects

the connection between the exchange rates and the “traditional” fundamentals. 10 These are

the variables that affect the exchange rate determination in traditional monetary models (i.a.,

interest rate differentials). We follow Bacchetta and Wincoop (2006) by solving the model for

different values for the parameters that govern the inference problem that dealers face.

3.1 Calibration

With respect to the baseline model studied in Montoro and Ortiz (2016), this extension

presents an additional parameter which affects the precision of the private signal (σν). This value

is set at 0.08 for the baseline calibration, the same standard deviation assumed by Bacchetta and

Wincoop (2006). There are two key parameters for the signal extraction problem: the standard

deviation of noise in the signal (σν), the standard deviation of the capital flows shock (σω∗).

We study the properties of the simulated series under different values for these parameters. For

a discussion on the calibrated values for the rest of parameters in the model see Montoro and

Ortiz (2016).

10Bacchetta and Wincoop (2006) treat portfolio flow shocks as “non-fundamental” variables. Vitale (2011)
considers that, given the importance of order flows for the determination of exchange rates, these should be
considered fundamentals too.
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Table 1: Baseline Calibration
Parameter V alue Description

β 0.9975 Consumers time-preference parameter.
χ 0.5 Labour supply elasticity.
γc 1 Risk aversion parameter.
ε 0.75 Elasticity of substitution btw. home and foreign goods.
εX 0.75 Elasticity of substitution btw. exports and foreign goods.
ψ 0.6 Share of domestic tradables in domestic consumption.
θH 0.75 Domestic goods price rigidity.
θM 0.5 Imported goods price rigidity.
θX 0.5 Exported goods price rigidity.
ψb 0.01 Portfolio adjustment costs.
ϕπ 1.5 Taylor rule reaction to inflation deviations.
γ 500 Absolute risk aversion parameter (dealers)
φ$ 0.5 Net asset position over GDP ratio
φC 0.68 Consumption over GDP ratio
σx 0.01 S.D. of all shocks x
ρx 0.5 AR(1) coefficient for all exogenous processes
σν 0.08 S.D. of noise in signal.

3.2 Variance fixed-point problem

The risk premium-adjusted uncovered interest parity condition (equation 3) is a function

of the variation of the exchange rate. In turn, this variable depends on the RE equilibrium of

the model. Different from the full information case, the solution now involves a search for the

undetermined coefficients in the lag polynomials A(L), B(L) and D(L), defined in (15). We

conjecture a variance and solve for the unknown coefficients. In Figure 1 we plot the mappings

of the conjectured and the implied conditional variance of the depreciation rate for different

parameterisations of the FX-intervention reaction function. Intersections with the 45-degree

straight line correspond to fixed points for the conditional variance of the depreciation rate.

The results found under full information carry over to the heterogeneous information case, as

under both rules of FX intervention there is only a unique and stable equilibrium. Also, the

intensity of FX intervention reduces the RE equilibrium variance of the exchange rate change.

The value of the variances is similar as well, although this model presents an extra shock given

by the noise in the public signal.
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Figure 1: Existence of equilibria under FX intervention rules (HI)

Note: Simulations involved 61 values for the conjectured variances of the change of the exchange rate. When the intervention parameter under both rules
is zero, we replicate the values for the pure discretional intervention case.
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3.3 The effects of heterogeneous information

Bacchetta and Wincoop (2006) proved that by adding heterogeneous information in an

exchange rate determination model it is possible to account for the short-run disconnection

between the exchange rate and observed fundamentals. Instead, the exchange rate becomes

closely associated to order flow, which the author associates to the private information com-

ponent of total market orders. The mechanism at work is a magnification effect of unobserved

fundamentals, such as portfolio capital flows in our model, on the exchange rate. Under hetero-

geneous information, there is rational confusion since when the exchange rate changes dealers

do not know whether this is driven by unobserved fundamentals (e.g.: portfolio capital flows) or

by information about future macroeconomic fundamentals held by other dealers (e.g.: foreign

interest rates).

The rational confusion magnifies the impact of the unobserved capital flows on the exchange

rate, an effect Bacchetta and Wincoop (2006) called the magnification effect. As we have

explained, agents will have now two different signals. The first is the private information about

the fundamental. The second is the equilibrium exchange rate - more precisely the unknown

component of this rate. As unobservable fundamental capital flows impact the exchange rate,

agents will confuse them with changes in observable fundamentals and will react to them,

amplifying the effect of capital flows. This magnification effect depends on the precision of the

public signal (the exchange rate) relative to the precision of the private signal (vdt ). Figure 2

shows the difference in the contemporaneous response to capital flow shocks between the HI and

CK cases. The magnification effect increases with σv and decreases with σω∗ . This is in line

with our previous observations. As the private signal becomes noisier, dealers will rely more on

the equilibrium exchange rate as a source of information. Thus, liquidity based capital inflows

and outflows effects in the exchange rate will be amplified. By contrast, an increase in σω∗ will

reduce the magnification effect. In this case, the exchange rate loses power as a signal, since its

dynamics will be more affected by capital flows instead of traditional macro fundamentals.

