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Abstract

The Central Reserve Bank of Peru (BCRP) has been targetftajion for more than a decade,
using Lima’s inflation as the operational measure. An adtéva indicator is countrywide inflation,
whose quality and real-time availability have improved sahtially lately. Hence, given these two
somehow competing measures of inflation, two interestingypquestions arise: what have been the
implications for national inflation of targeting Lima’s iafion? Would shifting to a national aggregate
significantly dfect the workings of monetary policy in Peru? To answer thegstipns, we estimate an
error correction model of regional inflations and investigiaow shocks propagate across the country.
The model incorporates (i) aggregation restrictions winereach regional inflation isfiected by an
aggregate of neighboring regions, and (ii) long-run restms that uncover a single common trend
in the system. The results indicate that a shock to Lima’stfiofh is transmitted fast and strongly
elsewhere in the country. This constitutes supportingexngé to the view that by targeting Lima’s
inflation, the BCRP hasfiectively, albeit indirectly, targeted national inflation.
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1 Introduction

The Central Reserve Bank of Peru (BCRP) has been targefiatjon for almost two decades. In the early the 90s,
it embarked into a disinflation programme that brought irdlatiown from hyperinflation (around 140 percent in
1991) to single-digit levels (6.5 percent in 1997) and ewalty to international levels (3.7 percent in 1999). The
process of disinflation was gradual as the BCRP built refmutats an inflation targeter. Aimed at reinforcing its
ability to anchor inflation expectations, in 1994 it starggthouncing yearly target ranges and in 2002 it adopted a
fully-fledged inflation targeting regime, where long-rurgiets were announced (sBessini and Vega2008.

The operational measure of inflation used by the BCRP hasyallvaen the change in the Consumer Price Index
(CPI) of the Peruvian capital city, Lima. There were goodsogs for this choice. Firstly, the Peruvian economy
is heavily centralized: Lima concentrates about a thirchefdountry’s population and used to represent more than
70 percent of national expenditure. Thus, it seems reagot@believe that for practical purposes Lima’s inflation
could serve as a proxy for national inflation (F&#nas et. al.2010. Secondly, even though national CPI data are
available, its timing of publication used to poséidulties for the real-time monitoring of the state of the emosy.
Historically, whereas the definitive Lima’s CPI figure hashaeadily available at the first working day of the
following month, the release of the national CPI has beejestitp delays and often to revisions.

However, this situation may have changed. In the last det¢hdéeruvian economy has grown at a healthy average
annual rate of 6.5 percent, with many provinces growing at\am faster pace. Even though the country remains
centralized with Lima amounting to/2 of national expenditure, the economic importance of aefpaovinces

has increased significantly, thereby bridging the inconpewith respect to Lima. On the other hand, after major
improvements in survey design and sampling techniquesg starly 2012 the National Statisticgtioe of Peru
(INEI) has committed to publish national inflation as reljahnd timely as that of Lima. These developments have
led local academia and economic press to inquire about flebditly of national inflation, rather than Lima’s, in
conducting monetary policyThis raises two interesting policy questions:

e What have been the implications for national inflation of B@RP targeting Lima’s inflation?
e Would shifting to a national aggregate significanttjeat the workings of monetary policy in Peru?

In order to answer these questions, it is key to quantify helevant the behavior of inflation in Lima is for the
determination of inflation in the rest of the country. Fosthiwe take the purchasing power parity (PPP), which has
been suggested to be adequate when studying pfiegetitials within regions of a country or in a monetary union
(Rogers 2007, as our conceptual framework. In its absolute versionPtRE predicts that, in the absence of trading
costs and other frictions, the price levels in two regioraudthconverge to a same level (dearsley and Weil996
Cecchetti et. 8).2002 for comprehensive surveys). For the Peruvian chimge and Winkelried2009 found
that absolute PPP holds in aboy# ®f all possible pairs of Peruvian cities, at a 10 percentgidicance. Price
level convergence is limited by the transportation cosfdied by an adverse geography and the lack of well-suited
communications infrastructure in some of the Peruvianoregiespecially, the highlands or Sierra).

However, this notion of PPP is not completely useful for ntane policy analysis, where the interest is on the
behavior ofinflation rather than price level flerentials. Thus, we rather focus on the weak, relative orrsf the
PPP that states that once tHEeets of transitory regional shocks fade away, the inflatades in two cities should
converge to an equilibrium rate, regardless on whethertibeks exert permanent discrepancies on the price levels
(see, for exampleBusetti et. al.2006 Beck et. al. 2009.

The goal of this paper is to answer the aforementioned euresshy investigating the dynamic relationships among
regional inflations in Peru, and how they mdjeat the design of monetary policy. In particular, we aim talgt

1 Similar experiences in the past can be found upon exploniegvebsites of the statisticaffices and central banks of other Latin American
inflation targeters. In Colombia, the CPI covered 13 citiesf 1989 to 2008, and 24 cities from 2009 onwards; in Mexi&cifies up
to February 1995 and 46 cities since March 1995; in Chileoupanuary 2009 the CPI was that of Santiago de Chile, thenbrugey
2009 the urban centers of Puente Alto and San Bernardo wewgpiorated, and in February 2010 the CPI became countrywetethe
geographical representativeness of the CPI index useddoetary policy analysis is always taken for granted, to ttierd that we have
failed to find relevant documentation or research relatetlgamplications of these changes in measuring inflation.



whether relative PPP holds among Peruvian regions and, Visether the adjustment towards equilibrium is fast
enough. To this end, we estimate and simulate a vector esrogation model for the inflation rates of 9 Peruvian
economic regions, a model that shows how regional shockmpaie across the country. To achieve a parsimonious
yet dynamically rich specification, we constrain the featbafects from other regions by considering “rest of the
country” aggregates rather than each region individudlhese aggregates are computed using both a geographic
scheme, where the influence of neighboring regions is laiggn that of more distant ones, and an economic
approach, where the importance of a given region is prapmatito its participation in national expenditure. Once
the aggregates are computed, the dynamic relationshipsgthe regional inflations rates can be further analyzed,
and in particular it can be assessed whether the data aemdrjwvcommon inflation trends.

The increase in globalization over the last decades hadidtiggd the pervasiveness of international linkages in the
world economy, and the importance of capturing those liekdg empirical models (see, among oth&tléiptt and
Fatas 1996. As a result, there is a large literature exploiting sudenmlationships, with its most popular thread
being the so-called global VAR (GVAR) advancedResaran et. a(2004), where “rest of the world” aggregates
are computed using trade weights. Even though our modepipgoach is related to the GVAR, there at least two
important methodological fferences. Firstly, our model is smaller as it includes onélbibe per unit (regional
inflation). Although this prevents us to label shocks moregately (for instance, supply versus demand shocks),
it allows us to formally test the aggregation hypothesis théaken for granted in the GVAR literature. Secondly,
our identification strategy ffers in that we are able to identify relevant shocks (for imsta a shock to Lima’s
inflation) from the long-run properties of the system.

