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Abstract

The Central Reserve Bank of Peru (BCRP) has been targeting inflation for more than a decade,
using Lima’s inflation as the operational measure. An alternative indicator is countrywide inflation,
whose quality and real-time availability have improved substantially lately. Hence, given these two
somehow competing measures of inflation, two interesting policy questions arise: what have been the
implications for national inflation of targeting Lima’s inflation? Would shifting to a national aggregate
significantly affect the workings of monetary policy in Peru? To answer these questions, we estimate an
error correction model of regional inflations and investigate how shocks propagate across the country.
The model incorporates (i) aggregation restrictions whereby each regional inflation is affected by an
aggregate of neighboring regions, and (ii) long-run restrictions that uncover a single common trend
in the system. The results indicate that a shock to Lima’s inflation is transmitted fast and strongly
elsewhere in the country. This constitutes supporting evidence to the view that by targeting Lima’s
inflation, the BCRP has effectively, albeit indirectly, targeted national inflation.
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1 Introduction

The Central Reserve Bank of Peru (BCRP) has been targeting inflation for almost two decades. In the early the 90s,
it embarked into a disinflation programme that brought inflation down from hyperinflation (around 140 percent in
1991) to single-digit levels (6.5 percent in 1997) and eventually to international levels (3.7 percent in 1999). The
process of disinflation was gradual as the BCRP built reputation as an inflation targeter. Aimed at reinforcing its
ability to anchor inflation expectations, in 1994 it startedannouncing yearly target ranges and in 2002 it adopted a
fully-fledged inflation targeting regime, where long-run targets were announced (seeRossini and Vega, 2008).

The operational measure of inflation used by the BCRP has always been the change in the Consumer Price Index
(CPI) of the Peruvian capital city, Lima. There were good reasons for this choice. Firstly, the Peruvian economy
is heavily centralized: Lima concentrates about a third of the country’s population and used to represent more than
70 percent of national expenditure. Thus, it seems reasonable to believe that for practical purposes Lima’s inflation
could serve as a proxy for national inflation (seeArmas et. al., 2010). Secondly, even though national CPI data are
available, its timing of publication used to pose difficulties for the real-time monitoring of the state of the economy.
Historically, whereas the definitive Lima’s CPI figure has been readily available at the first working day of the
following month, the release of the national CPI has been subject to delays and often to revisions.

However, this situation may have changed. In the last decade, the Peruvian economy has grown at a healthy average
annual rate of 6.5 percent, with many provinces growing at aneven faster pace. Even though the country remains
centralized with Lima amounting to 2/3 of national expenditure, the economic importance of certain provinces
has increased significantly, thereby bridging the income gap with respect to Lima. On the other hand, after major
improvements in survey design and sampling techniques, since early 2012 the National Statistics Office of Peru
(INEI) has committed to publish national inflation as reliably and timely as that of Lima. These developments have
led local academia and economic press to inquire about the suitability of national inflation, rather than Lima’s, in
conducting monetary policy.1 This raises two interesting policy questions:

• What have been the implications for national inflation of theBCRP targeting Lima’s inflation?

• Would shifting to a national aggregate significantly affect the workings of monetary policy in Peru?

In order to answer these questions, it is key to quantify how relevant the behavior of inflation in Lima is for the
determination of inflation in the rest of the country. For this, we take the purchasing power parity (PPP), which has
been suggested to be adequate when studying price differentials within regions of a country or in a monetary union
(Rogers, 2007), as our conceptual framework. In its absolute version, thePPP predicts that, in the absence of trading
costs and other frictions, the price levels in two regions should converge to a same level (seeParsley and Wei, 1996;
Cecchetti et. al., 2002, for comprehensive surveys). For the Peruvian case,Monge and Winkelried(2009) found
that absolute PPP holds in about 3/4 of all possible pairs of Peruvian cities, at a 10 percent of significance. Price
level convergence is limited by the transportation costs implied by an adverse geography and the lack of well-suited
communications infrastructure in some of the Peruvian regions (especially, the highlands or Sierra).

However, this notion of PPP is not completely useful for monetary policy analysis, where the interest is on the
behavior ofinflation rather than price level differentials. Thus, we rather focus on the weak, relative version of the
PPP that states that once the effects of transitory regional shocks fade away, the inflation rates in two cities should
converge to an equilibrium rate, regardless on whether the shocks exert permanent discrepancies on the price levels
(see, for example,Busetti et. al., 2006; Beck et. al., 2009).

The goal of this paper is to answer the aforementioned questions by investigating the dynamic relationships among
regional inflations in Peru, and how they may affect the design of monetary policy. In particular, we aim to study

1 Similar experiences in the past can be found upon exploring the websites of the statistical offices and central banks of other Latin American
inflation targeters. In Colombia, the CPI covered 13 cities from 1989 to 2008, and 24 cities from 2009 onwards; in Mexico, 35 cities up
to February 1995 and 46 cities since March 1995; in Chile, up to January 2009 the CPI was that of Santiago de Chile, then in February
2009 the urban centers of Puente Alto and San Bernardo were incorporated, and in February 2010 the CPI became countrywide. Yet, the
geographical representativeness of the CPI index used for monetary policy analysis is always taken for granted, to the extent that we have
failed to find relevant documentation or research related tothe implications of these changes in measuring inflation.
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whether relative PPP holds among Peruvian regions and, if so, whether the adjustment towards equilibrium is fast
enough. To this end, we estimate and simulate a vector error correction model for the inflation rates of 9 Peruvian
economic regions, a model that shows how regional shocks propagate across the country. To achieve a parsimonious
yet dynamically rich specification, we constrain the feedback effects from other regions by considering “rest of the
country” aggregates rather than each region individually.These aggregates are computed using both a geographic
scheme, where the influence of neighboring regions is largerthan that of more distant ones, and an economic
approach, where the importance of a given region is proportional to its participation in national expenditure. Once
the aggregates are computed, the dynamic relationships among the regional inflations rates can be further analyzed,
and in particular it can be assessed whether the data are driven by common inflation trends.

