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Abstract

Often, expected inflation measured by surveys are available only as fixed-event forecasts. Even
though these surveys do contain information of a complete term structure of expectations,
direct inferences about them are troublesome. Records of fixed-event forecasts through time are
associated with time-varying forecast horizons, and there is no straightforward way to interpolate
such figures. This paper proposes an adaptation of the measurement model of Kozicki and
Tinsley (2012) [“Effective use of survey information in estimating the evolution of expected
inflation”, Journal of Money, Credit and Banking, 44(1), 145-169] to suit the intricacies of fixed-
event data. Using the Latin American Consensus Forecasts, the model is estimated to study the
behavior of inflation expectations in four inflation targeters (Chile, Colombia, Mexico and Peru).
For these countries, the results suggest that the announcement of credible inflation targets has
been instrumental in anchoring long-run expectations.
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1 Introduction

Expectations about future inflationary outcomes play a key role in macroeconomic analysis. For instance, the
determination of aggregate prices in modern macroeconomic models is often summarized in expectations-
augmented Phillips curves. Also, real interest rates, which provide a rough measure of the monetary policy
stance once compared to a suitable reference level, can be computed by deducting inflationary expectations
from the nominal interest rate. Finally, many countries conduct their monetary policy within an explicit
inflation targeting regime, and the pillar of such a monetary arrangement is to maintain expectations anchored
to a predetermined target.

Economic surveys, where a number of participants are asked to produce forecasts of future inflation, provide
a direct source of information on expected inflation.1 As illustrated in Figure 1, two types of data structures
emerge.2 The first one corresponds to “rolling-event” forecasts (REFs, henceforth), such as those recorded
in the Livingston Survey for the US or the Gallop Poll for the UK. Here, the survey collects h-period ahead
forecasts, so every new release of the survey the “event” to be forecast “rolls’ forward. In other words, in a
REF the horizon h is fixed, and the target date is always separated h periods from the forecast origin. The bulk
of the literature that uses empirical measures of expectations from surveys, either to assess their rationality
(e.g. Davies and Lahiri, 1999) or to use them in econometric models (e.g. Mehra and Herrington, 2008;
Mavroeidis et. al., 2014), is based on this type of measures. This is so because expectations in theoretical
macroeconomic models are formulated as REFs, and also because of the widespread popularity in applied
work of sources such as the Livingston Survey.

The second data structure corresponds to “fixed-event” forecasts (FEFs, henceforth) which, in contrast to
REFs, has received scant attention despite the fact that FEF data are available for a much larger number of
countries. The “event” to be forecast is often an annual rate, for current and subsequent years. Specifically,
following Figure 1(b), in period t1 survey participants are asked to forecast inflation for period t1 + h1, an
h1-period ahead prediction; later on, in period t2 > t1 they are asked for a forecast of inflation for the same
date, which now corresponds to an h2-period ahead forecast, where h2 = h1 − (t2 − t1) < h1. The forecast
event is kept fixed throughout, while the forecasting horizon shrinks as the time line approaches the event.
The highly reputed company Consensus Economics Inc. conducts the Consensus Forecasts monthly poll
among forecasters working in the private sector (in more than 70 countries), compiling their predictions of a
range of economic variables, and reporting them in a fixed-event format. Other widespread sources of FEFs
of global and country-specific economic activity are the IMF’s World Economic Outlook, the World Bank’s
Global Economic Prospects, the OECD’s Economic Outlook and polls conducted by Central Banks.

Notwithstanding its availability, FEFs are an unexploited resource to describe the evolution of expected
inflation.3 We conjecture that this is so because the time-varying nature of the forecast horizons makes
comparisons over time troublesome. As suggested, it seems more natural to conceptualize expectations in
macroeconomic models as REFs (for instance, to estimate an expectations-augmented Phillips curve or to
compute real interest rates). And even though a survey that registers FEFs for horizons hA and hB (see

1 An alternative approach is to deduce expected inflation from the difference between nominal and indexed bond yields. Such an
approximation, nonetheless, is often biased and more volatile than survey measures, as it also captures factors that are not directly
linked to inflation expectations, such as movements of risk or liquidity premia. Consistently with this critique, Ang et. al. (2007)
and Chernov and Mueller (2012) find that survey measures categorically outperform financial measures in forecasting inflation.

2 We focus our analysis on quantitative (i.e. point) forecasts. A large literature, in contrast, favors using qualitative or directional
forecasts (“would inflation be higher or lower?”) arguing that survey respondents are unable to produce trustworthy numerical
predictions. Thus, the mapping from a qualitative perception to a precise quantitative figure is left to the econometrician, using
either the so-called “probability” or “regression” approach (see Pesaran and Wealey, 2006, for a comprehensive survey). This
assumes, of course, that the econometrician is better suited to perform such mapping than the survey respondent. This may be
true for consumer surveys, but the argument is weakened when the respondents are experts or informed professionals, as with the
surveys used in this study.