We find strong evidence on the importance of shocks to Linmffation in influencing pricing decisions elsewhere
in the country. In particular, most of the variability in im@lual regional inflation rates is driven by the evolution
of a common trend that can be identified from the evolution iohd’s inflation. Furthermore, it is found that
convergence towards this trend is fast, well within the ntarnepolicy lag (i.e., the time it takes for a monetary
policy action to #ect inflation, which is believed to be between one and twosjediherefore, given such active
correction mechanisms, we can conclude that by targetingalsi inflation the BCRP has indirectly promoted
inflation stability in the whole country.

The remainder of the paper is organized as follows. Se@iorotivates the discussion by briefing stylized facts
in the data. SectioB discusses methodological issues and develops a vectorcerrection model that allows for
rich feedbacks parsimoniously. Furthermore, formal testthe aggregation restrictions and on the relative PPP are
proposed. Sectiod presents estimation results, and analyzes ffexis of a shock originated in Lima. Sectibn
gives closing remarks and avenues for further research.

2 A glimpse of the data

The INEI publishes CPI data for the 25 largest cities of theP24uvian Departments (administrative divisions)
on a monthly basis. In order to work with a manageable numbenits, we use the economic classification of
Peruvian cities int;n = 9 economic regions proposed Bonzales de Olart€2003. This classification is based
both on historical considerations (the regions are fornyecbintiguous Departments) and, importantly, on economic
grounds, such as market articulation and integration.

The economic regions are depicted in Figdreogether with the weights used by INEI in computing natlona

inflation, based on expenditure surveys. As mentioned, ligviay far the most important region in the country,

with a share of 66.02 percent. It is followed by the two ecomooenters located at regions 4 (La Libertad and
Ancash) and 6 (Arequipa, Moquegua, Tacna and Puno), eabhavghare slightly above 7 percent. The share of
each of the remaining 6 regions varies between 2.21 (regiamd 3.93 (region 9) percent. It is worth mentioning

that these shares correlate strongly with the distributiopopulation across the country.

The data run from 1996 to 2011, about 190 observations alffestng for initial conditions. Recall that throughout
the sample period, the BCRP has been targeting Lima’s ioiflalin our empirical analysis below, inflation is defined
as the annualized monthly percent change of each CPI iRded200 logP;/P:-1). However, to ease visualization

in this section we describe the smoother year-on-year, ré@8dogP;/Pi_12).



Figure2(a) shows the evolution of Lima’s inflation, together witte thaximum and minimum rates found among
the remaining 8 regions. Given the importance of Lima, at $leale national inflation isfiicult to distinguish from
that of Lima (with the exception of a few episodes) and hesawot included in the graph. It is notorious that the
three inflation series share many common features. In p&tjchey tend to move in tandem (their turning points
are virtually the same with small ffierences of about one or two months) and their variations faceraparable
magnitudes. Thus, at first glance, the inflation rates seee triven by a common trend or, in other words, the
relative PPP seems to be a feature of the data, a point thahisfly addressed below.

There are, of course, episodes of discrepancies thatt alzeiable, appear to be temporary. Two are worth
highlighting. The first one occurs in 1998, when the countag\nit by a particularly severe EI Nifio phenomenon.
The economic costs of El Nifio relate to disruptions in adgnizal and fishing production, and to direct damages
to infrastructure due to floods, and are often concentrateatld northern regions of the country (2, 3 and 4) that
are closer to the equator. These regions experienced apéakation that was reverted as the climate conditions
returned to normality in 1999.

The second episode corresponds to the period 2007 to migl-20@ is the consequence of two related economic
phenomena. The first one is the commodities prices boom sgétk by international markets, mainly due to
boosting demand in emerging markets like China. The magmiaind persistence of these shocks passed-through
regional prices unevenly, mainly because the share of fotitel CPI is larger in provinces than in Lima, a fact that
partially explains why Lima registered the lowest inflati@te during this period.

Moreover, preliminary figures from INEI on regional outphbsy that during the period from 2005 to 2008, Lima
grew at about 7.5 percent per annum, whereas regions asipaeqiusco and La Libertad grew at rates closer to
8 percent, and even more successful locations such as Meaatyave 9 percent. This strong expansion in regional
output (and demand) was boosted by the extraordinarilyrédote conditions the country faced as a commodity
exporter. This gives an indication that many regions woudsehbridged the income gap with respect to Lima
relatively quickly, inevitably generating inflationarygssures at the regional level. Moreover, anecdotal evelenc
points out to conjecture that the inflationary pressures heaye been magnified by initial conditions,catch-

up gfect In particular, prices that were lower in provinces (beeaata Balassa-Samuelsoffext) would have
converged to levels close to those of the capital as the presigrew richer, thereby generating further inflation.
Nonetheless, the inflationary pressures brought by thesegses vanished rapidly after the financial international
crisis was triggered by the collapse of Lehman-Brotherstie-2008.

Figure2(b) depicts inflation deviations from the national rate felested regions from both ends of the country. It
can be seen that inflation deviations in northern region Zranee closely related to those of neighboring region 3
than to those of the more distant regions, for instance 6 8SirBilarly, the relationship between inflation in any of
the southern regions 6 and 8 is much closer than that of agrortiegion with a southern one. Thus, an important
conclusion from the visual inspection of these series isgkagraphy seems to matter. Regional shocks, or even
the responses to aggregate shocks ffedént regions, are likely to depend on location. This aodéi feature of

the data will prove useful for parsimony in the empirical lgges below.

3 Methodological issues

This section presents the econometric framework used &siigate feedbacks amongst the inflation ratem of
regions in a country. Two major points are considered:rigsind the identification of structural shocks.

Regarding testing, aggregation restrictions are impostma standard, potentially large reduced form VAR of
inflation rates, and we propose a test to formally assess slugiificance. These restrictions promote parsimony
while maintaining the dynamic feedback to the inflation riat@ given region from the inflation rates in the rest
of the country. Secondly, we derive a test for long-run hoemaity restrictions using the error correction form of
the VAR model. In the context of a VAR model of inflation ratés)g-run homogeneity can be understood as the
fulfilment of the weak version of the PPP hypothesis, wheedditierences between inflation rates are stationary.

It is important to emphasize that we have been careful ingsiog testing procedures that are robust to the



stationarity properties of the data. In particular, both @iggregation and long-run homogeneity hypotheses can be
tested using standard results from classical regressemmyttas the statistics involved are asymptotically Ganssia
or chi-squareregardlesson whether the data are stationary or not. Technical detelshown in the appendix.