The increase in globalization over the last decades has highlighted the pervasiveness of international linkages in the
world economy, and the importance of capturing those linkages in empirical models (see, among others,Elliott and
Fatas, 1996). As a result, there is a large literature exploiting such interrelationships, with its most popular thread
being the so-called global VAR (GVAR) advanced inPesaran et. al.(2004), where “rest of the world” aggregates
are computed using trade weights. Even though our modeling approach is related to the GVAR, there at least two
important methodological differences. Firstly, our model is smaller as it includes one variable per unit (regional
inflation). Although this prevents us to label shocks more adequately (for instance, supply versus demand shocks),
it allows us to formally test the aggregation hypothesis that is taken for granted in the GVAR literature. Secondly,
our identification strategy differs in that we are able to identify relevant shocks (for instance, a shock to Lima’s
inflation) from the long-run properties of the system.

We find strong evidence on the importance of shocks to Lima’s inflation in influencing pricing decisions elsewhere
in the country. In particular, most of the variability in individual regional inflation rates is driven by the evolution
of a common trend that can be identified from the evolution of Lima’s inflation. Furthermore, it is found that
convergence towards this trend is fast, well within the monetary policy lag (i.e., the time it takes for a monetary
policy action to affect inflation, which is believed to be between one and two years). Therefore, given such active
correction mechanisms, we can conclude that by targeting Lima’s inflation the BCRP has indirectly promoted
inflation stability in the whole country.

The remainder of the paper is organized as follows. Section2 motivates the discussion by briefing stylized facts
in the data. Section3 discusses methodological issues and develops a vector error correction model that allows for
rich feedbacks parsimoniously. Furthermore, formal testson the aggregation restrictions and on the relative PPP are
proposed. Section4 presents estimation results, and analyzes the effects of a shock originated in Lima. Section5
gives closing remarks and avenues for further research.

2 A glimpse of the data

The INEI publishes CPI data for the 25 largest cities of the 24Peruvian Departments (administrative divisions)
on a monthly basis. In order to work with a manageable number of units, we use the economic classification of
Peruvian cities inton = 9 economic regions proposed byGonzales de Olarte(2003). This classification is based
both on historical considerations (the regions are formed by contiguous Departments) and, importantly, on economic
grounds, such as market articulation and integration.

The economic regions are depicted in Figure1, together with the weights used by INEI in computing national
inflation, based on expenditure surveys. As mentioned, Limais by far the most important region in the country,
with a share of 66.02 percent. It is followed by the two economic centers located at regions 4 (La Libertad and
Ancash) and 6 (Arequipa, Moquegua, Tacna and Puno), each with a share slightly above 7 percent. The share of
each of the remaining 6 regions varies between 2.21 (region 5) and 3.93 (region 9) percent. It is worth mentioning
that these shares correlate strongly with the distributionof population across the country.

The data run from 1996 to 2011, about 190 observations after adjusting for initial conditions. Recall that throughout
the sample period, the BCRP has been targeting Lima’s inflation. In our empirical analysis below, inflation is defined
as the annualized monthly percent change of each CPI indexPt, 1200 log(Pt/Pt−1). However, to ease visualization
in this section we describe the smoother year-on-year rates, 100 log(Pt/Pt−12).
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Figure2(a) shows the evolution of Lima’s inflation, together with the maximum and minimum rates found among
the remaining 8 regions. Given the importance of Lima, at this scale national inflation is difficult to distinguish from
that of Lima (with the exception of a few episodes) and hence is not included in the graph. It is notorious that the
three inflation series share many common features. In particular, they tend to move in tandem (their turning points
are virtually the same with small differences of about one or two months) and their variations are of comparable
magnitudes. Thus, at first glance, the inflation rates seem tobe driven by a common trend or, in other words, the
relative PPP seems to be a feature of the data, a point that is formally addressed below.

There are, of course, episodes of discrepancies that, albeit sizeable, appear to be temporary. Two are worth
highlighting. The first one occurs in 1998, when the country was hit by a particularly severe El Niño phenomenon.
The economic costs of El Niño relate to disruptions in agricultural and fishing production, and to direct damages
to infrastructure due to floods, and are often concentrated in the northern regions of the country (2, 3 and 4) that
are closer to the equator. These regions experienced a peak in inflation that was reverted as the climate conditions
returned to normality in 1999.

The second episode corresponds to the period 2007 to mid-2008, and is the consequence of two related economic
phenomena. The first one is the commodities prices boom witnessed by international markets, mainly due to
boosting demand in emerging markets like China. The magnitude and persistence of these shocks passed-through
regional prices unevenly, mainly because the share of food in the CPI is larger in provinces than in Lima, a fact that
partially explains why Lima registered the lowest inflationrate during this period.