3 Since the seminal contribution of Nordhaus (1987), FEFs have become popular in testing forecasts rationality or optimality (e.g.
Clements, 1997; Bakhshi et. al., 2005; Timmermann, 2007). FEFs are in fact ideal for such purposes. Its evolution over time
provides a stream of revisions whose correlation against various information sets can be directly assessed. A further advantage is
that rationality can be tested without having the data of the target variable.
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Figure 1. Rolling-event and fixed-event forecasts

t1               t2                                      t1 + h t2 + h

t1               t2            t1 + h1A = t2 + h2A t1 + h1B = t2 + h2B

(a) Rolling-event forecasts

(b) Fixed-event forecasts

Figure 1) does contain information for expectations at any intermediate horizon hA ≤ h ≤ hB (for instance,
12-month ahead expectations are implicity contained in current and next year forecasts), there is no obvious
way to interpolate such figures. The purpose of this paper is to develop an empirical model to explicitly infer
expectations from data on actual inflation and FEFs.

The model is a version of the shifting-endpoint model advanced in Kozicki and Tinsley (1998, 2001, 2012),
suitably modified to deal with the intricacies of the FEF data structure. We reckon that our modifications to
the Kozicki and Tinsley’s framework widens its scope and should be useful in practice, especially to analyze
expectations in countries for which only FEFs are available. Importantly, even though the model is fitted
to irregularly sampled observations associated to time-varying forecast horizons, it is capable to produce a
coherent and complete term structure of inflation expectations. Thus, the model provides an interpolation
method that is internally consistent with inflation dynamics and survey information.

As stressed in Kozicki and Tinsley (1998, 2001), predictions derived from time-series models of inflation
are likely to be poor proxies of expected inflation. Such predictions are based on historical data only and
fail to accommodate structural changes in inflation dynamics that may be well reflected in survey measures.4
On the other hand, forecasts from surveys are often responsive to the latest inflation observations for short-
term horizons, and relatively unresponsive for long-term horizons. This pattern is difficult to reconcile with
model-based multiperiod forecasts. If the model fitted to the inflation process exhibits strong mean reversion
to a fixed level, forecasts for all horizons would be too insensitive to recent inflation, whereas if the inflation
model is persistent (say, because it contains a unit root), then forecasts would be excessively sensitive to
inflation news.

The shifting-endpoint model is a compromise whose multiperiod forecasts both reflect the main dynamic
features of the inflation process, and also account for the behavior of available survey data. The endpoint is
an unobservable variable that measures the perceptions of long-run inflation held by economic agents at a
given point in time, and that directly affects actual inflation and its forecasts for arbitrary horizons. Survey
records are taken as error-ridden versions of such forecasts, and so the inferred inflation expectations would
exploit all available information from inflation and surveys.

The remaining of the document is organized as follows. Section 2 presents the shifting-endpoint model,
discusses its main properties and describes some variants. The model can be represented in state space form,
and the moving nature of the forecast horizons in FEFs implies that this representation is time-varying. The
Kalman filter can be used for estimation and inference, even when survey expectations are sampled less
frequently than inflation. Section 3 presents empirical results for four Latin American countries, using data
from the Latin American Consensus Forecasts survey. The evolution of the predicted endpoints reveals the
key role that expectations have played in these countries, first to reduce inflation to single-digit levels and
then to keep it stable, as well as the importance of the Central Bank’s credibility in anchoring long-run
expectations. Finally, section 4 presents concluding remarks.

4 This is indeed the case in our empirical application below. Survey measures in all the Latin American countries of our sample
correctly anticipated the trend decline in inflation during the 1990s. This is remarkable, since purely backward looking or adaptive
expectations would tend to systematically over-predict inflation in such a context.
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2 Econometric framework

Next, we describe the workings of the shifting-endpoint model for inflation and discuss its statistical
treatment. We also present model variants that can be evaluated within the same analytical framework. In
what follows xt | s denotes the expectation of a random variable xt , formed by economic agents conditional
on the information up to and including period s.

2.1 Shifting-endpoint model for inflation

The limiting conditional forecast of inflation is given by

µt = lim
h→∞

πh | t , (1)

where t denotes the time subscript of the information set on which expectations are conditioned. Thus, given
information up to and including period t, µt measures the perceived level at which inflation would eventually
stabilize, i.e. the endpoint.

We assume that long-run expectations are formed in a weakly rational manner, in the sense of Nordhaus
(1987): changes in perception are unpredictable or, more formally, µt is a martingale with respect to its own
past. In other words, if agents can anticipate future changes to their long-run perceptions, then such changes
should be immediately incorporated in their current perceptions, as in the law of iterated expectations. This
behavior can be satisfactorily modelled by assuming that the endpoint follows a random walk,

µt = µt−1 + νt , (2)

where νt is an innovation satisfying νt | s = 0 for s < t. The endpoint µt is treated as an unobservable variable,
and the main purpose of the analysis is to infer about its state using inflation and survey data.

The notion of a varying endpoint for expected inflation can be easily accommodated in a parametric
forecasting model. Let πt denote inflation at period t and suppose that the expectations in period t are formed
using information up to and including period t − 1. Define also Φ(L) = φ1 + φ2L + · · ·+ φp−1Lp−2 + φpLp−1

as a polynomial in the lag operator (Lkπt = πt−k ), and assume that the roots of 1 −Φ(z)z = 0 lie outside the
unit circle (we make some allowance for a unit root in 1 − Φ(z)z later). Inflation dynamics are captured by

πt = Φ(L)πt−1 + ( 1 − Φ(1) )µt−1 + ε t , (3)

where ε t is an inflation shock, assumed to be uncorrelated with νt at all lags and leads. Under the
aforementioned assumptions, πt − µt−1, the deviation of inflation from its latest perceived long-run level,
is a zero-mean stationary process. By construction, given the information of period t−1, inflation is expected
to converge to µt−1 as the forecasting horizon increases. Thus, the dynamic specification (3) allows us to
disentangle the effects of the shifting-endpoint from short-run fluctuations in inflation, see section 2.5.