The error correction form of the VAR provides a suitable fafation to infer the characteristics of the common
trends driving the data. In particular, we focus on the casere/the inflation rate in a single reference region does
not respond to disequilibria (deviations from the relatReP) elsewhere. Here, a shock is to be regarded as having
permanent fects as long as itfects the inflation in the reference region, and is dubbedaasitory otherwise. It
follows that the shock to the reference region can be eagiytified using the permanent-transitory decomposition
advanced irGonzalo and Ng2001).

3.1 The aggregation hypothesis
Our starting point is the reduced form VAR(model

p
Vi = Z ArYir + &, (1)
r=1
wherey; is ann x 1 vector of endogenous variables whagé element corresponds to the inflation of region
in periodt, A; (r = 1,2,..., p) are codicient matrices and; is the vector of mutually correlatei statistical
innovations. The covariance matrix &fis ann x n positive define matrif,.

It is well-documented that the usefulness of a dynamic méklel(1) may be limited in finite samples due to
the proliferation of parameters that need to be estimatetkdd, each additional lag implies the estimatiomof
codficients, and these may be poorly estimated with the sampes gipically encountered in applications. Thus,
promoting parsimony by imposing meaningful restrictionsmatricesA, is likely to improve the inferential content
of testing procedures based on the VAR system. This is th@ogerof aggregation restrictions, where given weights
are used to construct averages that maintain feediféatt® across regions.

Consider an aggregate composed byrthel variables iny; other thany;; (i = 1,2,...,n),
n n
Xt = Zwijyj,t where Z Wij = 1 and w; = 0. (2)
j=1 j=1

The normalization that the weights sum to one is for algebcanvenience and involves no loss of generality. We
maintain the assumption that the weighig arenot estimated jointly withA,, otherwise the linearity in the VAR
model may be lost with aggregation. This situation corresigdo either non-random weights or stochastic weights
that are predetermined, i.e. its determination is indepenftome;.

Take thei-th equation of the unrestricted VAR
P P n
Yie= > @i Wier + Y. > &Ny + &g, ®3)
r=1 r=1 j#i

wherey;; is thei-th element ofy;, &i; is thei-th element ofs;, anda;j(r) denotes thei(j)-th element ofA;. In an
alternative, restricted model all dynamic feedbacl; tacome from its own lags and lags of the aggregate,

p p p P n
Vit = Z &ii (NYit—r + Z Ci(NXitr +6&¢ = Z i (NYit-r + Z Z Ci(NWijYjt—r + &t 4)
r=1 r=1 r=1

r=1 j#i

Clearly, if g;j(r) = ci(r)w;j then the restricted moded)is equivalent to the model without restrictiory).(These
p(n — 1) equalities imply a total op(n — 1) — p = p(n — 2) restrictions of the form

gj(r) -

W..
W—”]ak(r):o for j#k k#i and r=12,...,p. (5)
ik



Thus, the aggregation restrictions imply that the elemehtkei-th row of A, are proportional to each other, and
the proportionality factor is given by the ratig; /wix. In other wordsy;; andyx; affect the expected value of future
realizations ofy; ; proportionally to their contributions to the aggregag (

The unrestricted model is obtained by regressin@n thep lags ofy;. This amounts tgn cosficients per equation
and pr? in the entire VAR. On the other hand, in the restricted maogleis regressed on itp lags and thep lags

of the aggregate; ;. Here, each equation hap 2osdficients and the restricted VAR hapr2 codficients. Thus,
the aggregation restrictions can reduce the number dficiamts to be estimated substantially, even for moderate
values ofn. For instance, ifp = 2 andn = 9 then we havepr? = 162 codficients in the unrestricted model, and
only 2pn = 36 in the restricted, a total ofp(n — 2) = 126 restrictions.

The aggregation restrictions can be conveniently reintéed as exclusion restrictions, and this is the basis for
hypothesis testing. After simple manipulations, the oddgiequation ) can be rewritten as

p p P n
Vit = Z & (r)Yit—r + Z Ci(r)Xit—r + Z Z Sij(NYitr + &it» (6)
r=1 r=1

r=1 j#i

wheredij(r) = aj(r) — ci(w; forr = 1,...p, j = 1,2,...,nandj # i. Therefore, the restricted model has
6ij(r) = Ofor allr and j # i. Thus, testing the aggregation hypothesis amounts to hesjoint significance
restrictionsHy : 6ij(r) = 0 using a standard Wald statistic. Note thiagthas the appealing interpretation that once
Xi ¢ is controlled for, its constituentg; have no predictive power of;.

3.2 Long-run homogeneity

The restricted model
p p
Vie= > a@i(Wier + Y G(0Xier + &g, (7)
r=1 r=1

constitutes an ARDL equation that describes the dynamétiogiship betweew; ; andx ;. The long-run multiplier
LRM; = Zle ci(r)/( l—Zle aii(r) ) measures thefiect that a unit permanent deviationxf from its long-run level
has ory; ;. The relative PPP hypothesis betwsgnandx; ; implies the long-run homogeneity condition LRM 1.
This means that inflation in regidn(y; 1) responds to the permanent deviation on the inflation rsedlere X )
proportionally, such that the long-run behavior of thetreéainflation ; ; — X 1) is not dfected, i.ey; ; — X remains
stationary. Note that the fulfillment piairwiserelative PPP conditions, i.g.; — Y Stationary for ali # j, requires
LRM; = 1 for all regions. We return to this point below.

In order to test and impose LRM 1, the ARDL equation can be written in error correction forsn a

p-1 p-1
AYit = =Yi(Yit-1 — Xit-1) + Z ”i)/(r)Ayi,t—r + Z 7 () AXit—r + 6iXi1-1 + &t (8)
r=1 r=1
wherey; =1- 3P ai(r) > 0,7/(r) = - X2, ai(9), 7(r) = X, ., ci(s) andé; = yi(LRM; - 1).

The long-run homogeneity hypothesis can be writterHas: 6; = 0. As shown in appendix B, provided that
(8) is correctly specified (i.egit uncorrelated to the history of:), thet-statistic associated tey has the usual
asymptotic Gaussian distribution, even if the data are tatiomary and so the limiting distribution of the least
squares estimator @f is non-standard. This provides a simple test on the rel&iR®e hypothesis in equation

If i > O then the so-called error correction mechanism is in plaesoy;; responds to deviations from the
aggregatex; ; to restore equilibria in the long-run. The “speed of adjuestih codficient y; tells us the proportion
of the disequilibriumy;; — X;+ which is corrected with each passing period. Note that # 1, then equilibrium
correction occurs in just one period. On the other hang; O corresponds to the case whgredoes not respond
to disequilibria at ally; 1 is long-run forcing As we will see next, this result can be exploited to identiifg trends
driving the dynamics of the system made from the collectibn equations like §).