Moreover, preliminary figures from INEI on regional output show that during the period from 2005 to 2008, Lima
grew at about 7.5 percent per annum, whereas regions as Arequipa, Cusco and La Libertad grew at rates closer to
8 percent, and even more successful locations such as Ica grew above 9 percent. This strong expansion in regional
output (and demand) was boosted by the extraordinarily favorable conditions the country faced as a commodity
exporter. This gives an indication that many regions would have bridged the income gap with respect to Lima
relatively quickly, inevitably generating inflationary pressures at the regional level. Moreover, anecdotal evidence
points out to conjecture that the inflationary pressures mayhave been magnified by initial conditions, acatch-
up effect. In particular, prices that were lower in provinces (because of a Balassa-Samuelson effect) would have
converged to levels close to those of the capital as the provinces grew richer, thereby generating further inflation.
Nonetheless, the inflationary pressures brought by these processes vanished rapidly after the financial international
crisis was triggered by the collapse of Lehman-Brothers in late-2008.

Figure2(b) depicts inflation deviations from the national rate for selected regions from both ends of the country. It
can be seen that inflation deviations in northern region 2 aremore closely related to those of neighboring region 3
than to those of the more distant regions, for instance 6 or 8.Similarly, the relationship between inflation in any of
the southern regions 6 and 8 is much closer than that of a northern region with a southern one. Thus, an important
conclusion from the visual inspection of these series is that geography seems to matter. Regional shocks, or even
the responses to aggregate shocks in different regions, are likely to depend on location. This additional feature of
the data will prove useful for parsimony in the empirical analysis below.

3 Methodological issues

This section presents the econometric framework used to investigate feedbacks amongst the inflation rates ofn
regions in a country. Two major points are considered: testing and the identification of structural shocks.

Regarding testing, aggregation restrictions are imposed into a standard, potentially large reduced form VAR of
inflation rates, and we propose a test to formally assess their significance. These restrictions promote parsimony
while maintaining the dynamic feedback to the inflation ratein a given region from the inflation rates in the rest
of the country. Secondly, we derive a test for long-run homogeneity restrictions using the error correction form of
the VAR model. In the context of a VAR model of inflation rates,long-run homogeneity can be understood as the
fulfilment of the weak version of the PPP hypothesis, where the differences between inflation rates are stationary.

It is important to emphasize that we have been careful in proposing testing procedures that are robust to the
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stationarity properties of the data. In particular, both the aggregation and long-run homogeneity hypotheses can be
tested using standard results from classical regression theory as the statistics involved are asymptotically Gaussian
or chi-square,regardlesson whether the data are stationary or not. Technical detailsare shown in the appendix.

The error correction form of the VAR provides a suitable formulation to infer the characteristics of the common
trends driving the data. In particular, we focus on the case where the inflation rate in a single reference region does
not respond to disequilibria (deviations from the relativePPP) elsewhere. Here, a shock is to be regarded as having
permanent effects as long as it affects the inflation in the reference region, and is dubbed as transitory otherwise. It
follows that the shock to the reference region can be easily identified using the permanent-transitory decomposition
advanced inGonzalo and Ng(2001).

3.1 The aggregation hypothesis

Our starting point is the reduced form VAR(p) model

yt =

p
∑

r=1

Ar yt−r + εt , (1)

where yt is ann × 1 vector of endogenous variables whosei-th element corresponds to the inflation of regioni
in period t, Ar (r = 1, 2, . . . , p) are coefficient matrices andεt is the vector of mutually correlatediid statistical
innovations. The covariance matrix ofεt is ann× n positive define matrixΩε.

It is well-documented that the usefulness of a dynamic modellike (1) may be limited in finite samples due to
the proliferation of parameters that need to be estimated. Indeed, each additional lag implies the estimation ofn2

coefficients, and these may be poorly estimated with the sample sizes typically encountered in applications. Thus,
promoting parsimony by imposing meaningful restrictions on matricesAr is likely to improve the inferential content
of testing procedures based on the VAR system. This is the purpose of aggregation restrictions, where given weights
are used to construct averages that maintain feedback effects across regions.

Consider an aggregate composed by then− 1 variables inyt other thanyi,t (i = 1, 2, . . . , n),

xi,t =

n
∑

j=1

wi j y j,t where
n
∑

j=1

wi j = 1 and wii = 0 . (2)

The normalization that the weights sum to one is for algebraic convenience and involves no loss of generality. We
maintain the assumption that the weightswi j arenot estimated jointly withAr , otherwise the linearity in the VAR
model may be lost with aggregation. This situation corresponds to either non-random weights or stochastic weights
that are predetermined, i.e. its determination is independent fromεt.

Take thei-th equation of the unrestricted VAR

yi,t =

p
∑

r=1

aii (r)yi,t−r +

p
∑

r=1

n
∑

j,i

ai j (r)y j,t−r + εi,t , (3)

whereyi,t is thei-th element ofyt, εi,t is the i-th element ofεt, andai j (r) denotes the (i, j)-th element ofAr . In an
alternative, restricted model all dynamic feedback toyi,t come from its own lags and lags of the aggregate,

yi,t =

p
∑

r=1

aii (r)yi,t−r +

p
∑

r=1

ci(r)xi,t−r + ei,t =

p
∑

r=1

aii (r)yi,t−r +

p
∑

r=1

n
∑

j,i

ci(r)wi j y j,t−r + ei,t . (4)

Clearly, if ai j (r) = ci(r)wi j then the restricted model (4) is equivalent to the model without restrictions (3). These
p(n− 1) equalities imply a total ofp(n− 1)− p = p(n− 2) restrictions of the form

ai j (r) −
[

wi j

wik

]

aik(r) = 0 for j , k, k , i and r = 1, 2, . . . , p . (5)
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Thus, the aggregation restrictions imply that the elementsof the i-th row of Ar are proportional to each other, and
the proportionality factor is given by the ratiowi j/wik. In other words,y j,t andyk,t affect the expected value of future
realizations ofyi,t proportionally to their contributions to the aggregate (2).