2.2 Incorporating survey data

It is convenient to write the forecasting model in companion form. Let

z t =



πt
πt−1
...

πt−p+1



and C =



φ1 φ2 · · · φp−1 φp

1 0 · · · 0 0
0 1 · · · 0 0
...

...
. . .

...
...

0 0 · · · 1 0



, (4)

where z t is a p-vector with current and past inflation data and C is the companion matrix. Let also I p be the
p × p identity matrix, ip be a p-vector of ones and e1 be a unit p-vector with a one in the first element and

3



remaining elements zero. Then, (3) corresponds to the first row of the companion form

z t = Cz t−1 + (I p −C)ip µt−1 + e1ε t . (5)

Multistep forecasts of inflation based on this model are πt+h | t−1 = e1
′z t+h | t−1, where

z t+h | t−1 = Ch+1z t−n + (I p −Ch+1)ip µt−1 . (6)

Survey data registered in period t represent participants’ forecasts conditional on inflation up to and including
period t − 1. Moreover, consider that the survey collects information for m different forecasts Fit , each
associated to a different horizon that may be time varying hit (i = 1,2, . . . ,m). Taking the inflation forecast
from the shifting-endpoint model as an approximation of the survey expectation, we may write

Fit = πt+hi t | t−1 + εit , (7)

where εit is an approximation error that captures discrepancies between the implicit (and unknown)
forecasting model of survey participants and the shifting-endpoint model, as well as possible measurement
errors in survey data. It is important to note that the errors in (7) do not reflect differences between actual
inflation and forecasts. This is because both the model-based forecasts and survey records are conditioned on
t − 1, which implies that cov(ε t , εit ) = cov(νt , εit ) = 0 for i = 1,2, . . . ,m. Thus, unlike forecast errors, there
is no reason to expect them to be serially correlated; hence, cov(εit , ε j s ) = 0 for t , s and any i or j.

On the other hand, revisions of forecasts of different target dates made at the same time are likely to be highly
correlated (see Clements, 1997; Bakhshi et. al., 2005, for a detailed discussion). News at period t that lead to a
revision in the forecast at horizon hit are also likely to produce a revision in the forecast at horizon h j t (i , j).
Following (7), even though an important part of these comovements would be accounted for by changes in the
endpoint, we expect the approximation errors to be contemporaneously correlated σi j = cov(εit , ε j t ) , 0.
Note that whether σi j is zero or not is a straightforward testable hypothesis that can be formally addressed.

2.3 State-space form

The statistical treatment of the model is based on its state-space representation (see Harvey, 1989, ch. 5).
The Kalman filter yields linear least squares predictions of the unobserved endpoint µt based on current
and past observations, along with their corresponding mean square errors.5 Moreover, given the parameters
of the model (φ1, . . . , φp , the variances of νt and ε t , and the covariances among ε1t , . . . , εmt ), a Gaussian
likelihood function can be evaluated from the one-step-ahead prediction errors produced by the Kalman filter.
This function can be maximized numerically, thereby providing (quasi) maximum likelihood estimates of the
unknown parameters.

The law of motion of the unobservable endpoint (2) constitutes the scalar transition (or state) equation. Upon
stacking the shifting endpoint model (3), the conditional forecasts (6) and their relationship with various data
points from surveys (7), we obtain the measurement equations

y t = At z t−1 + Bt µt−1 + wt , (8)

where y t is an (m + 1)-vector that contains current date information on inflation and surveys, At and Bt

are, respectively, an (m + 1) × p matrix and (m + 1)-vector of coefficients, and wt is an (m + 1)-vector of
measurement errors. The entries of At and Bt depend on hit and thus may be time-varying, capturing the
shrinking nature of the forecasting horizon for FEFs. This is the most important difference with respect to the
model analyzed by Kozicki and Tinsley (2001, 2012).

5 If desired, a refined prediction conditioned on all the available information in the sample can be obtained by means of a smoothing
algorithm that uses the output of the Kalman filter.
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More explicitly, let a(h) = e1
′Ch+1 (a p-row vector) and b(h) = 1 − a(h)ip (a scalar). Then,



πt
F1t
F2t
...

Fmt



=



a(0)
a(h1t )
a(h2t )
...

a(hmt )



z t−1 +



b(0)
b(h1t )
b(h2t )
...

b(hmt )



µt−1 +



ε t
ε1t
ε2t
...

εmt



, (9)

where each vector and system matrix in (8) is implicity defined.

It is worth mentioning that although measurement equations (9) are designed to accommodate m different
survey responses at different horizons, they are flexible enough to adapt to many other structures. One case
would be if the surveys contain both REFs and FEFs: for REFs the horizons are fixed hit = hi , whereas for
FEFs the forecasting horizons will vary with t in a deterministic fashion. For instance, in surveys such as the
Consensus Forecasts, the data from month Mt refer to forecasts by the end of year i, with i = 1 being the
current year, so the forecasting horizons (in months) evolve deterministically as hit = 12i − (Mt − 1).