To show the role of heterogeneous information and the magnification effect in explaining

the disconnection effect in our setup we perform simulations of the model and the calculate the

R2 of the regression between the exchange rate and the observable variables in the model and

contrast it with the imperfect common knowledge case. Under imperfect common knowledge

agents will fully observe the aggregate capital flows and follow the same signal, however, this

signal will be a noisy one. Hence, their forecast error will have an effect on the equilibrium

exchange rate. 11

11For a detailed explanation of how the model works under imperfect common knowledge see section 2.B.3 in
the appendix.
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Figure 2: Magnification effect for different values of σω∗ and σν

Note: Figure shows the difference in the contemporaneous response of the variation in the exchange
rate s to a one standard deviation capital flows shock (εω

∗

t ) under heterogeneous information (HI) and
common knowledge (CK), for different values of σω∗ and σν .

3.4 FX intervention under heterogeneous information

FX intervention can affect the magnification effect and the connection of the exchange rate

with observed fundamentals. We show in figure 3 the response on impact of the exchange rate

change to future foreign interest rate shocks (i∗t+1) and unobserved capital flows shocks ($∗t ) ,

that is coefficients a1 and b1 respectively. We show in the first column the responses in a model

with common knowledge, defined as one in which all dealers have access to the same information,

and in the second column the responses in a model with heterogeneous information.12 In the

last column we present the differences between the responses in heterogeneous information and

the common knowledge models. These responses are plotted for different values of the standard

deviation of unobserved capital flow shocks
(
σ$∗

t

)
, for three degrees of FX intervention intensity

under the ∆s rule (no intervention, φ∆s = 0.25, and φ∆s = 0.25).

The following things are important to notice: i) In both the imperfect common knowledge

and heterogeneous information cases, FX intervention dampens the impact of both unobserved

capital flow shocks and future foreign interest rate shocks. ii) the standard deviation of unob-

served capital flow shocks
(
σ$∗

t

)
affects the responses under heterogeneous information, but not

under common knowledge. This is because the response of the exchange rate depends on the

precision of the signals only in the former model. iii) There is evidence of a magnification effect.

12Therefore, in a common knowledge model capital flows become an observable variable and all dealers observe
signal shock (ευdt )
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That is, the response to unobservable capital flow shocks is much stronger in the heterogeneous

information than in common knowledge model. The opposite is true for the response to future

foreign interest rate shocks. iv) The magnification effect is larger when the intensity of FX

intervention is stronger. The main mechanism for this result is that, when FX intervention

reduces the exchange rate volatility it also increases the precision of the public signal, which

amplify the magnification effect13 14

These results shed light of an additional effect that intervention can have in the FX market,

that is the magnified response of the exchange rate to unobservable shocks, such as capital flows.

However, the magnification effect is not strong enough to increase the disconnection between

the exchange rate and observed fundamentals. Figure 4 reports the R2 of regressions of ∆st on

unobserved capital flows shocks ($∗t ) and future interest rates (i∗t+1). As shown, FX intervention

reduces the contribution of unobserved capital flow shocks to exchange rate changes, and as a

counterpart increases the connection between observed fundamentals and the exchange rate.

13On the other hand, as shown in figure 3f, the magnification effect is larger when the unobservable capital
flows are more volatile, because that increases the exchange rate volatility.

14However, this result could change if intervention can bring additional information about future fundamentals
to the FX market, as analysed by Vitale (2011).
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Figure 3: Reaction to unobservable and fundamental shocks under Heterogeneous Information and Common Knowledge
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4 Conclusions

In this paper we introduce heterogeneous information across dealers in the FX markets in line

with Bacchetta and Wincoop (2006) into a DSGE model for a small open economy. We confirm

that the magnification effect, which amplifies the contemporaneous impact of capital flow shocks,

is still present in our framework. This effect is generated by the rational confusion emerging as

dealers are unable to identify the source of shocks. The presence of the endogenous response

of interest rates to changes in the exchange rate generates a channel between monetary policy

and the information extraction problem of agents. Moreover, this framework allows us to study

the interaction between exchange rate interventions by the central bank and the magnification

effect observed under heterogeneous information. We find that FX interventions can reduce

the contribution of unobserved capital flows shocks to the exchange rate, also increasing its

connection with observed fundamentals. Despite these findings, the relationship between the

degree of FX intervention and the connection to fundamentals is not monotonic. Finally, on the

technical side, we propose an extension of Townsend (1983) that can be useful to solve DSGE

models with heterogeneous information.