3.3 Identification of shocks from a reference region
Under the aggregation and long-run homogeneity hypothelsesoriginal VAR model 1) can be written as the
vector error correction model (VECM)

Ayr = Y1 + mAYr2 + ... + Ap-1AYipi1 + &t ()]

where ther matrices are constrained due to the aggregation restricio

Recall that, by the Granger representation theorenHammilton, 1994 p. 581), a system af variables driven by
h stochastic trends can be represented as a VECM 3keith the long-run matridI having rank equal to — h.
This implies that the system contains- h cointegrating relationships.

Let W be then x n matrix that collects the weights;; (recall thatw; = 0). Plugging the definition in2) into (8),
it is easy to verify that matrifI takes the fornII = I'oBg whereI' is ann x n diagonal matrix withy; as thei-th
entry on the diagonal, arfy = |, — W is also am x n matrix. Explicitly,

y» 0 0 - 0 1 -wp -wig - —wip
0 2 0 -+ O || -Ww2a2 1 —Wpz -+ —Wpy

n=| 0 0 ¥ --- 0 -W31 -Wgz 1 - —wgy | (10)
0 0 0 -+ ~Wn1 —Wn2 —Wpz - 1

Let 1, denote arm x 1 sum vector (full of ones). Then, sinf®1, = 1, (W is row-stochastiy, it follows that
Bol, = O, and thusl, is an eigenvector 0Bg associated with a zero eigenvalue. It is easy to show that the
multiplicity of the zero eigenvalue is one, and thus the rahBg is equal ton — 1. Provided thay; > O for at least

n — 1 equations, and hence the ranklgfis eithern — 1 or n, this result implies thall is of rankn — 1 as well. It
follows that in system9), there must a single stochastic trend anel cointegrating relationships,= 1.

The equality in 10) and its implied single common trend is a direct consequencettingd, = 0 for all i in (8):

yi.t IS cointegrated withx; ¢, and since this happens for alit must be the case thgt; is cointegrated with each of
then — 1 constituents ok ;. In other wordsg; = 0 for all i implies pairwise cointegrating relationships of the form
Vit — Yjt ~ 1(0) fori # j, i.e. the fulfilment of the relative PPP for any pair of region

A more familiar VECM representation will haud@ decomposed as the product of a fedilumnrank matrix and a
full row rank matrix, both with rank — 1. We may arrived easily to such a representation if one ottjestment
codficientsy; happens to be equal to zero. Hence, with no loss of genevadityety; = 0, so that

0O 0 --- 0
W21 1 —wpz --- =Wy
v2 O 1
0 .0 —Wa1 —Ws2 s ~Wan
Inm= 73 ) ) ) . ) , (11)
6 0 ) );n —Wn1t —Wp2 —Wpz - 1

or compactlyIT = T'B, wherel is then x (n — 1) matrix obtained by removing the first columnIdf, andB is the
(n— 1) x n matrix resulting from removing the first row &jp. BothI" andB have rankn — 1.

The alternative representation proves very convenienmtarpreting the shocks hitting the system and especially
in identifying the single common trend. The situatipn = 0 andy; > O fori > 1 implies thaty;; is the only
long-run forcing variable of the system and, followi@gnzalo and Granggi995, that this very variable can be
used to describe the properties of the common trend. wlyti eachy;; can be thought of as the accumulation
of a shock with permanenttects plus an idiosyncratic shock that deviaggsrom the common trend. Singg

2 Definell¥ = diag(wX(r), 75(r), .. ., 7i(r)) andIlf = diag()(r), my(r), . .., mi(r)) as then x n diagonal matrices that collect the ¢heients
associated to theth lag dfects in 8). Then,r, = I + II*W, whereW is the matrix of weights defined below. Note that tie n matrix
m, contains only B free parameters.



will not adjust to restore disequilibria, then it must bever exclusively by the permanent shock, whergasor
I # 1 not only responds to the permanent shock, so that it kaepsy:: stationary, but also to perturbations that
transitorily takey;; — y1t away from its constant long-term expectation.

Gonzalo and N¢2001) propose a method to express the perturbations of the VECGH a linear combination df
permanent shocks amd- h transitory shocks, the so-called PT decomposition. Thigsabove rationale provides
a simple method to identify shocks that can be attributeed@on 1: since only thé = 1 trend shock @iectsy; t,
then the permanent shock in a PT decomposition can integbest coming from region 1.

More formally, letu; be then x 1 vector whose first entry is the permanent shagk, and the remaining — 1
entries correspond to transitory shocks;. Gonzalo and Nghow thatuy; = Bet, whereasu; ; = I &, wherel™
is a 1x nvector such that*I" = 0. From (11) it is clear thafl™ must be proportional to the first unit vectorif,
i.e. the first row ofl ,. More compactlyu; = Ge;, where the first row ofs is I'* and its lower ( — 1) x n block is
given byB. To have a better grasp on how the structural shogkslates to the innovations, consider the equality
& = Glu;. Note thatB can be partitioned aB = [-w1o : 11-1 — Way], wherew;» andW.» are blocks ofV. Since
(In-1 —W22)1n-1 = Wyp, then

|1 0 - 3 1 0 [ 1 0
© _[ “Wiz | = Wa ] _[ (I = Wa)wiz (I = Wap) ™ ]_[ Iy (1=Wo)™t | (12)

The innovation to the first equation equals the permanerdkstig = uy ¢, and in this way we are able to identify
how shocks to a reference region propagates to the rest abtirgry. Note also that on impact, a shagk = 1
will have a proportional £ect inall innovationse;; = 1 fori = 1,2,...,n, whereas a shodk; = 1 fori > 1 will
affect all innovationsdyy, €3y, . . . , enyt) buter .34

4 Empirical analysis

Next we present the main results of our empirical analysisigy; 1 = 12001og@;+/Pit-1), i.e. annualized monthly
inflation rates. First, we describe two approaches to meather “rest of the country” inflation rates, one based
on geographic proximity and the other based on economic fitapce. Under both aggregation schemes, we find
supporting evidence of the aggregation hypothesis. The MECthen estimated and its dynamic features are
analyzed. It is found that relative PPP holds across thetopand moreover that convergence towards a common
inflation trend is fast. Furthermore, the results also poittthat the influence of Lima in the behavior of regional,
and consequently countrywide, inflation rates is strong.

4.1 Aggregation schemes

We entertain two alternative approaches to construct theeggtex; ; which, sincex; = Wy;, amounts to determine
the weights matriXWV. In both cases the entries ¥ are given (independent from), and so the theoretical
considerations on linearity after aggregation discusselé previous section apply.