Surveys may also report averages of forecasts over R different horizons. In this case, the corresponding
measurement equation would read Ft = (1/R)

∑R
r=1[ a(hr t )z t−1 + b(hr t )µt−1 ] + εt . We did attempt to

incorporate information of this kind in our empirical application below, but with marginal effects on the
results. Thus, we ignore such forecasts and stick to the model (9) as it stands.

On the other hand, we have implicitly interpreted F1t , . . . ,Fmt as aggregate responses for different forecasting
horizons. This is just for expositional convenience, since (9) can handle responses made by different agents,
by simply allowing subindex i to denote a forecaster/horizon pair. For instance, for two forecasters and
two horizons, F1t ,F2t can represent the results for the first participant, and F3t ,F4t for the second, with
h1t = h3t and h2t = h4t indicating that there are only two target horizons. In this case, more structure to the
measurement error covariances, in the spirit of Davies and Lahiri (1999), may be appropriate. For instance,
by letting εit = Ri + Ht + errorit , where Ri and Ht are, respectively, respondent and horizon effects.6

2.4 Missing data

Generally, survey data are available less frequently than inflation data (which is assumed to be available for
all periods in the sample), so for certain periods some of the observations in the y t vector will be missing.
The treatment of missing observations is perhaps one of the clearest advantages of using the Kalman filter to
process time-series models, as the filter requires only minor modifications to deal with such a problem (see
Harvey, 1989, p. 144).

Consider the case when only m̄t < m forecasts in y t are available at period t, and let Dt be the (m̄t+1)×(m+1)
selection matrix that collects non-missing elements, so for instance y∗t = Dty t is an (m̄t + 1)-vector that
contains observable data. Note that Dt is formed by m̄t + 1 rows of the identity matrix of order m + 1. Then,
upon premultiplying the measurement equations (8) by Dt ,

y∗t = A∗t z t−1 + B∗t µt−1 + w∗t . (10)

where A∗t , B
∗
t and w∗t contain the rows of At , Bt and wt , respectively, that correspond to the available

observations in y∗t . The state variable µt is not affected by the transformation, so the Kalman filter can be
applied normally to the observable system (10) in period t. The missing observations will not contribute to
neither the state predictions nor to the likelihood function.

6 A further extension of the model allows expectations to be formed at different moments. The measurement equation for an
expectation formed with information up to period t − n (n ≥ 1) is Ft = a(ht + n − 1)zt−n + b(ht + n − 1)µt−n + εt . Thus
(8) becomes yt = AtZ t + Bt µt + wt , where Z t and µt stack, respectively, the lags of zt and µt associated to each information
set. The number of columns of the now sparse matrices At and Bt should vary accordingly.
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Figure 2. Inflation and expectations responses to shocks

(a) Inflation shock, ε0 = 1 (b) Endpoint shift, ν0 = 1
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2.5 Signal extraction and the term structure of expectations

From (6) and (7), we can readily verify that

πt+h | t−1 = a(h)z t−1 + b(h)µt−1 , (11)

so that expected inflation is estimated as a linear combination of the latest realizations of inflation z t−1
and the perceived long-run level µt−1. Note limh→∞ a(h) = 0 and limh→∞ b(h) = 1. Thus, as h increases
expectations converge from a short-term forecast dominated by recent history to the endpoint (1). By the
same token, equation (7) implies that (roughly) Fit ' πt−1 + εit for small hit , and Fit ' µt−1 + εit
for large hit . Therefore, in the process of extracting the signal µt , more importance is given to long-term
survey expectations (when available), even though inflation data and shorter-term expectations contain also
information about this hidden state. Kozicki and Tinsley (2012) provide a more detailed discussion on the
information content of the observable variables. See also the discussion surrounding Table 3 below.

These properties of the model are illustrated in Figure 2. For Φ(L) = Φ(1) = 0.85, the figure shows the
response of inflation and expectations formed with information up to period t − 1, to the two shocks of the
system. An inflation shock ε0 = 1 – panel (a) – produces a persistent deviation in the inflation rate from
the endpoint. Given the transitory nature of the shock, for short-run horizons (say, h ≤ 6) expected inflation
reflects the temporarily higher current inflation; in contrast, expectations for longer horizons (say, h ≥ 12)
are virtually unaffected, as agents correctly anticipate that the influence of the shock would vanish almost
completely by the end of the forecast horizon. On the other hand, expectations are sensitive to shifts in the
endpoint ν0 = 1, panel (b). Such a shock causes a sluggish response in inflation, which displays a smooth
transition towards its new long-run level, that in turn affects short-run expectations; on the other hand, the
shift passes-through immediately and almost completely to long-run expectations, as agents can anticipate
that the change in the endpoint will be completely transferred to inflation by the end of the forecast horizon.

The state-space form includes error-ridden versions of (11) for time-varying horizons where survey data is
available. Thus, even though survey data may be limited to infrequently sampled observations and to selected
horizons, once the model is estimated, it can be used to construct a complete term structure of expected
inflation. Put it differently, in practice we only observe some points of the responses shown in Figure 2, but
the model allows us to interpolate the entire profile of responses in a coherent, data-consistent way.