Further research should introduce richer dynamics in the information setup, such as central

banks operating in a hidden way as in Vitale (2011), increasing the information dispersion

through FX interventions, or central banks that reveal public signals through interventions. We

consider that the setup presented here is capable of handling these problems. We leave these

extensions for future research.
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Bacchetta, P. and E. V. Wincoop (2006, June). Can information heterogeneity explain the

exchange rate determination puzzle? American Economic Review 96 (3), 552–576.

Brunnermeier, M. K. (2001). Asset Pricing under Asymmetric Information: Bubbles, Crashes,

Technical Analysis, and Herding. Number 9780198296980 in OUP Catalogue. Oxford Uni-

versity Press.

Cavallino, P. (2019, April). Capital Flows and Foreign Exchange Intervention. American Eco-

nomic Journal: Macroeconomics 11 (2), 127–170.
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Figure 5: Existence of equilibria under FX intervention rules (CK)

Note: Simulations involved 61 values for the conjectured variances of the change of the exchange rate. When the intervention parameter under both rules
is zero, we replicate the values for the pure discretional intervention case.
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2.B Details of the computational strategy

The log-linearised system of equations of the model can be written as:

A0

 Xt

EtYt+1

 = A1

 Xt−1

Yt

+A2∆st +B0εt (16)

and

Et∆st+1 = it − i∗t + γσ2
(
$∗t +$∗,cbt

)
(17)

where A2 = [1, 0..0]′ is a (n1 + n2) × 1 matrix and the definitions of the other matrices and

vectors are in section 2. This is the state space form of the model.

2.B.1 Solving the first block

As an illustration, we will solve the system in (16) under some simplifying assumptions. For

a more general solution, see Villemot (2011). The system in (16) can be written as:15 Xt

EtYt+1

 = A−1
0 A1

 Xt−1

Yt

+A−1
0 A2∆st +A−1

0 B0εt

or  Xt

EtYt+1

 = A

 Xt−1

Yt

+

 a11∆st

0(n1+n2−1)×1

+Bεt

after making A = A−1
0 A1, B = A−1

0 B0 and a11 the (1, 1) element of A−1
0 . Using the Jordan

decomposition of A = PΛP−1, it becomes:

P−1

 Xt

EtYt+1

 = ΛP−1A

 Xt−1

Yt

+

 p11a11∆st

0(n1+n2−1)×1

P−1B∆st + P−1Cεt

Making R = P−1B,Λ =

 Λ1 0

0 Λ2

, P−1 =

 P11 P12

P21 P22

 , R =

 R1

R2

 and p11 the (1, 1)

element of P−1. Λ1 (Λ2) is the diagonal matrix of stable (unstable) eigenvalues of size n1 (n2).

The system of equations become:

 P11 P12

P21 P22

 Xt

EtYt+1


=

 Λ1 0

0 Λ2

 P11 P12

P21 P22

 Xt−1

Yt

+

 p11a11∆st

0(n1+n2−1)×1

+

 R1

R2

 εt.
15Assuming A0 is invertible, otherwise we can generalise this for the case of non-invertible matrix.
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Making X̃t−1 = P11Xt−1 + P12Yt, Ỹt = P21Xt−1 + P22Yt, the system becomes: X̃t

EtỸt+1

 =

 Λ1 0

0 Λ2

 X̃t−1

Ỹt

+

 p11a11∆st

0(n1+n2−1)×1

+

 R1

R2

 εt
According to Blanchard & Kahn, given that Λ2 is the diagonal of unstable eigenvalues, the

only stable solution is given by: Ỹt = 0 = P21Xt−1 + P22Yt.

Then, the solution for the forward looking variables is:

Yt = (P22)−1 P21Xt−1. (18)

The solution for the system of stable (backward looking) equations is:

X̃t = Λ1X̃t−1 +

 p11a11∆st

0(n1−1)×1

+R1εt (19)

2.B.2 Solving the second block

The MA(∞) representation of the first block

Now we change the classification of endogenous variables in the block 1 to focus in the ones

which are part of the minimum state variables (MSV) set. We call these variables Zt, while the

rest of endogenous variables is referred as Z−t . In our case the Zt is formed by 12 variables as

defined in appendix B.