The unrestricted model is obtained by regressingyi,t on thep lags ofyt. This amounts topncoefficients per equation
and pn2 in the entire VAR. On the other hand, in the restricted modelyi,t is regressed on itsp lags and thep lags
of the aggregatexi,t. Here, each equation has 2p coefficients and the restricted VAR has 2pn coefficients. Thus,
the aggregation restrictions can reduce the number of coefficients to be estimated substantially, even for moderate
values ofn. For instance, ifp = 2 andn = 9 then we havepn2 = 162 coefficients in the unrestricted model, and
only 2pn= 36 in the restricted, a total ofnp(n− 2) = 126 restrictions.

The aggregation restrictions can be conveniently reinterpreted as exclusion restrictions, and this is the basis for
hypothesis testing. After simple manipulations, the original equation (3) can be rewritten as

yi,t =

p
∑

r=1

aii (r)yi,t−r +

p
∑

r=1

ci(r)xi,t−r +

p
∑

r=1

n
∑

j,i

δi j (r)y j,t−r + εi,t , (6)

whereδi j (r) = ai j (r) − ci(r)wi j for r = 1, . . . p, j = 1, 2, . . . , n and j , i. Therefore, the restricted model has
δi j (r) = 0 for all r and j , i. Thus, testing the aggregation hypothesis amounts to test the joint significance
restrictionsH0 : δi j (r) = 0 using a standard Wald statistic. Note thatH0 has the appealing interpretation that once
xi,t is controlled for, its constituentsy j,t have no predictive power onyi,t.

3.2 Long-run homogeneity

The restricted model

yi,t =

p
∑

r=1

aii (r)yi,t−r +

p
∑

r=1

ci(r)xi,t−r + εi,t , (7)

constitutes an ARDL equation that describes the dynamic relationship betweenyi,t andxi,t. The long-run multiplier
LRMi =

∑p
r=1 ci(r)/( 1−

∑p
r=1 aii (r) ) measures the effect that a unit permanent deviation ofxi,t from its long-run level

has onyi,t. The relative PPP hypothesis betweenyi,t andxi,t implies the long-run homogeneity condition LRMi = 1.
This means that inflation in regioni (yi,t) responds to the permanent deviation on the inflation rate elsewhere (xi,t)
proportionally, such that the long-run behavior of the relative inflation (yi,t− xi,t) is not affected, i.e.yi,t− xi,t remains
stationary. Note that the fulfillment ofpairwiserelative PPP conditions, i.e.yi,t −y j,t stationary for alli , j, requires
LRMi = 1 for all regions. We return to this point below.

In order to test and impose LRMi = 1, the ARDL equation can be written in error correction form as

∆yi,t = −γi( yi,t−1 − xi,t−1 ) +
p−1
∑

r=1

π
y
i (r)∆yi,t−r +

p−1
∑

r=1

πx
i (r)∆xi,t−r + θi xi,t−1 + εi,t , (8)

whereγi = 1−
∑p

r=1 aii (r) ≥ 0, πy
i (r) = −

∑p
s=r+1 aii (s), πx

i (r) =
∑p

s=r+1 ci(s) andθi = γi( LRMi − 1 ).

The long-run homogeneity hypothesis can be written asH0 : θi = 0. As shown in appendix B, provided that
(8) is correctly specified (i.e.,εi,t uncorrelated to the history ofxi,t), the t-statistic associated toH0 has the usual
asymptotic Gaussian distribution, even if the data are not stationary and so the limiting distribution of the least
squares estimator ofθi is non-standard. This provides a simple test on the relativePPP hypothesis in equationi.

If γi > 0 then the so-called error correction mechanism is in place and soyi,t responds to deviations from the
aggregatexi,t to restore equilibria in the long-run. The “speed of adjustment” coefficient γi tells us the proportion
of the disequilibriumyi,t − xi,t which is corrected with each passing period. Note that ifγi = 1, then equilibrium
correction occurs in just one period. On the other hand,γi = 0 corresponds to the case whereyi,t does not respond
to disequilibria at all,yi,t is long-run forcing. As we will see next, this result can be exploited to identifythe trends
driving the dynamics of the system made from the collection of n equations like (8).
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3.3 Identification of shocks from a reference region

Under the aggregation and long-run homogeneity hypotheses, the original VAR model (1) can be written as the
vector error correction model (VECM)

∆yt = −Πyt−1 + π1∆yt−2 + . . . + πp−1∆yt−p+1 + εt , (9)

where theπ matrices are constrained due to the aggregation restrictions.2

Recall that, by the Granger representation theorem (cf.Hamilton, 1994, p. 581), a system ofn variables driven by
h stochastic trends can be represented as a VECM like (9) with the long-run matrixΠ having rank equal ton − h.
This implies that the system containsn− h cointegrating relationships.