2.6 Model variants

In our empirical exploration, we also analyze three variants of the model within the same state space
framework, in order to highlight the most important features of the shifting-endpoint model that uses
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both inflation and survey data. In particular, the model’s ability to simultaneously explain inflation and
expectations data under competing specifications.

The first variant assumes a constant endpoint (CE), µt = µ. This can be achieved by setting var(νt ) = 0
and treating the initial condition µ0 = µ as an additional parameter to be estimated. Provided that Φ(1) < 1,
inflation is treated as a stationary, mean-reverting process.

In contrast, the second variant imposes a unit root (UR) to the autoregressive polynominal in (3), Φ(1) = 1.
In this case Ch ip = ip for any h > 0, and the companion form (5) reduces to z t = Cz t−1 + e1ε t . Since it
turns out that Bt = 0 in all measurement equations, µt is not identified and cannot be computed with the
Kalman filter. However, µt can be reformulated to be the limiting forecast which continues to exist: it can be
verified that limh→∞C

h = C̄, where CC̄ = C̄, and so µt = e1
′C̄z t . The endpoint is a moving average of the

most recent inflation observations, and Kozicki and Tinsley (1998) show that, following the definition in (1),
it corresponds to the permanent component of the Beveridge-Nelson decomposition of the inflation equation.
The Kalman filter can still be used to evaluate the likelihood function in this case, under var(νt ) = 0.

The last variant is a model of inflation that ignores the information from surveys. The result is a univariate
generalization of the local level (LL) model described in Harvey (1989, ch. 2), where inflation is decomposed
as the sum of a random walk (the endpoint) and a zero-mean stationary component. This variant can be easily
treated by considering a single measurement equation, the first row in (9), or by making the variances of the
approximation errors arbitrarily large, var(εit ) = κ → ∞ for all i.

3 Application to Latin American countries

After a long history of high inflation, during the 1990s many Latin American countries adopted a series
of reforms that would eventually bring inflation down to single-digit levels (see, inter alia, Mishkin and
Savastano, 2001). Even though experiences may differ in the detail, many commonalities across countries
can be identified (see Corbo and Schmidt-Hebbel, 2001; Quispe-Agnoli, 2001, for comprehensive surveys).
First, to facilitate the reduction of inflation, and to isolate monetary policy from political pressures, these
countries granted independence to their Central Banks at an early stage of the stabilization effort. Then,
economic authorities would adopt a rudimentary form of inflation targeting, typically by simply announcing
numerical targets (or official forecasts), as a first attempt to anchor market expectations. The process of
disinflation would be gradual as the Central Banks improved its credibility and built reputation as inflation
targeters. Once the conditions to consolidate price stability were reached, the Central Banks would adopt
a fully-fledged inflation targeting regime, characterized by the announcement of long-run targets and the
abandonment of any other nominal anchor (typically, currency depreciation or money growth).

We estimate the shifting-endpoint model of section 2 using data from four successful Latin American inflation
targeters: Chile, Colombia, Mexico (all of them adopted the regime in 1999) and Peru (who adopted the
regime in 2002).7 Following Vega and Winkelried (2005), the Central Banks began announcing numerical
targets long before the definite adoption date: 1991 in Chile, 1995 in Colombia and Mexico, and 1994 in
Peru. Thus, by analyzing the evolution of the estimated endpoints, our empirical application aims to assess
the role of expectations in the initial disinflation and the subsequent periods of price stability.

3.1 Data

Monthly inflation corresponds to the percent variation of the officially targeted Consumer Price Index. These
data and the numerical targets come from each Central Bank’s website.

Survey data, on the other hand, are extracted from the well-known Latin American Consensus Forecasts
reports. These reports are available bi-monthly (alternate, even months) between April 1993 and April 2001,

7 Brazil is also an important Latin American inflation targeter. Its inflationary experience is different from those of the listed
countries; enough to deserve a special treatment. Hence, for the same of brevity, the results for the Brazilian case (which are
available upon request) are not reported.
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and monthly thereafter (since May 2001). Each report surveys a number of prominent financial and economic
analysts and publishes their individual forecasts as well as simple descriptive statistics. The focus of our
analysis is on the mean (i.e. the “consensus”) forecast Fit . The surveys are conducted by the middle of the
month, after the inflation figure for the previous month is released. Thus, in agreement with the shifting-
endpoint model assumptions, in period t expectations are formed with information up to period t − 1.

The typical issue of the Latin American Consensus Forecasts provides forecasts for current-year and next-
year inflation. Denoting the year of the survey as year 1, these forecasts correspond to the measurements
F1t and F2t . We refer to these variables jointly as “short-term” forecasts. In addition, the April and October
issues include also “long-term” (up to 10 years ahead) forecasts. Forecasts for years 3 to 6 (F3t ,F4t ,F5t ,F6t )
are explicitly published, whereas forecasts for longer horizons (from year 7 to year 11) are reported as an
average. In practice, such averages show little variation with respect to F6t , and are thus discarded from
our analysis with no consequential effects on our results. Thus, depending on the month, the measurement
equations have a minimum of m = 2 horizons and a maximum of m = 6. As mentioned earlier, the forecasting
horizons evolve deterministically as hit = 12i − (Mt − 1), where Mt denotes the month of the survey.

Our sample spans from February 1997 to December 2013. Thus, for each country, the estimations are based
on 203 observations on inflation, 178 observations on “short-term” forecasts and 34 observations on “long-
term” forecasts.