The first approach correspondsgeographic aggregatiarit is based on the basic notion that location and distance
matter, and in particular that the closer regiois from region j, the stronger their mutual feedback. There are
many ways to operationalize this concept and we choose anestparticularly simple (up to third-order contiguity
relations among the = 9 regions).

3 The usual practice, however, is to orthogonalizeand consider insteagt = G *Hz,, whereH is the lower block triangular matrix
obtained by applying a Choleski decomposition to the cavené matrix olu;, andsn, collects the orthogonalized shocks. This makes no
difference from the identification of the shock to the referemg@n. Just as in the casewf the first element of; is affected only by the
first element ofy, i.e. the orthogonalized permanent shock.

4 These results can be generalized easily. Suppose thataleeteo reference regions (two common trends) suchthaty, = 0. In this
case, since the rank &, remainsn— 1, rank{Ip) = rank(Co) = n— 2 so in thell = I'B decompositio is then x (n— 2) matrix obtained
by removing the first two columns @%, andB is the 1 — 2) x n matrix resulting from removing the first two rows Bf. Upon examining
the structure of matrixs, we can reach the important conclusion that the first twovations €1, €2;) are linear combinations of the two
permanent shocksi{;, up;), and no transitory shockffects them. Upon orthogonalizing, or using another identification scheme, we
could then find structural shocks coming from regions 1 arféb2 a related discussion, s€®nzalo and Grang€i1995.



Define the scores

0 if i = j (regions are not considered neighbors to themselves),

O<a if region j andi are contiguos, (13)
0<b<a ifregion jis located one region away from

0<c<b otherwise {andj are separated by more than two regions),

such thaw; is simply the normalized version of;;i.ewj = W/ X%_; Wj. It is worth-mentioning that alternative,
and more sophisticated, spatial weighting schemes redidesellts (available upon request) that were very similar
to those reported below. From Figutethe symmetric matrix with raw (not normalized) scores égjua

\TVij =

(0O c b aababob
c 0abocccechb
b aO0Oacocboca
ab aoObocaba
W=|a cc bOaaabj. (14)
b cccaObahb
acbaab0Oaa
b ccbaaaOa
b baabbaao

We set arbitrarilya = 1, b = 0.5 andc = 0, and recall that our main conclusions are not sensitiveisochoice.

The second approach économic aggregatiorHere, the strength of the feedback is determined by weitiatis
are proportional to the participation of each region inowi expenditure. The underlying assumption is that the
importance of region as a market for goods traded nationwide is well-reflectedtdyelative contribution to
total expenditure. Under this approac); is a normalized measure of national inflatithout the contribution

of inflation in region i Let Y; denote national inflation, and le be the weight region) receives in composing it
(these weights are reported in Figule By construction,zrj‘:1 aj = 1. Then,

n n
Yi= ) ajyjt = @it + Z ajyjt = aiYig + (1 - ai)Xit, (15)
j=1 j#i
thusY; is a linear combination betwesfy andx;;. It follows thatx;; = er‘ii @;yjt/(1 - a;) and, therefore,
aj
Wij = . 16
T (16)

In this case, the matridV is not symmetric. A large region (in economic terms) exertsarinfluence on a small
region than the small region exerts on the larger one. Mareddly, provided that; + «; < 1 (which is always the
case), it is easy to verify that;; < wj; if and only if o; > ;. Thus, the feedback that inflation in regibreceives
from inflation in regionj is smaller than the feedback from regioto regionj, since region constitutes, in terms
of expenditure, a larger market than region

4.2 Aggregation hypothesis

In testing the aggregation hypothesis, an important praicsue is the determination of the lag lengtiBased on
the results of Breusch—Godfrey LM tests on serial correfain the regression errors (as well as some information
criteria), we could not reject the hypothesis of uncoregatrrors in any equation fgr > 5. This result holds for
either the unrestricted moded)(or its restricted versiordj. Thus, we sep = 5 (p— 1 = 4 lags in the VECM).
Then, under the null hypothesis of aggregati@n() = 0 in equation§) foralli =1,...,n,j#iandr =1,...,p),

the standard Wald statistic is asymptotically distributisg® with p(n — 2) = 35 degrees of freedom.

It can be seen in Tablg that the aggregation hypothesis cannot be rejected at stomeal significance levels in
any case, and regardless of the aggregation scheme useahpotex;; (geographic or economic). We take these
results as conclusive evidence that the restricted modethauses weighted aggregates to summarize feedback
effects from the rest of the country, is capable to capture the features of the data. The next step, thus, is to
investigate the dynamics of this restricted form.



4.3 Long-run homogeneity

Unlike a standard VECM 9] constitutes a system of seemingly unrelated regressigatieqs (SUR) with dferent
regressors. Thus, we choose system generalized leases@sour preferred estimation method (the results using
ordinary least squares were qualitatively the same).

The results are displayed in Tal?e(for p = 5). The first column shows Breusch—Godfrey LM tests on serial
correlation, and suggests that each dynamic equation iieatlyr specified. This aspect of the model is relevant to
perform valid inference o6 (see appendix B). The second and third columns show the gslinbates ang-values

of yi andg;. It can be observed that in all equatiodsappears to be statistically insignificant, suggesting tet
long-run homogeneity hypothesig (= 0 for all i) cannot be rejected at conventional significance levelsth@n
other hand, the estimates gfare statistically dterent from zero, except in the case of Lima. Thus, the firsbiet
results suggests that the model described in se®igrwith Lima as the reference region, cannot be rejected by
the data. These findings hold for both the geographic andoaeicraggregation schemes.

The fourth column of Tabl€ shows estimates ang-values ofy; after imposing the long-run homogeneity
restrictionss; = O for alli. Again, all estimates but Lima’s are statistically sigrafit. Moreover, the point estimates
of y; are considerably large fdr > 1, ranging from about .65 to about 100 for the geographic aggregation
and from about 5 to approximately .00 for the economic aggregation. This indicates that dewviatfrom the
relative PPP are corrected rather quickly. Geographiceaggion implies a somehow slower adjustment towards
PPP, reflecting the influence of Lima’s inflation (the commi@md) in the “rest of the country” aggregates under
the economic aggregation approach. All these results arféreeed in the last column of Tab® which presents
the final estimates anp-values ofy;, after imposing both the long-run homogeneity restrictiamd the fact that
Lima serves as a reference region & 0).5

4.4 Regional dynamics and the importance of Lima

The estimation results reveal fast convergence of the magioflations towards their own aggregates of external
inflation, yi1 — Xit. Since this phenomenon occurs in every region of the countrg could also expect a fast
reversion towards the common trend. FigBhows the responses of regional inflations relative to Liyna-(y11),

to a unit shock in Lima’s inflation (the identified permanembak of the system), under the geographic aggregation
scheme (the results under the economic aggregation appvesre very similar and are available upon request).
As a summary, the last panel of Figudeshows the response of the average inflation ofrthe 9 regions in the
country. Due to the intrinsic dynamics implied by both thgdaf the VECM and the sparsity of the matki,
convergence of;; towards the common trengl ; is not as immediate as it is towards;. The point estimates

of the impulse-response functions display hump shapesestigg an initial overreaction of; to the shock that
eventually vanishes. Convergence is fast, neverthelessnaximum deviation amounts to less than 0.4 percent in
annual terms, and furthermore no response is statistisghjficant after 12 months of the occurrence of the shock
(many of them are not significant even after 6 months). Thesmay conclude that a shock to trend inflation will
completely propagate to the individual regional inflatiam¢ess than a year.