Let W be then × n matrix that collects the weightswi j (recall thatwii = 0). Plugging the definition in (2) into (8),
it is easy to verify that matrixΠ takes the formΠ = Γ0B0 whereΓ0 is ann× n diagonal matrix withγi as thei-th
entry on the diagonal, andB0 = In −W is also ann× n matrix. Explicitly,

Π =















































γ1 0 0 · · · 0
0 γ2 0 · · · 0
0 0 γ3 · · · 0
...
...
...
. . .

...

0 0 0 · · · γn





























































































1 −w12 −w13 · · · −w1n

−w21 1 −w23 · · · −w2n

−w31 −w32 1 · · · −w3n
...

...
...

. . .
...

−wn1 −wn2 −wn3 · · · 1















































. (10)

Let 1m denote anm× 1 sum vector (full of ones). Then, sinceW1n = 1n (W is row-stochastic), it follows that
B01n = 0, and thus1n is an eigenvector ofB0 associated with a zero eigenvalue. It is easy to show that the
multiplicity of the zero eigenvalue is one, and thus the rankof B0 is equal ton− 1. Provided thatγi > 0 for at least
n − 1 equations, and hence the rank ofΓ0 is eithern− 1 or n, this result implies thatΠ is of rankn− 1 as well. It
follows that in system (9), there must a single stochastic trend andn− 1 cointegrating relationships,h = 1.

The equality in (10) and its implied single common trend is a direct consequenceof settingθi = 0 for all i in (8):
yi,t is cointegrated withxi,t, and since this happens for alli, it must be the case thatyi,t is cointegrated with each of
then− 1 constituents ofxi,t. In other words,θi = 0 for all i implies pairwise cointegrating relationships of the form
yi,t − y j,t ∼ I (0) for i , j, i.e. the fulfilment of the relative PPP for any pair of regions.

A more familiar VECM representation will haveΠ decomposed as the product of a fullcolumnrank matrix and a
full row rank matrix, both with rankn− 1. We may arrived easily to such a representation if one of theadjustment
coefficientsγi happens to be equal to zero. Hence, with no loss of generalitywe setγ1 = 0, so that

Π =















































0 0 · · · 0
γ2 0 · · · 0
0 γ3 · · · 0
...
...
. . .

...

0 0 · · · γn

















































































−w21 1 −w23 · · · −w2n

−w31 −w32 1 · · · −w3n
...

...
...

. . .
...

−wn1 −wn2 −wn3 · · · 1



































, (11)

or compactlyΠ = ΓB, whereΓ is then× (n− 1) matrix obtained by removing the first column ofΓ0, andB is the
(n− 1)× n matrix resulting from removing the first row ofB0. BothΓ andB have rankn− 1.

The alternative representation proves very convenient in interpreting the shocks hitting the system and especially
in identifying the single common trend. The situationγ1 = 0 andγi > 0 for i > 1 implies thaty1,t is the only
long-run forcing variable of the system and, followingGonzalo and Granger(1995), that this very variable can be
used to describe the properties of the common trend. Intuitively, eachyi,t can be thought of as the accumulation
of a shock with permanent effects plus an idiosyncratic shock that deviatesyi,t from the common trend. Sincey1,t

2 DefineΠx
r = diag(πx

1(r), π
x
2(r), . . . , πx

n(r) ) andΠy
r = diag(πy

1(r), π
y
2(r), . . . , π

y
n(r) ) as then× n diagonal matrices that collect the coefficients

associated to ther-th lag effects in (8). Then,πr = Π
y
r +Π

x
r W, whereW is the matrix of weights defined below. Note that then× n matrix

πr contains only 2n free parameters.
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will not adjust to restore disequilibria, then it must be driven exclusively by the permanent shock, whereasyi,t for
i , 1 not only responds to the permanent shock, so that it keepsyi,t − y1,t stationary, but also to perturbations that
transitorily takeyi,t − y1,t away from its constant long-term expectation.

Gonzalo and Ng(2001) propose a method to express the perturbations of the VECMεt as a linear combination ofh
permanent shocks andn− h transitory shocks, the so-called PT decomposition. Thus, the above rationale provides
a simple method to identify shocks that can be attributed to region 1: since only theh = 1 trend shock affectsy1,t,
then the permanent shock in a PT decomposition can interpreted as coming from region 1.

More formally, letut be then × 1 vector whose first entry is the permanent shock,u1,t, and the remainingn − 1
entries correspond to transitory shocks,u2,t. Gonzalo and Ngshow thatu2,t = Bεt, whereasu1,t = Γ

∗
εt, whereΓ∗

is a 1× n vector such thatΓ∗Γ = 0. From (11) it is clear thatΓ∗ must be proportional to the first unit vector inRn,
i.e. the first row ofIn. More compactly,ut = Gεt, where the first row ofG is Γ∗ and its lower (n− 1) × n block is
given byB. To have a better grasp on how the structural shocksut relates to the innovationsεt, consider the equality
εt = G−1ut. Note thatB can be partitioned asB = [−w12 : In−1 −W22], wherew12 andW22 are blocks ofW. Since
(In−1 −W22)1n−1 = w12, then

G−1 =

[

1 0
−w12 I −W22

]−1

=

[

1 0
(I −W22)−1w12 (I −W22)−1

]

=

[

1 0
1n−1 (I −W22)−1

]

. (12)

The innovation to the first equation equals the permanent shock ε1,t = u1,t, and in this way we are able to identify
how shocks to a reference region propagates to the rest of thecountry. Note also that on impact, a shocku1,t = 1
will have a proportional effect inall innovationsεi,t = 1 for i = 1, 2, . . . , n, whereas a shockui,t = 1 for i > 1 will
affect all innovations (ε2,t, ε3,t, . . . , εn,t) but ε1,t.3,4

4 Empirical analysis

Next we present the main results of our empirical analysis, usingyi,t = 1200 log(Pi,t/Pi,t−1), i.e. annualized monthly
inflation rates. First, we describe two approaches to measure the “rest of the country” inflation rates, one based
on geographic proximity and the other based on economic importance. Under both aggregation schemes, we find
supporting evidence of the aggregation hypothesis. The VECM is then estimated and its dynamic features are
analyzed. It is found that relative PPP holds across the country and moreover that convergence towards a common
inflation trend is fast. Furthermore, the results also pointout that the influence of Lima in the behavior of regional,
and consequently countrywide, inflation rates is strong.