The transition and policy functions can be written as: Zt

Z−t

=

 W

W−

Zt−1 +

 V

V −

 ε∗t (20)

where ε∗′t = [ε′t,∆st] appends the depreciation rate in the vector of shocks. Evaluating the

transition function in t− 1 and replacing it in (20), we have: Zt

Z−t

=

 W

W−

(WZt−2 + V ε∗t−1

)
+

 V

V −

 ε∗t
Repeating this process many times, we get:

 Zt

Z−t

=

 W

W−

[(W )n Zt−n−1 + (W )n−1 V ε∗t−n + ...+WV ε∗t−2 + V ε∗t−1

]
+

 V

V −

 ε∗t
Which allows us to write the solution as a MA(∞): Zt

Z−t

=

 W

W−

 ∞∑
i=1

(W )i−1 V ε∗t−i +

 V

V −

 ε∗t (21)
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Given the form of matrixW , the impact of shocks diminish over time, allowing us to approximate

the solution using a fixed number of lags. We focus in the solution for it in this step and replace

it back into (17). In our setup i∗t follows an exogenous process which is easy to express as a

function of shocks. Finally, the last term, γσ2
(
$∗t +$∗,cbt

)
is a combination of the conditional

volatility term σ2, the first order autoregressive process of $∗t and other endogenous variables

in the policy rule for $∗,cbt , that can also be expressed as function of shocks.

Conditional moments and solution method

In order to calculate the the conditional volatility of the depreciation rate, we need to make

use of the strategy proposed by Bacchetta and van Wincoop (2006), based on Townsend (1983).

First we conjecture a solution for the depreciation of exchange rate of the form:

∆st = A(L)εi
∗
t+1 + B(L)ε$

∗
t +D(L)′ζt (22)

where A(L) and B(L) are infinite order lag polynomials, while D(L) is an infinite order lag

polynomials vector operating ζt, the vector all other shocks in the model. Writing A(L) =

a1 + a2L + a3L
2 + ... (and a similar definition for B(L) and D(L)), we evaluate forward the

conjecture (22) to obtain the value in t+ 1.

∆st+1 = a1ε
i∗
t+2 + b1ε

$∗
t+1 + d′1ζt+1 + ϑ′ξt +A∗(L)εi

∗
t + B∗(L)ε$

∗
t−1 +D∗(L)′ζt (23)

where ξt =
(
εi

∗
t+1, ε

$∗
t

)′
contains the unobservable innovations, ϑ′ = (a2, b2) stands for the

parameters associated to these shocks, A∗(L) = a3 +a4L+ ... (similar definition for B∗(L)) and

D∗(L) = d2 +d3L+ .... The last three terms in 23, A∗(L)εi
∗
t +B∗(L)εω

∗
t−1 +D∗(L)′ζt represent all

observable and past known shocks. Taking expectations for dealer ι over the previous equation

yields:

Eιt(∆st+1) = ϑ′Eιt(ξt) +A∗(L)εi
∗
t + B∗(L)ε$

∗
t−1 +D∗(L)ζt (24)

while the conditional variance as a function of unobservable innovation is given by:

vart(∆st+1) = a2
1vart(ε

i∗
t+2) + b21vart(ε

$∗
t+1) + (d1)′vart(ζt+1)d1 + ϑ′vart(ξt)ϑ. (25)

Here σ2 ≡ vart(∆st+1) is constant given that vart(ξt) is also constant. In order to obtain

the conditional moments we need to obtain the conditional expectation and variance of the

unobservable component ξt. The computation of the conditional moments is then obtained

following Townsend (1983) and Bacchetta and Wincoop (2006).

FX traders extract information from the observed variation of the exchange rate ∆st and

the signal vιt. To focus on the informational content of observable variables, we subtract the

known components from these observables and define these new variables as ∆s∗t and vι∗t . We

follow the notation in Bacchetta and Wincoop (2006). The measurement equation on this part

of the problem is given by:

Y ι
t = H ′ξt + wιt (26)
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where Y ι
t = (∆s∗t , v

ι∗
t )′ , wιt = (0, εvιt )′ , and

H ′ =

 a1 b1

1 0


The unconditional means of ξt and wιt are zero, while we define their unconditional variances as

P̃ and R respectively. Following Townsend (1983), we can write:

Eιt(ξt) = MY ι
t (27)

where:

M = P̃H
(
H ′P̃H +R

)−1
.

For the conditional variance of the unobservable component we have, P ≡ vart(ξt), where

P = P̃ −MH ′P̃ . (28)

Substituting (26) and (27) in (24) and averaging over dealers gives the average conditional

expectation of the variation of the exchange rate in terms of the shocks:

Et∆st+1 = ϑ′MH ′ξt +A∗(L)εi
∗
t + B∗(L)ε$

∗
t−1 +D∗(L)ζt. (29)

Replacing the FX intervention policy strategy in equation (17), the MA (∞) representation of

the endogenous variables (21), and the definition of σ2 from (25), we obtain:

Et∆st+1 = ı̂t − ı̂∗t + γσ2
(
$∗t + ϕ∆s∆st + ϕrerrert + εcbt

)
(30)

Et∆st+1 = Fi(L)ε∗t − G(L)εi
∗
t + ...