On the other hand, as discussed in secBpregional inflation rates are als@fected by idiosyncratic shocks that
may induce significant short-run deviations form a trenduF@4 shows the responses of regional inflations relative
to Lima to a shock in regionthat induces a deviation on impact of one percent, underebgrgphic aggregation
scheme. Here, the shock is characterized by setting- 0 andejo = 0 fori # j such thatyjo — y10 = 1; then

g = 0 for alli andt > 0. It is observed that theffects of initial deviations of one percent are short-livedall
cases, after three periods (months) of the shocks the @sviadbm Lima’s inflation is less than 0.20 percent. Given
the transitory nature of these shocks, few responses afpleaustatistically significant after 12 months of the shock
and none is significant after 18 months.

To assess the importance of the shock to the common trendes@m a variance decomposition of the forecast

5 Under geographic aggregation, the Wald statistic for thet joypothesis tha# = 0 for all i is w; = 10.32, below the 90% critical value
X3, = 14.68. Also, the Wald statistic for the joint hypothesis that= 0 for i > 1 isw, = 55.79, well above the 99% critical value
X% = 2166. Under economic aggregation these statistics amount t04.77 andw, = 78.69.

10



errors in the VECM. Tabl& shows the contribution of the permanent shock fdiedent forecasting horizons. The
long-runh — oo corresponds to the unconditional variance, and we firstfacuthese figures. The importance of
the common trend cannot be exaggerated: under the geogragdriegation scheme, it contributes to at least 69.1
percent of the unconditional variance (in region 8) and upltoost 83.7 percent (in region 7). The contribution
to average inflation is a stunning 89.7 percent. As expecteder economic aggregation the importance of Lima’s
inflation is further increased: the shock contributes teast 74.6 percent of the unconditional variance (again in
region 8), and more than 95 percent for the average inflagitsn The timing in the variance decomposition implies
that the influence of the common trend shock is conspicuoesyear ahead, whereas after two years the figures
are close to the unconditional statistics. These findingst poit that what happens in Lima serves as a benchmark
in pricing decisions within the horizons that are relevamtriionetary policy, say one to two ye&rs.

5 Closing remarks

We have estimated and tested a multivariate dynamic modelgadnal inflations in Peru, in order to quantify the
various feedbacks among regional inflation rates and, iticpdar, to assess the importance of Lima’s inflation for
the rest of the country. Our estimations suggest that tha features of the data can be well-described by a VECM
with two important particularities. Firstly, the model isry parsimonious, as the dynamic feedback from the rest
of the country to a specific regional inflation rate can berietet] to come from aggregates of neighboring regions
(both in a geographic and in an economic sense) rather tbamifrdividual inflations. Secondly, the estimates of
cointegrating vectors and their associated speed of adus provide evidence that the relative PPP holds among
pairs of regional inflations, and that the only identifialdad-run forcing variable is Lima’s inflation.

These findings lead us to conclude that Lima’s inflation hageskeas a trend, an “attractor”, for all remaining
regional inflations. Furthermore, the typical deviatioonfrthis trend is likely to be short-lived and moderate. Since
these estimates come from a sample where the BCRP has baetyasmd explicitly targeting Lima’s inflation, it
can be inferred that such practices have contributed tdimlatability in the whole country.

Looking forward, the economic importance of Lima in compgsthe national aggregate is expected to remain
large in the medium term. Thus, the market may continue vigwiima'’s inflation as a noise-free measure of
national inflation, useful for price setting decisions. fidfere, in the event that the BCRP shifts to targeting nation
inflation, our findings indicate that the workings of mongtpolicy in Peru (especially the monetary policy lag)
should not be significantlyfected. It is unlikely that the adoption of a national inflatiarget would weaken the
strong feedback from Lima'’s inflation to inflation elsewhard¢he country.

Our results can be further refined. A referee suggestedithlite with findings inMonge and Winkelried2009,

the larger share of fooddtuin the CPI basket in provinces may be driving the results tda/dast inflation
convergence. This is mainly because food prices are subjeapply shocks that, despite their size, generally revert
quickly. Hence, a natural extension of our work will be togapour analysis using somehow harmonized CPI across
regions, for instance by using the same weights than LimRs @rior to aggregation. Alternatively, the analysis
can be performed using measurescofe inflation, excluding volatile items such as food$tand fuels. Even
though this extensions will surely render further insightenhance our understanding of the complex transmission
of regional shocks across the country, we do not expect our quanlitative results to change substantially.

6 The case of region 8 deserves attention since it is the regimme transitory shocks appear to be more important. luies Cusco city
which is by far the largest tourist destination in the coyraind so its pricing dynamics (especially in services)kslii to be decoupled
from the behavior in neighboring regional economies, Linmoagst them.
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Technical appendix

Following theoretical results irhillips (1986, Park and Phillipg1988 and Sims et. al.(1990, this appendix
shows that both the aggregation and long-run homogenejipthgses can be tested using standard results from
classical regression theory. In particular, it is showrt tha statistics involved are asymptotically Gaussian even
when the data are not stationary. This is the starting pomiMald codficient tests that are asymptoticajy.

A Aggregation hypothesis
The VAR(p) model

Vi = ArYi-1 + AoYe—2 + ... + ApYip + & (17)
can be rewritten as
Vi = C1AYi1 + CoAYi—2 + ... + Cp_1AYips1 + HYio1 + &, (18)

whereH = A1+ Ao +...+ Ap,Ci=A;-HandC, =Cy+ A forr=2,...,p-1.

If y; is stationary, then the least squares estimators df timatrices and oH will be asymptotically Gaussian under
standard conditions. On the other hand, followBigns et. al(1990 andHamilton (1994 section 18.2), whem,

is nonstationary, the least squares estimators ofCtmeatrices in 18) are consistent and remain asymptotically
Gaussian, whereas the corresponding estimatét bécomes superconsistent and have a nonstandard distnibuti
characterized by functionals of Weiner processes. Momddly, it is found thatfor = 1,2,...,p-1

Vivec@© -G ) L N@©,V,)  whereas VTvec(H —H) = 0p(1), (19)
where vecf\) is the vector obtained by stacking the columns of matkixandV, denotes a positive definite
covariance matrix.