4.1 Aggregation schemes

We entertain two alternative approaches to construct the aggregatexi,t which, sincext =Wyt, amounts to determine
the weights matrixW. In both cases the entries ofW are given (independent fromεt), and so the theoretical
considerations on linearity after aggregation discussed in the previous section apply.

The first approach corresponds togeographic aggregation. It is based on the basic notion that location and distance
matter, and in particular that the closer regioni is from region j, the stronger their mutual feedback. There are
many ways to operationalize this concept and we choose one that is particularly simple (up to third-order contiguity
relations among then = 9 regions).

3 The usual practice, however, is to orthogonalizeut and consider insteadεt = G−1Hηt, whereH is the lower block triangular matrix
obtained by applying a Choleski decomposition to the covariance matrix ofut, andηt collects the orthogonalized shocks. This makes no
difference from the identification of the shock to the reference region. Just as in the case ofut, the first element ofεt is affected only by the
first element ofηt, i.e. the orthogonalized permanent shock.

4 These results can be generalized easily. Suppose that thereare two reference regions (two common trends) such thatγ1 = γ2 = 0. In this
case, since the rank ofB0 remainsn− 1, rank(Π0) = rank(Γ0) = n− 2 so in theΠ = ΓB decompositionΓ is then× (n− 2) matrix obtained
by removing the first two columns ofΓ0, andB is the (n− 2)× n matrix resulting from removing the first two rows ofB0. Upon examining
the structure of matrixG, we can reach the important conclusion that the first two innovations (ε1,t, ε2,t) are linear combinations of the two
permanent shocks (u1,t ,u2,t), and no transitory shock affects them. Upon orthogonalizingut, or using another identification scheme, we
could then find structural shocks coming from regions 1 and 2.For a related discussion, seeGonzalo and Granger(1995).
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Define the scores

w̃i j =































0 if i = j (regions are not considered neighbors to themselves),
0 < a if region j andi are contiguos,
0 ≤ b < a if region j is located one region away fromi,
0 ≤ c < b otherwise (i and j are separated by more than two regions),

(13)

such thatwi j is simply the normalized version of ˜wi j , i.ewi j = w̃i j/
∑n

j=1 w̃i j . It is worth-mentioning that alternative,
and more sophisticated, spatial weighting schemes rendered results (available upon request) that were very similar
to those reported below. From Figure1, the symmetric matrix with raw (not normalized) scores equals

W̃ =
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b b a a b b a a 0





















































































. (14)

We set arbitrarilya = 1, b = 0.5 andc = 0, and recall that our main conclusions are not sensitive to this choice.

The second approach iseconomic aggregation. Here, the strength of the feedback is determined by weightsthat
are proportional to the participation of each region in national expenditure. The underlying assumption is that the
importance of regioni as a market for goods traded nationwide is well-reflected by its relative contribution to
total expenditure. Under this approach,xi,t is a normalized measure of national inflationwithout the contribution
of inflation in region i. Let Yt denote national inflation, and letα j be the weight regionj receives in composing it
(these weights are reported in Figure1). By construction,

∑n
j=1α j = 1. Then,

Yt =

n
∑

j=1

α jy j,t = αiyi,t +

n
∑

j,i

α jy j,t = αiyi,t + (1− αi)xi,t , (15)

thusYt is a linear combination betweenyi,t andxi,t. It follows thatxi,t =
∑n

j,i α jy j,t/(1− αi) and, therefore,

wi j =
α j

1− αi
. (16)

In this case, the matrixW is not symmetric. A large region (in economic terms) exerts more influence on a small
region than the small region exerts on the larger one. More formally, provided thatαi + α j < 1 (which is always the
case), it is easy to verify thatwi j < w ji if and only if αi > α j . Thus, the feedback that inflation in regioni receives
from inflation in regionj is smaller than the feedback from regioni to region j, since regioni constitutes, in terms
of expenditure, a larger market than regionj.

4.2 Aggregation hypothesis

In testing the aggregation hypothesis, an important practical issue is the determination of the lag lengthp. Based on
the results of Breusch–Godfrey LM tests on serial correlation in the regression errors (as well as some information
criteria), we could not reject the hypothesis of uncorrelated errors in any equation forp ≥ 5. This result holds for
either the unrestricted model (3) or its restricted version (4). Thus, we setp = 5 (p − 1 = 4 lags in the VECM).
Then, under the null hypothesis of aggregation (δi j (r) = 0 in equation (6) for all i = 1, . . . , n, j , i andr = 1, . . . , p),
the standard Wald statistic is asymptotically distributedasχ2 with p(n− 2) = 35 degrees of freedom.