+ γ
[
(a2

1vart(ε
i∗
t ) + b21vart(ε

$∗
t ) + (d1)′vart(ζt)d1 + ϑ′Pϑ

]
×
[
J (L)εω

∗
t + ϕ∆s∆st + ϕrerFrer(L)ε∗t + εcbt

]
(31)

where Fz(L)ε∗t stands for zt = {it, rert}, G(L)εi
∗
t for i∗t , and J (L)εω

∗
t for ω∗t . This is the

“fundamental equation” MA(∞) representation.

To solve for the parameters of A(L), B(L) and D(L) we need to match the coefficients from

equations (29) and (31).

Solution of parameters

Now we go through the algebra. Define zy,xj ≡ dyt
dxt−j+1

as the linear impulse response in the

first step of the endogenous variable yt with respect to the exogenous variable xt−j+1. With

this auxiliary variable we identify the parameters multiplying each shock. For this, we use the

method of undetermined coefficients comparing equations (29) and (31).
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Solution without rule-based FX intervention For simplicity, we solve first for the pa-

rameters assuming first there is no rule-based FX intervention, that is: ϕ∆s = ϕrer = 0.

We start taking derivatives to the right hand side of equations (29) and (31) with respect

to εi
∗
t , ε

i∗
t−1, ..., ε

i∗
t−s+3, respectively:

a3 =
dit
dεi

∗
t

+

(
dit
d∆st

d∆st
dεi

∗
t

+
dit

d∆st−1

d∆st−1

dεi
∗
t

)
− di∗t
dεi

∗
t

a4 =
dit
dεi

∗
t−1

+

(
dit
d∆st

d∆st
dεi

∗
t−1

+
dit

d∆st−1

d∆st−1

dεi
∗
t−1

+
dit

d∆st−2

d∆st−2

dεi
∗
t−1

)
− di∗t
dεi

∗
t−1

...

as =
dit

dεi
∗
t−s+3

+
s−1∑
j=1

(
dit

d∆st+1−j

d∆st+1−j

dεi
∗
t−s+3

)
− dit
dεi

∗
t−s

In this case the direct effect is zero, because i∗t only appears in the risk-premium adjusted UIP

condition, that is dit
dεi

∗
t−s+3

= 0. Then the solution for a3, a4, ...is given by:

as =

s−1∑
j=1

zi,∆ss−j aj − ρ
s−3
i∗ for s > 3 (32)

Similarly, taking derivatives with respect to ε$
∗

t−1, ε
$∗
t−2, ..., ε

$∗
t−s+2, yields:

b3 =
dit
dε$

∗
t−1

+

(
dit
d∆st

d∆st
dε$

∗
t−1

+
dit

d∆st−1

d∆st−1

dε$
∗

t−1

)
+ γσ2 d$

∗
t

dε$
∗

t−1

...

bs =
dit

dεω
∗

t−s+2

+
s−1∑
j=1

(
dit

d∆st+1−j

d∆st+1−j

dεi
∗
t−s+2

)
+ γσ2 d$∗t

dεi
∗
t−s+2

Similarly to the previous case, the direct effect is zero here, that is dit
dε$

∗
t−s+2

= 0. Then the

solution for b3, b4, ... is given by:

bs =
s−1∑
j=1

zi,∆ss−j bj + γσ2ρs−2
ω∗ for s > 3 (33)

Using the same approach, we take derivatives with respect to εt, εt−1, ..., εt−s for ε ∈ ζ:

dε2 =
dit
dεt

+

(
dit
d∆st

d∆st
dεt

)
+ γσ2

(
I
ε=ε$

∗,cb
)

dε3 =
dit
dεt−1

+

(
dit
d∆st

d∆st
dεt−1

+
dit

d∆st−1

d∆st−1

dεt−1

)
+ γσ2

(
ρεIε=ε$∗,cb

)
...

dεs =
dit

dεt−s+2
+

s−1∑
j=1

(
dit

d∆st+1−j

d∆st+1−j
dεt−s+2

)
+ γσ2

(
ρs−2
ε I

ε=ε$
∗,cb
)
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where I
ε=ε$

∗,cb is an indicator value of 1 when the shock ε equals εω
∗,cb

. This system is sum-

marised by:

dεs = zi,εs−1 +
s−1∑
j=1

zi,∆ss−j dj + γσ2
(
ρs−2
ε I

ε=ε$
∗,cb
)

(34)

which is valid for s > 2. Note also that dit
dεt−s+2

= 0 when ε = εω
∗,cb
.

This set of equations (32), (33) and (34) allows us to express the whole system as a function

of parameters a1, a2, b1, b2 and the vector of parameters d1.