The results in 19) are significant since they imply that hypothesis testslirimg linear combinations of th€
matrices andH are dominated asymptotically by the ¢@gents with the slower rate of convergence, namely those
in the C matrices. In particular, tests involving linear combinas of theA matrices in 17) other than the surki
have the usual limiting distributions.

Recall that, for a givem = 1,2, ..., p, the aggregation restrictions have the famy(r) — (wi; /wik)ai(r) for j # k
andk # i. These restrictions can be expressed more compactBac(A,) = 0, whereR, is a p(n — 2) x n?
matrix whose typical row contains a 1, the ratiov;/wy and n? — 2 zeroes. In terms of the cfiieientes of the
reparameterized model§), the aggregation restrictions are (consiGgr= 0)

Rrvec(Ar) = Rivec(C, - Cr21) =0 for r=2,...,p, (20)
Rivec(A1) = Ryvec(Ci+ H) =0.

Therefore, using the results ih9), we have that under the null hypothesesZ]ﬁ)((consideléID =0),
VIR vecG -G 1) 5 NO,Q,) for r=2,....p, (1)
VTRuvec(C1 + A) = VTRyvec(€r) +0p(1) 5 N(0, ).
where Q; denote positive definite covariance matrices for= 1,2,...,p. It follows that, regardless of the

stationarity properties of the data, the statistics inedlin testing aggregation hypothesis are asymptotically
Gaussian, and thus the corresponding Wald tests have takassumptoticy? distribution.
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B Long-run homogeneity

Consider the stylized model, equatid) (ith p = 1,
Ayt = —y(Yt-1 — %-1) + %1 + &, (22)

whereAx; = v ands; are stationary processes with zero mean and unconditianaincesr2 ando2, respectively.
It is assumed that; ande; are uncorrelated at all leads and lags, which essentialpfiés that equation2@) is

correctly specified. The arguments below are still validdogmented equations that include lags\af and Ay,

such that the uncorrelatedness betwgeande; is guaranteed.

The purpose is to te$lp : 0 = 0 in (22). For concreteness l&t 1 = y;_1 — X_1, which is stationary undety. It is
not difficult to verify that, becausg ~ 1(0) andx; ~ 1(1),

1 2 X121 e Z18 lop(T)Op( VT) ~ 1 (% Xe_1Z-1)? B iOp(TZ) )
T @y 1 om X MM mTyey Tmom oW @9

On the other hand, l&d,(-) andW,(-) be two standard Weiner processes(ff, 1), associated to the standardized
seriesei /o andv;/oy, respectively. These processes are uncorrelated and,duedo the Gaussianity of the
increments, independent. A standard result for integrptedesses (dflamilton 1994 section 17.5) is that

1 d 1
5 2000 S f [ Whir?dr = 2z, (24
t
whereasPhillips (1986 p. 327) andPark and Phillipg1988 Lemma 5.1) show that
1 d 1 )
= Z X8t = Ou | Wy (r) dWs(r) = N(O, 02 Dy) = D . (25)
t

The above limiting distributiornD; is mixed Gaussian. This is to be understood as a normalldison with
variance proportional t®, which is itself a random drawing from the space of positidas, in this case quadratic
functionals of a Weiner process.

Finally, let s* denote the usual maximum likelihood estimator of the resio@serror variance, i.e. the average of
the sum of squared residuals in regress2#),(which is consistent far2. Upon gathering the results ig3), (24)
and @5), thet statistic for testingHp : 8 = 0 satisfies, under this null hypothesis,

Tt X168t — 2t X121 2t Z-16t/ 2i(z-1)? 2t %18t/ T d D
_ - +op(1) % = N(0.1), (26)
i ‘/52 Yi(x-1)? — Pt X-1z-1)?/ Yi(z-1)? \/52 Yt(x-1)?/T? P Vo'g D,

which follows from the continuous mapping and Cramér thewsreTherefore, the limiting distribution af is
standard Gaussian, even though the least squares estwhatiself is not asymptotically Gaussian (the limiting
distribution of T@ is D1/D-). Similar arguments show that the asymptogft statistics for tests for general
restrictions on the cdicientsd across equations are also generated in the standard way.
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Figure 1. Economic regions in Peru

1 Lima (66.02)

2 Piura, Tumbes (2.57)

3 Lambayeque, Cajamarca, Amazonas (3.83)
4 La Libertad, Ancash (7.25)

5 Ica, Ayacucho, Huancavelica (2.21)

6 Arequipa, Moquegua, Tacna, Puno (7.57)

7 Junin, Pasco, Huéanuco (3.07)

8 Cusco, Apurimac, Madre de Dios (3.55)

9 Loreto, San Martin, Ucayali (3.93)

Note: Classification of Peruvian Departments into 9 economicoregi following Gonzales de Olarté2003 p. 41). The numbers in
parentheses are the weights inflation in each region rec@iveomposing national inflation, according to INEL.

Figure 2. Regional inflation (year-on-year percent changes), 19901-12
(a) Lima, maximum and minimum

(b) Deviations from natiorrdlation
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Notes: For a given period, panel (a) shows Lima’s inflation and th&imam and minimum rates among the remaining 8 regions. @atst

were added to the series in panel (b) to ease visualizatmmed&ch series the vertical scale ranges frab to about 46 percent, and the
dashed horizontal lines are the corresponding zero lines.
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Figure 3. Response of regional inflations relative to Lima’s to a shindkima (geographic aggregation)

2 Piura, Tumbes 3 Lambayeque, Cajamarca, Amazonas 4 Laadhémcash
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Notes: Each graph shows the response/@f- yi; (in annualized percent terms) to a unit shock in Lima, idettias discussed in section
3.3 Figures in the horizontal axis are months after the ocoggef the shock in period 0. Bootstrap 90 percent confidemesvials are
depicted as shaded areas. The scale of the vertical axis gathe for all graphs.
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Figure 4. Response of regional inflations relative to Lima’s to a regioshock (geographic aggregation)

2 Piura, Tumbes 3 Lambayeque, Cajamarca, Amazonas 4 Laadhémcash
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Notes: Each graph shows the responsegief-y;; (in annualized percent terms) to a shock in redisach thay; o — y10 = 1. Figures in the
horizontal axis are months after the occurrence of the shoplkeriod 0. Bootstrap 90 percent confidence intervals apectil as shaded
areas. The scale of the vertical axis is the same for all graph
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Table 1. Testing for aggregation