It can be seen in Table1 that the aggregation hypothesis cannot be rejected at conventional significance levels in
any case, and regardless of the aggregation scheme used to computexi,t (geographic or economic). We take these
results as conclusive evidence that the restricted model, which uses weighted aggregates to summarize feedback
effects from the rest of the country, is capable to capture the main features of the data. The next step, thus, is to
investigate the dynamics of this restricted form.
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4.3 Long-run homogeneity

Unlike a standard VECM, (9) constitutes a system of seemingly unrelated regression equations (SUR) with different
regressors. Thus, we choose system generalized least squares as our preferred estimation method (the results using
ordinary least squares were qualitatively the same).

The results are displayed in Table2 (for p = 5). The first column shows Breusch–Godfrey LM tests on serial
correlation, and suggests that each dynamic equation is correctly specified. This aspect of the model is relevant to
perform valid inference onθi (see appendix B). The second and third columns show the pointestimates andp-values
of γi andθi. It can be observed that in all equations,θi appears to be statistically insignificant, suggesting thatthe
long-run homogeneity hypothesis (θi = 0 for all i) cannot be rejected at conventional significance levels. Onthe
other hand, the estimates ofγi are statistically different from zero, except in the case of Lima. Thus, the first setof
results suggests that the model described in section3.3, with Lima as the reference region, cannot be rejected by
the data. These findings hold for both the geographic and economic aggregation schemes.

The fourth column of Table2 shows estimates andp-values ofγi after imposing the long-run homogeneity
restrictionsθi = 0 for all i. Again, all estimates but Lima’s are statistically significant. Moreover, the point estimates
of γi are considerably large fori > 1, ranging from about 0.65 to about 1.00 for the geographic aggregation
and from about 0.75 to approximately 1.00 for the economic aggregation. This indicates that deviations from the
relative PPP are corrected rather quickly. Geographic aggregation implies a somehow slower adjustment towards
PPP, reflecting the influence of Lima’s inflation (the common trend) in the “rest of the country” aggregates under
the economic aggregation approach. All these results are confirmed in the last column of Table2, which presents
the final estimates andp-values ofγi , after imposing both the long-run homogeneity restrictions and the fact that
Lima serves as a reference region (γ1 = 0).5

4.4 Regional dynamics and the importance of Lima

The estimation results reveal fast convergence of the regional inflations towards their own aggregates of external
inflation, yi,t − xi,t. Since this phenomenon occurs in every region of the country, one could also expect a fast
reversion towards the common trend. Figure3 shows the responses of regional inflations relative to Lima (yi,t−y1,t),
to a unit shock in Lima’s inflation (the identified permanent shock of the system), under the geographic aggregation
scheme (the results under the economic aggregation approach were very similar and are available upon request).
As a summary, the last panel of Figure3 shows the response of the average inflation of then = 9 regions in the
country. Due to the intrinsic dynamics implied by both the lags of the VECM and the sparsity of the matrixW,
convergence ofyi,t towards the common trendy1,t is not as immediate as it is towardsxi,t. The point estimates
of the impulse-response functions display hump shapes suggesting an initial overreaction ofyi,t to the shock that
eventually vanishes. Convergence is fast, nevertheless: the maximum deviation amounts to less than 0.4 percent in
annual terms, and furthermore no response is statisticallysignificant after 12 months of the occurrence of the shock
(many of them are not significant even after 6 months). Thus, we may conclude that a shock to trend inflation will
completely propagate to the individual regional inflationsin less than a year.

On the other hand, as discussed in section2, regional inflation rates are also affected by idiosyncratic shocks that
may induce significant short-run deviations form a trend. Figure4 shows the responses of regional inflations relative
to Lima to a shock in regioni that induces a deviation on impact of one percent, under the geographic aggregation
scheme. Here, the shock is characterized by settingεi,0 > 0 andε j,0 = 0 for i , j such thatyi,0 − y1,0 = 1; then
εi,t = 0 for all i and t > 0. It is observed that the effects of initial deviations of one percent are short-lived: in all
cases, after three periods (months) of the shocks the deviation from Lima’s inflation is less than 0.20 percent. Given
the transitory nature of these shocks, few responses appearto be statistically significant after 12 months of the shock
and none is significant after 18 months.

To assess the importance of the shock to the common trend, we perform a variance decomposition of the forecast

5 Under geographic aggregation, the Wald statistic for the joint hypothesis thatθi = 0 for all i is ω1 = 10.32, below the 90% critical value
χ2

10 = 14.68. Also, the Wald statistic for the joint hypothesis thatγi = 0 for i > 1 is ω2 = 55.79, well above the 99% critical value
χ2

9 = 21.66. Under economic aggregation these statistics amount toω1 = 4.77 andω2 = 78.69.
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errors in the VECM. Table3 shows the contribution of the permanent shock for different forecasting horizons. The
long-runh→ ∞ corresponds to the unconditional variance, and we first focus on these figures. The importance of
the common trend cannot be exaggerated: under the geographic aggregation scheme, it contributes to at least 69.1
percent of the unconditional variance (in region 8) and up toalmost 83.7 percent (in region 7). The contribution
to average inflation is a stunning 89.7 percent. As expected,under economic aggregation the importance of Lima’s
inflation is further increased: the shock contributes to at least 74.6 percent of the unconditional variance (again in
region 8), and more than 95 percent for the average inflation rate. The timing in the variance decomposition implies
that the influence of the common trend shock is conspicuous one year ahead, whereas after two years the figures
are close to the unconditional statistics. These findings point out that what happens in Lima serves as a benchmark
in pricing decisions within the horizons that are relevant for monetary policy, say one to two years.6

5 Closing remarks

We have estimated and tested a multivariate dynamic model ofregional inflations in Peru, in order to quantify the
various feedbacks among regional inflation rates and, in particular, to assess the importance of Lima’s inflation for
the rest of the country. Our estimations suggest that the main features of the data can be well-described by a VECM
with two important particularities. Firstly, the model is very parsimonious, as the dynamic feedback from the rest
of the country to a specific regional inflation rate can be restricted to come from aggregates of neighboring regions
(both in a geographic and in an economic sense) rather than from individual inflations. Secondly, the estimates of
cointegrating vectors and their associated speed of adjustments provide evidence that the relative PPP holds among
pairs of regional inflations, and that the only identifiable long-run forcing variable is Lima’s inflation.