Taking derivatives with respect to the two unobservable shocks
{
εi

∗
t+1, ε

$∗
t

}
we get:

(ϑ′MH ′)1 = zi,∆s1 a1, (35)

(ϑ′MH ′)2 = zi,∆s1 b1 + γσ2. (36)

By substituting back the values for the matrices, we obtain a non-linear system of equations on

the unknowns:

[a2 b2]M

 a1

1

 = zi,∆s1 a1 (37)

[a2 b2]M

 b1

0

 = zi,∆s1 b1 + γσ2 (38)

Note that considering (37) and (38) we have two equations and four unknowns, which

impedes us to solve for the system. Bacchetta and Wincoop (2006) overcome this problem

by proving that the coefficients in the lag polynomials follow a recursive pattern. Assuming

non-explosive coefficients, they are able to obtain additional restrictions on the values of the

coefficient in the lag-polynomial. In our case, the interest rate is endogenous, meaning a feedback

is present from the effect of unobservable shocks into the exchange rate and from there into

the interest rate. This feedback effect makes the relationship across the coefficients in the lag

polynomials a function of the solution in the first block and of the assumed FX intervention

strategy. For this reason we follow instead a numerical approach that limits the number of lags

affecting the solution. We set up the non-linear system of equations on the first elements of both

infinite lag polynomials and search for a numerical solution using the trust-region-dogleg method

implemented by MATLAB. The extra restrictions in our case are given by selecting a limit to

the lags and setting the parameters associated with this lag at zero.16 Since these are functions

of the first parameters (the unknowns), we can solve the system and obtain the solution. We

change sequentially this limit and derive new solutions in each step. The algorithm stops when

16Note that Bacchetta and Wincoop (2006) guess a solution for the level of the exchange rate, while we solve
for its first difference. Our method implicitly assumes the first difference of the exchange rate is stationary. We
consider that in our setup our assumption is less restrictive.
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a fixed point is achieved, revealing that the inclusion of additional lags has a negligible effect

on the result.17

The system of equations: We can represent the system of equations using some auxiliary

matrices.

The A system The set of equations in (32) can be written as:

a3

a4

...

an+1

an+2


=



zi,∆s1 0 . . . 0 0

zi,∆s2 zi,∆s1 . . . 0 0
...

...
. . .

...
...

zi,∆sn−1 zi,∆sn−2 . . . zi,∆s1 0

zi,∆sn zi,∆sn−1 . . . zi,∆s2 zi,∆s1





a2

a3

...

an

an+1


−



1

ρi∗

...

(ρi∗)n

(ρi∗)n−1


+

+ a1



zi,∆s2

zi,∆s3

...

zi,∆sn

zi,∆sn+1


(39)

These equations can be written in the matrix form, after assuming that the value of an+2 −→
0:

Z1A = Zi2A−Xi∗ + a1Z
i,∆s
3 (40)

where Z1 =

 0(n−1)×1 In−1

0 01×(n−1)

, A = [a2, ..., an+1]′ is a n× 1 vector, Zi2 is the lower

triangular matrix that pre-multipliesA, Xi∗ =
[
1, ρi∗ , ..., (ρi∗)n−1

]′
, and Zi,∆s3 =

[
zi,∆s2 , zi,∆s3 , ..., zi,∆sn+1

]′
The B system:

Similarly, equations (33) can be written as:

Z1B = Zi2B + γσ2ρ$∗X$∗ + b1Z
i,∆s
3 (41)

where B = [b2, b3, .., bn+1]′ and X$∗ =
[
1, ρ$∗ , ..., (ρ$∗)n−1

]′
.

The D system

In the same vein, the system for Dε = [dε1, d
ε
2, .., d

ε
n]′ is the following

Z1D
ε = Zi2D

ε + Zi,ε3 when ε 6= ε$
∗,cb

Z1D
$∗,cb

= Zi2D
$∗,cb

+ γσ2X$∗,cb otherwise

17We set the fixed-point algorithm convergence criterion over the maximum difference in the values of the
coefficients associated with the unobservable shocks.
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where Zi,ε3 =
[
zi,ε1 , zi,ε2 , ..., zi,εn

]′
and X$∗,cb =

[
1, ρ$∗,cb , ..., (ρ$∗,cb)n−1

]′
.

The complete system of equations.

Then, after making use of Z = Z1 − Zi2, the total system of non-linear equations becomes:

[a2 b2]M

 a1

1

 = zi,∆s1 a1

[a2 b2]M

 b1

0

 = zi,∆s1 b1 + γσ2

A = −Z−1
(
Xi∗ − a1Z

i,∆s
3

)
B = Z−1

(
γσ2ρ$∗X$∗ + b1Z

i,∆s
3

)
Dε = Z−1Zi,ε3

D$∗,cb
=
(
γσ2

)
Z−1X$∗,cb

σ2 = a2
1vart(ε

i∗
t+2) + b21vart(ε

$∗
t+1) + (d1)′vart(ζt+1)d1 + ϑ′vart(ξt)ϑ (42)

Note the system has n × # of shocks +3 equations and unknowns, which only n × 2 + 3 are

non-linear equations (those corresponding to the B and D$∗,cb
system and the equations for

a1, b1 and σ2).