Figure 3 displays some of the data. The first row plots the evolution of the FEFs as they approach the inflation
outturn (to avoid clutter only the events 2004, 2007, 2010 and 2013 are displayed). For a given event, each
point corresponds to a different survey. The second row presents the data as they enter the regression model:
the short-term forecasts F1t and F2t , and the longest-term forecast F6t , all of them reported at the same time
t. Each month is associated to different forecast horizons, so the strong swings in F1t and F2t are due to a
change in the event to be forecast (say, h1t = 1 in December and then h1t = 12 in January).

A preliminary analysis of these survey provides prima facie evidence of the adequacy of the shifting-endpoint
model to explain the behavior of measured expectations. An important implication of the model is that
the deviation of inflation from the endpoint is expected to be a mean-reverting process around zero. Also,
short-term forecasts would be influenced by recent news in inflation, whereas long-term forecasts should be
determined by the endpoint. Consider the regression equation

Fit − F6t = αi + βi (πt−1 − F6t ) + errort , (12)

where πt−1 denotes the latest inflation figure (the forecast origin), and F6t is the the forecast corresponding to
the longest horizon available, which serves as a rough proxy of the moving endpoint. The shifting-endpoint
model is to be regarded as a reasonable description of how expectations are formed if both αi and βi approach
zero as i increases. This is exactly the pattern that emerges in Table 1. The estimates decrease with i in all
cases, and often loose statistical significance for i ≥ 3 onwards (note that the sample size for these estimations
is constrained by the 34 observations available for long-term forecasts, so the results should be taken as
indicative rather than conclusive).

3.2 Estimation results

Next, we present the estimation results of the shifting-endpoint model (SE), and its variants (CE, UR and
LL). We use a diffuse prior (i.e. setting the initial state variance to a very large number) to initialize the
Kalman filter. In all cases, the lag-length of the AR model for inflation is set to p = 13, which is the value
that minimizes the Schwarz information criterion. Also, the null hypothesis that the approximation errors in
(7) are not contemporaneously correlated was contrasted with an LR test, and categorically rejected in all
instances. Hence, these covariances are estimated unrestrictedly.

For each model, Table 2 presents the sum of the estimated autoregressive coefficients Φ(1) as a measure of
persistence of inflation around the endpoint, which is restricted to Φ(1) = 1 in the UR model; the estimated
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Table 1. Mean reversion of forecasts

F1 − F6 F2 − F6 F3 − F6 F4 − F6 F5 − F6

Chile α 0.257 (0.147)* 0.181 (0.070)* 0.083 (0.047)* 0.055 (0.039) 0.013 (0.023)
β 0.565 (0.119)* 0.116 (0.035)* 0.026 (0.027) 0.007 (0.021) 0.004 (0.016)

Colombia α 0.525 (0.201)* 0.451 (0.194)* 0.276 (0.180) 0.166 (0.163) 0.036 (0.096)
β 0.696 (0.090)* 0.413 (0.110)* 0.262 (0.128)* 0.159 (0.112) 0.066 (0.048)

Mexico α 0.101 (0.113) 0.005 (0.085) 0.028 (0.054) 0.019 (0.037) 0.016 (0.034)
β 0.732 (0.058)* 0.395 (0.032)* 0.204 (0.020)* 0.096 (0.016)* 0.037 (0.017)*

Peru α 0.422 (0.156)* 0.357 (0.143)* 0.201 (0.099)* 0.077 (0.053) 0.015 (0.046)
β 0.544 (0.111)* 0.191 (0.095)* 0.059 (0.062) 0.045 (0.032) 0.015 (0.032)

Notes: Least squares estimates of equation (12), using the 34 available observations for long-term forecasts. HAC standard errors in
parenthesis. “*” denotes coefficients different from zero at a 5% significance level.

standard deviation of the inflation shock, std(ε t ); the estimated standard deviation of the endpoint shock,
std(∆µt ), which is restricted to std(∆µt ) = 0 in the CE and UR models; and, to save space, the average
standard deviation of the approximation errors of the m = 6 survey measures, std(εt ). In addition, as
measures of fit, the Table presents the root mean square error (RMSE) of the one-step ahead predictions
produced by the Kalman filter for the observed data, i.e. inflation and survey forecasts. In the case of the LL
model, we proceed in two steps: first, the inflation parameters were estimated using only the first measurement
equation; second, the remaining output in the Table was obtained conditional on the first-stage estimates.
Figure 4 shows the predicted endpoints, evaluated at the maximum likelihood estimates.

There are various similarities in the estimations across countries. In all cases, the UR model does a relatively
good job in explaining actual inflation, but performs rather poorly when it comes to survey data. This finding
is related to the mean-reverting properties of expectations discussed in Table 1 which, by construction, the
UR model overlooks. In this respect, the LL model constitutes an improvement upon the UR model. Figure
4 reveals that the predicted endpoint in the LL model can be regarded as a de-noised and smoother version
of the moving average endpoint of the UR model; inflation expectations revert quickly from the observed
data to such an estimated trend (the sum of autoregressive coefficients is Φ(1) ' 0.5 in all cases), which
improves the model’s performance to account for the variability of short-term forecasts. Long-term forecasts,
nonetheless, are also poorly predicted in the LL model, as survey data appear to be much less sensitive to
inflation news than what is implied in the LL model.