Geographic aggregation Economic aggregation
x? statistic p-value x? statistic p-value
1 Lima 31.654 0.630 32.295 0.599
2 Piura, Tumbes 35.446 0.447 38.924 0.297
3 Lambayeque, Cajamarca, Amazonas 27.838 0.800 31.513 7 0.63
4 La Libertad, Ancash 28.050 0.792 30.108 0.703
5 Ica, Ayacucho, Huancavelica 39.261 0.285 39.527 0.275
6 Arequipa, Moquegua, Tacna, Puno 28.221 0.785 31.129 0.656
7 Junin, Pasco, Huanuco 29.078 0.749 26.446 0.850
8 Cusco, Apurimac, Madre de Dios 37.764 0.344 36.229 0.411
9 Loreto, San Martin, Ucayali 35.291 0.454 38.136 0.329
Notes: Wald tests (asymptotically?) for Ho : 6;j(r) = 0 in equation §), foralli = 1,...,n, j # i andr = 1,...,p, and for diferent

aggregation schemes. The lag length was spt#db, which was found to be the minimum value to render serialigourelated residuals in
all equations (both in the unrestricted and in the restlicte@dels). In all tests, the number of degrees of freedop(nis- 2) = 35.

Table 2. Estimation results

Breusch—Godfrey Vi 6 Vi Vi
LM test =0 @G=y1=0)
Geographic aggregation
1 Lima 0.074(0.929) 0.548(0.122) 0.274(0.109) 0.399 (@08 -
2 Piura, Tumbes 2.036(0.134) 1.128(0.014) 0.194(0.449)0561(0.015) 1.059(0.016)
3 Lambayeque, Cajamarca, Amazonas 0.474(0.623) 0.7681(0.00.224(0.107) 0.743(0.010) 0.787(0.005)
4 La Libertad, Ancash 0.038(0.963) 0.855(0.034) 0.14&®5 0.755(0.028) 0.763(0.022)
5 Ica, Ayacucho, Huancavelica 0.177(0.838) 0.800(0.058)25%(0.108) 0.718(0.041) 0.729(0.032)
6 Arequipa, Moquegua, Tacna, Puno 1.478(0.231) 0.99779.000.197(0.311) 0.982(0.003) 1.000(0.003)
7 Junin, Pasco, Huanuco 1.044(0.354) 0.681(0.023) 0.1851p 0.645(0.020) 0.647(0.025)
8 Cusco, Apurimac, Madre de Dios 2.046(0.133) 0.692(0.016)057(0.778) 0.635(0.015) 0.625(0.018)
9 Loreto, San Martin, Ucayali 3.390(0.076) 0.806(0.001) 246.0.216) 0.704(0.002) 0.647(0.004)
Economic aggregation
1 Lima 0.084(0.920) 0.125(0.696) 0.178(0.210) 0.071(6)75 -
2 Piura, Tumbes 1.318(0.271) 1.044(0.022) 0.043(0.885)96900.008) 0.960(0.006)
3 Lambayeque, Cajamarca, Amazonas 0.238(0.788) 0.9008)0.00.099(0.607) 0.890(0.004) 0.873(0.005)
4 La Libertad, Ancash 0.121(0.886) 0.873(0.008) 0.0374)8 0.800(0.005) 0.793(0.005)
5 Ica, Ayacucho, Huancavelica 2.157(0.119) 0.969(0.008)15®(0.382) 0.985(0.002) 0.968(0.002)
6 Arequipa, Moquegua, Tacha, Puno 1.242(0.292) 0.8488%)0.000.112(0.601) 0.842(0.001) 0.834(0.001)
7 Junin, Pasco, Huanuco 0.551(0.577) 0.873(0.001) 0.082GP 0.878(0.000) 0.866(0.000)
8 Cusco, Apurimac, Madre de Dios 1.351(0.262) 0.787(0.00Q)021(0.913) 0.750(0.000) 0.749(0.000)
9 Loreto, San Martin, Ucayali 1.707(0.185) 0.806(0.013) 166.(0.330) 0.790(0.007) 0.787(0.006)

Notes: SUR estimates. The Breusch—Godfrey is asymptoticallyidiged as g? variate with one degree of freedom under the null
hypothesis of no first-order serial correlation in the regien errors. Figures in parentheses@ax@lues. In the case of ciient estimates,
the p-values are for the null hypothesis that the correspondaefficient is equal to zero.

18



Table 3. Contribution of a shock in Lima (permanent) to the forecastrevariance

h=0 h=1 h=6 h=12 h=18 h=24 h— oo

Geographic aggregation

2 Piura, Tumbes 51.8 55.5 60.3 65.9 70.3 73.7 77.2

3 Lambayeque, Cajamarca, Amazonas 56.5 63.2 68.8 73.9 776 0.6 8 83.3

4 La Libertad, Ancash 49.3 57.3 64.3 70.6 75.1 78.4 80.9

5 Ica, Ayacucho, Huancavelica 56.5 61.8 67.8 74.0 78.2 81.3 338

6 Arequipa, Moquegua, Tacha, Puno 44 .4 50.0 57.9 66.4 720 .0 76 78.2

7 Junin, Pasco, Huanuco 53.7 56.7 66.3 73.9 78.8 82.2 83.7

8 Cusco, Apurimac, Madre de Dios 18.2 25.1 39.9 53.2 61.2 66.8 69.1

9 Loreto, San Martin, Ucayali 40.0 47.3 60.3 68.7 74.1 77.9 .180
Average 76.1 76.3 79.0 82.7 85.5 87.6 89.7

Economic aggregation

2 Piura, Tumbes 50.5 57.3 64.4 71.4 76.1 79.4 81.2

3 Lambayeque, Cajamarca, Amazonas 56.4 66.2 74.8 81.1 848 7.3 8 883

4 La Libertad, Ancash 49.7 59.3 68.3 75.7 80.3 83.3 84.6

5 Ica, Ayacucho, Huancavelica 58.5 68.4 77.1 83.3 86.8 89.1 9.88

6 Arequipa, Moquegua, Tacha, Puno 46.2 53.8 65.1 73.6 789 .3 82 836

7 Junin, Pasco, Huanuco 58.2 62.7 77.6 84.9 88.7 91.0 91.4

8 Cusco, Apurimac, Madre de Dios 21.0 28.0 46.0 59.5 67.6 73.0 74.6

9 Loreto, San Martin, Ucayali 41.3 50.8 67.7 77.0 82.2 85.4 .586
Average 78.2 82.2 88.0 91.8 93.7 94.9 95.3

Notes: The shock to Lima’s inflation is identified as discussed iriiead.3. The figures show the percentage of the forecast error \aian
that is attributable to this shock, for various forecastiagizonsh. The caséh — oo corresponds to the contribution to the unconditional
variable of the forecast error.
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