4.0.1 Solution with FX intervention rules

When we allow for FX intervention, the equations (32), (33), (34), (37) and (38) are replaced

by:

as =
s−1∑
j=1

zi,∆ss−j aj − ρ
s−3
i∗ + γσ2

ϕ∆sas−1 + ϕrer

s−1∑
j=1

zrer,∆ss−j aj

 (43a)

bs =
s−1∑
j=1

zi,∆ss−j bj + γσ2

ρs−2
ω∗ + ϕ∆sbs−1 + ϕrer

s−1∑
j=1

zrer,∆ss−j bj

 (43b)

dεs = zi,εs−1 +

s−1∑
j=1

zi,∆ss−j dj + γσ2


ρs−2
$∗,cbIε=ε$∗,cb+

ϕ∆sds−1 + ϕrer

s−1∑
j=1

zrer,∆ss−j dεj

 (43c)

[a2 b2]M

 a1

1

 = zi,∆s1 a1 + γσ2
(
ϕ∆sa1 + ϕrerz

rer,∆s
1 a1

)
(43d)

[a2 b2]M

 b1

0

 = zi,∆s1 b1 + γσ2
(

1 + ϕ∆sb1 + ϕrerz
rer,∆s
1 b1

)
(43e)
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We can also express this with linear algebra. For example, the A system can be written as:

Z1A = Zi2A+ γσ2 (ϕ∆sIn + ϕrerZ
rer
2 )A−Xi∗ + a1

(
Zi,∆s3 + γσ2ϕrerZ

rer,∆s
3

)
Then, after making use of ZFX = Z1 − Zi2 − γσ2 (ϕ∆sIn + ϕrerZ

rer
2 ) , where Zrer2 is a lower

triangular matrix, analogous to Zi2, with zrer,∆s1 as elements of its main diagonal, the total

system of non-linear equations becomes:

[a2 b2]M

 a1

1

 = zi,∆s1 a1 + γσ2
(
ϕ∆s + ϕrerz

rer,∆s
1

)
a1

[a2 b2]M

 b1

0

 = zi,∆s1 b1 + γσ2
(

1 + ϕ∆sb1 + ϕrerz
rer,∆s
1 b1

)
A = −

(
ZFX

)−1
[
Xi∗ − a1

(
Zi,∆s3 + γσ2ϕrerZ

rer,∆s
3

)]
B =

(
ZFX

)−1
(
γσ2ρ$∗X$∗ + b1

(
Zi,∆s3 + γσ2ϕrerZ

rer,∆s
3

))
Dε =

(
ZFX

)−1
Zi,ε3

D$∗,cb
=
(
γσ2

) (
ZFX

)−1
X$∗,cb

σ2 = a2
1vart(ε

i∗
t+2) + b21vart(ε

$∗
t+1) + (d1)′vart(ζt+1)d1 + ϑ′vart(ξt)ϑ (44)

where M = 1
(a1)2σ2

i∗σ
2
v+(b1)2σ2

ω∗(σ2
i∗+σ2

v)

 a1σ
2
i∗σ

2
v (b1)2 σ2

ω∗σ2
i∗

b1σ
2
ω∗
(
σ2
i∗ + σ2

v

)
−a1b1σ

2
i∗σ

2
ω∗


and P = vart(ξt) =

σ2
i∗σ

2
vσ

2
ω∗

(a1)2σ2
i∗σ

2
v+(b1)2σ2

ω∗(σ2
i∗+σ2

v)

 (b1)2 −a1b1

−a1b1 (a1)2


2.B.3 The problem with common knowledge (CK)

In the common knowledge benchmark, investors share the same signal about the future

fundamental values. Information is common but incomplete. All investors receive:

vt = i∗t+1 + ευt , ευt ∼ N(0, σ2
υ)

Under common knowledge $∗t becomes observable, because we get rid of the idiosyncratic

shocks. Thus, capital flows shocks will only affect the economy through the portfolio balance

channel. In the signal extraction problem dealers have to infer information only for ξCKt = εi
∗
t+1.