On the other hand, in the CE model the sum of autoregressive coefficients Φ(1) is significantly higher than in
the LL and SE models. In the latter specifications, some of the persistence in observed inflation is attributed
to the dynamics of a time-varying mean, and some to short-run deviations from this mean. Since inflation in
the CE model is assumed to revert to an imposed constant level, the process is unsurprisingly estimated as
highly persistent. Thus, short-term forecasts (especially for the current year) are similar to those of the UR
model. However, with the exception of Colombia, the performance of the CE in fitting survey data improves
rapidly and dramatically as the forecast horizon increases. A unit increase in i (the year index) implies an
increase of hi+1, t − hit = 12 months in the associated forecast horizon, so despite the large values of Φ(1),
current inflation becomes less influential even for small values of i. As a result, the CE estimates turn out
to be closer to the sample average of long-term forecasts than to the sample average of observed inflation
(see Figure 4), and the CE model does remarkably well in explaining long-term forecasts in Chile, Mexico
and Peru. For these countries, inflation and expectations have been fluctuating (albeit, persistently) within a
relatively narrow range for most of the sample period. In contrast, inflation trends downwards during all the
sample period in the Colombian case, making the CE model unsuitable.

The SE model is a compromise between the LL and CE models. Survey information points out to a smoother
endpoint than the LL model, as shown in Figure 4, which is manifested in a reduction of the standard deviation
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Table 2. Estimation results

Model specification RMSE RMSE survey forecasts
Φ(1) std(ε t ) std(∆µt ) std(εt ) Inflation 1 2 3 ≥ 4

Chile CE 0.931 (0.022) 0.379 0.000 0.473 0.38 0.88 0.93 0.36 0.24
UR 1.000 (0.000) 0.387 0.000 1.417 0.39 1.07 1.37 1.62 1.64
LL 0.544 (0.043) 0.311 0.286 1.038 0.46 0.64 1.06 1.17 1.24
SE 0.677 (0.040) 0.405 0.175 0.844 0.43 0.57 0.78 0.56 0.54

Colombia CE 0.979 (0.011) 0.309 0.000 1.322 0.33 0.99 0.98 1.50 1.62
UR 1.000 (0.000) 0.333 0.000 1.570 0.34 1.07 1.03 1.44 1.69
LL 0.480 (0.054) 0.242 0.257 1.122 0.43 0.41 0.83 1.11 1.45
SE 0.713 (0.051) 0.324 0.193 0.925 0.36 0.53 0.62 0.77 1.06

Mexico CE 0.981 (0.007) 0.278 0.000 0.798 0.28 0.60 0.72 0.60 0.80
UR 1.000 (0.000) 0.292 0.000 1.750 0.29 0.82 1.29 1.80 2.21
LL 0.564 (0.051) 0.219 0.241 1.263 0.34 0.58 1.01 1.68 2.08
SE 0.790 (0.031) 0.291 0.161 0.987 0.30 0.51 0.66 0.76 1.01

Peru CE 0.949 (0.015) 0.334 0.000 0.745 0.34 0.94 0.91 0.76 0.59
UR 1.000 (0.000) 0.346 0.000 1.037 0.35 0.97 0.96 1.26 1.25
LL 0.511 (0.041) 0.268 0.234 0.819 0.41 0.50 0.82 1.05 1.11
SE 0.693 (0.038) 0.369 0.143 0.606 0.39 0.50 0.60 0.78 0.74

Notes: Maximum likelihood estimates, using data from February 1997 to December 2013. All models use p = 13. CE: Constant
endpoint model; UR: Unit root model; LL: Local level model; SE: Shifting-endpoint model. Φ(1): sum of the autoregressive
coefficients, Φ(1) =

∑p
i=1 φi , (robust standard errors in parentheses) restricted to Φ(1) = 1 in the UR model; std(ε t ): standard

deviation of the inflation shock; std(∆µt ): standard deviation of the endpoint shock, restricted to std(∆µt ) = 0 in the CE and UR
models; std(εt ): average standard deviation of the approximation errors of the m = 6 survey measures; “RMSE” is the root mean
square error of the one-step ahead predictions produced by the Kalman filter inflation and survey forecasts for years 1 (current), 2
(next), 3 and ≥ 4 (subsequent) (the column labeled “≥ 4” shows the average RMSE for the remaining 3 long-term forecasts).

of the endpoint shocks from std(∆µt ) ' 0.25 to std(∆µt ) ' 0.17 and, more importantly, to significant
increases in the noise-to-signal ratios q = var(ε t )/var(∆µt ) from q ' 1 to q ∈ [2.8,6.7]. Given the actual
inflation persistence, a smoother endpoint is traded with an increase in Φ(1), from Φ(1) ' 0.5 to Φ(1) ' 0.7.
With this, the SE model accounts for short-term forecasts variability as much as the LL model, while clearly
outperforming the LL model to explain long-term forecasts. When compared to the CE model, the SE model
performs considerably better when it comes to short-term forecast but, except in the Colombian case, it is
outperformed when predicting long-term forecasts. However, the improvement in the short-term fit of the SE
model seems to more than compensate the moderate deterioration in fitting longer-term expectations.