We must assume now that the equilibrium exchange rate depends directly on the ευt shock, the

noise of the signal common to all agents. We guess a solution of the type:

∆st = A(L)εi
∗
t+1 + B(L)εω

∗
t +D(L)ζt + Ψ(L)ευt (45)

Notice that now the εω
∗

t shock is observable and we have a new term in the solution for the

‘now relevant’ signal noise.
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The only relevant signal for the problem under common knowledge is given by υt.
18 Following

Townsend (1983), we obtain:

Et(ε
i∗
t+1) = M̂υ∗t ,

where

M̂ =
σ2
i∗

σ2
i∗ + σ2

υ

and

v∗t = εi
∗
t+1 + ευt (46)

is the unknown component of the signal υt at time t. We first obtain an expression for st+1,

using (45):

∆st+1 = a1ε
i∗
t+2 + b1ε

ω∗
t+1 + ψ1ε

υ
t+1 + d1ζ

′
t+1 + ϑCKξCKt + ...

...+A∗(L)εi
∗
t + B∗(L)εω

∗
t +D∗(L)ζt + Ψ∗(L)ευt−1 (47)

where ϑCK = [a2] and we have grouped the shocks known at t in the lag polynomials denoted

with (∗). Now, taking expectations over (47):

E(∆st+1) = a2E(εi
∗
t+1) +A∗(L)εi

∗
t +B∗(L)εω

∗
t +D∗(L)ζt + Ψ∗(L)ευt−1 (48)

where we have used the fact that Et(ε
υ
t ) = 0. Now we take the second moment:

vart(∆st+1) = a2
1σ

2
i∗ + b21σ

2
ω∗ + ψ2

1σ
2
υ + (d1)′vart(ζt+1)d1 + ϑ′CKP

CKϑCK

Note that:

E(εi
∗
t+1) = Et(ξ

CK
t ) = M̂Yt

= M̂
(
εi

∗
t+1 + ευt

)
Then, the equation (48) becomes:

E(∆st+1) = a2
σ2
i∗

σ2
i∗ + σ2

υ

(
εi

∗
t+1 + ευt

)
+A

∗
(L)εi

∗
t +B

∗
(L)εω

∗
t +D∗(L)ζt + Ψ∗(L)ευt−1

this equation is equivalent to (29) in the heterogeneous information case. We compare the

coefficients with respect to (31).

Equations (43d) and (43e) now become:

aCK2

σ2
i∗

σ2
i∗ + σ2

υ

= zi,∆s1 aCK1 + γσ2
CK

(
ϕ∆sa

CK
1 + ϕrerz

i,∆s
1 aCK1

)
(49)

aCK2

σ2
i∗

σ2
i∗ + σ2

υ

= zi,∆s1 ψCK1 + γσ2
CK

(
ϕ∆sψ

CK
1 + ϕrerz

i,∆s
1 ψCK1

)
(50)

18It is straightforward to verify this. The unknown part of the equilibrium variation of the exchange rate is
given by ∆s∗t = a1ε

i∗
t+1 + ψ1ε

υ
t . Since a1 would be equal to ψ1, it is clear the equilibrium exchange rate brings

no additional information.
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from this equations we obtain that aCK1 = ψCK1 . Since agents only observe the sum of both

the fundamental an noise shock, it stands to reason that the contemporaneous reaction to both

shocks must be the same.

Additionally, we have a set of equations for Ψ∗(L):

ψs =
s−1∑
j=1

zi,∆ss−j ψj + γσ2

ϕ∆sψs−1 + ϕrer

s−1∑
j=1

zrer,∆ss−j ψj

 (51)

The system of equations then becomes:

ACK = −
(
ZFX

)−1
[
Xi∗ − aCK1

(
Zi,∆s3 + γσ2ϕrerZ

rer,∆s
3

)]
BCK =

(
ZFX

)−1
[
γσ2ρ$∗X$∗ + bCK1

(
Zi,∆s3 + γσ2ϕrerZ

rer,∆s
3

)]
ΨCK =

(
ZFX

)−1
[
ψCK1

(
Zi,∆s3 + γσ2ϕrerZ

rer,∆s
3

)]
Dε
CK =

(
ZFX

)−1
Zi,ε3

D$∗,cb
CK =

(
γσ2

) (
ZFX

)−1
X$∗,cb

aCK2

σ2
i∗

σ2
i∗ + σ2

υ

= zi,∆s1 aCK1 + γσ2
CK

(
ϕ∆sa

CK
1 + ϕrerz

i,∆s
1 aCK1

)
ψCK1 = aCK1

bCK2 = zi,∆s1 bCK1 + γσ2
(
1 + ϕ∆sb

CK
1 + ϕrerZ

rer
1 bCK1

)
vart(∆st+1) = a2

1σ
2
i∗ + b21σ

2
ω∗ + ψ2

1σ
2
υ + (d1)′vart(ζt+1)d1 + ϑ′CKP

CKϑCK

Once again, the remaining restrictions come from imposing zeros at a given lag for the whole

model, since the rest of the elements in the lag polynomials can be expressed as a function of

ones associated with the unknowns.
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