From the Kalman filter, the endpoint is determined following the recursion µt = µt−1 + K tvt , where K t

is the Kalman gain and vt is the vector of prediction errors of the observed data. Thus, K t measures how
these errors are weighted to arrive to an updated inference about the unobserved state µt . To get a better
understanding of how the endpoint is finally determined in our application, Table 3 presents the implied
Kalman gains in the SE model for selected dates, and for the case of Peru (an identical pattern is found for
the remaining countries).

By construction, the gain is exactly zero for missing data (all survey data in March 2001 and long-term
forecasts in February 2001, September 2006 and March 2013), which follows from the adjustments described
in section 2.4. On the other hand, upon comparing the results from February to April 2001, September to
October 2006 or March to April 2013, it can be seen that whenever long-term forecasts are available, the
Kalman filter places more weight to them, and less to actual inflation, to predict the endpoint. This is exactly
what one would want: long-horizon expectations should provide more information about the endpoint and,
thus, should receive more weight in the filtering process. When only short-term forecasts are available, the
gains for F1 and F2 are of comparable magnitude and always higher to that of inflation. When long-term
forecasts become available, the gain of F2 halves while the gain of F6, the furthest forecast, increases to a
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Table 3. Kalman gains in the Peruvian SE model

Inflation F1 F2 F3 F4 F5 F6

February 2001 0.1036 0.1767 0.1661 0 0 0 0
March 2001 0.1187 0 0 0 0 0 0
April 2001 0.0654 0.1410 0.0720 0.0167 0.0364 0.0669 0.1364

September 2006 0.0640 0.0985 0.0947 0 0 0 0
October 2006 0.0528 0.0992 0.0550 0.0160 0.0220 0.0568 0.1034

March 2013 0.0621 0.1047 0.0993 0 0 0 0
April 2013 0.0492 0.1062 0.0542 0.0126 0.0274 0.0504 0.1028

Notes: The Kalman gain measures how prediction errors of the observed data are weighted in order to get an updated prediction of
µt . The Table shows these weighs for selected dates. The gain is set to zero for missing values. Survey data are not available for
March 2001, whereas long-term forecasts are only available in April and October.

level close to the gain of F1. Interestingly, since the prediction errors are typically larger for F6 than for F1
(see the RMSE results in Table 2), the absolute magnitude of the correction would also be larger for F6 than
for F1. Thus, when F6 is observed, the Kalman filter updates the endpoint prediction towards it.

3.3 Inflation targeting

Figure 5 shows the evolution of the predicted endpoints along with the inflation targets for each country
shifted forwards one year. For instance, Chile’s inflation target was 3.5 percent for 2000, and this value
appears during 1999 in the figure.8 The purpose is to illustrate the joint evolution of the endpoint and the
announcements of the inflation targets, and thus we are assuming that the Central Banks have announced
their targets one-year in advance. This was the actual practice during disinflation; however, all Central Banks
have progressively increase the horizon for the targets as inflation have reached long-run levels.

During disinflation, roughly until 2002, the announcements have clearly served as a benchmark for private
economic agents’ long-run forecasts. Shocks to the endpoints bears an almost one-to-one correspondence to
changes in the announced targets.

From 2002 onwards, long-run expectations have lied within the target ranges in almost all instances. The
remarkable exception is year 2008, especially for Chile and Peru. During 2007 and most of 2008, these
economies where hit by a sequence of large food price and oil shocks that deviated inflation from its target.
The shocks were persistent enough so that they affected long-run perceptions. However, the endpoint returned
rapidly to the inflation targets by late 2008 as the result of both aggressive increases in the monetary policy
rates, and the start of the global financial crisis. It has remained within the target range ever since.

Given these dynamics, our results support the conclusion that the countries in our sample are good examples
of successful inflation targeting experiences (see Corbo and Schmidt-Hebbel, 2001). Their Central Banks
have managed to establish a credible regime of stable inflation with anchored expectations.

4 Closing remarks

Fixed-event forecasts provide a widespread, yet unexplored, source of inflation expectations in many
countries. The main difficulty is that the very structure of the FEFs, especially the fact that they correspond
to moving forecast horizons, hinders their direct applicability in empirical work. To overcome this hindrance,
and to infer about the term structure of inflation expectations from FEFs, we have proposed an extended
version of the shifting-endpoint model of Kozicki and Tinsley (2012). Even though the resulting model

8 Chile announced point targets until 2000; thereafter, the inflation targets have been published as ranges (actually, central values
surrounded by a symmetric tolerance level). The same occurred in Colombia and Mexico until 2002. Peru has announced target
ranges during all the sample period.

13



Figure 5. Predicted endpoints and the announcement of inflation targets
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Notes: The scale of the vertical axis is the same for Chile/Peru and Colombia/Mexico.

is time-varying, it can be easily handled with the Kalman filter, even for irregularly sampled survey
expectations. By fitting the shifting-endpoint model to Latin American data, we conclude that it is able
to jointly account for the behavior of actual inflation and survey records, often outperforming competing
specifications. Our empirical exploration also suggests that survey FEFs provide a valuable source of
information on expected inflation, complementary to that contained in historical records of inflation.

Given the availability of FEFs, exploring alternative methods to readily and effectively use such data
in econometric models is likely to have important practical implications. We hope our analysis to be a
meaningful contribution to this promising research agenda.
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