These findings lead us to conclude that Lima’s inflation has served as a trend, an “attractor”, for all remaining
regional inflations. Furthermore, the typical deviation from this trend is likely to be short-lived and moderate. Since
these estimates come from a sample where the BCRP has been actively and explicitly targeting Lima’s inflation, it
can be inferred that such practices have contributed to inflation stability in the whole country.

Looking forward, the economic importance of Lima in composing the national aggregate is expected to remain
large in the medium term. Thus, the market may continue viewing Lima’s inflation as a noise-free measure of
national inflation, useful for price setting decisions. Therefore, in the event that the BCRP shifts to targeting national
inflation, our findings indicate that the workings of monetary policy in Peru (especially the monetary policy lag)
should not be significantly affected. It is unlikely that the adoption of a national inflation target would weaken the
strong feedback from Lima’s inflation to inflation elsewherein the country.

Our results can be further refined. A referee suggested that,in line with findings inMonge and Winkelried(2009),
the larger share of foodstuff in the CPI basket in provinces may be driving the results towards fast inflation
convergence. This is mainly because food prices are subjectto supply shocks that, despite their size, generally revert
quickly. Hence, a natural extension of our work will be to repeat our analysis using somehow harmonized CPI across
regions, for instance by using the same weights than Lima’s CPIs prior to aggregation. Alternatively, the analysis
can be performed using measures ofcore inflation, excluding volatile items such as foodstuff and fuels. Even
though this extensions will surely render further insightsto enhance our understanding of the complex transmission
of regional shocks across the country, we do not expect our main qualitative results to change substantially.

6 The case of region 8 deserves attention since it is the regionwhere transitory shocks appear to be more important. It includes Cusco city
which is by far the largest tourist destination in the country, and so its pricing dynamics (especially in services) is likely to be decoupled
from the behavior in neighboring regional economies, Lima amongst them.
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Technical appendix

Following theoretical results inPhillips (1986), Park and Phillips(1988) and Sims et. al.(1990), this appendix
shows that both the aggregation and long-run homogeneity hypotheses can be tested using standard results from
classical regression theory. In particular, it is shown that the statistics involved are asymptotically Gaussian even
when the data are not stationary. This is the starting point for Wald coefficient tests that are asymptoticallyχ2.

A Aggregation hypothesis

The VAR(p) model

yt = A1yt−1 + A2yt−2 + . . . + Apyt−p + εt (17)

can be rewritten as

yt = C1∆yt−1 + C2∆yt−2 + . . . + Cp−1∆yt−p+1 + Hyt−1 + εt , (18)

whereH = A1 + A2 + . . . + Ap, C1 = A1 − H andCr = Cr−1 + Ar for r = 2, . . . , p− 1.

If yt is stationary, then the least squares estimators of theC matrices and ofH will be asymptotically Gaussian under
standard conditions. On the other hand, followingSims et. al.(1990) andHamilton (1994, section 18.2), whenyt

is nonstationary, the least squares estimators of theC matrices in (18) are consistent and remain asymptotically
Gaussian, whereas the corresponding estimator ofH becomes superconsistent and have a nonstandard distribution
characterized by functionals of Weiner processes. More formally, it is found that forr = 1, 2, . . . , p− 1

√
Tvec(Ĉr − Cr )

d−→ N(0,Vr ) whereas
√

Tvec(Ĥ − H ) = op(1) , (19)

where vec(A) is the vector obtained by stacking the columns of matrixA, and Vr denotes a positive definite
covariance matrix.

The results in (19) are significant since they imply that hypothesis tests involving linear combinations of theC
matrices andH are dominated asymptotically by the coefficients with the slower rate of convergence, namely those
in theC matrices. In particular, tests involving linear combinations of theA matrices in (17) other than the sumH
have the usual limiting distributions.

Recall that, for a givenr = 1, 2, . . . , p, the aggregation restrictions have the formai j (r) − (wi j/wik)aik(r) for j , k
andk , i. These restrictions can be expressed more compactly asRrvec(Ar ) = 0, whereRr is a p(n − 2) × n2

matrix whose typical row contains a 1, the ratio−wi j/wik andn2 − 2 zeroes. In terms of the coefficientes of the
reparameterized model (18), the aggregation restrictions are (considerCp = 0)

Rrvec(Ar ) ≡ Rrvec(Cr − Cr−1 ) = 0 for r = 2, . . . , p , (20)

R1vec(A1 ) ≡ R1vec(C1 + H ) = 0 .

Therefore, using the results in (19), we have that under the null hypotheses in (20) (considerĈp = 0),

√
TRrvec(Ĉr − Ĉr−1 )

d−→ N(0,Ωr ) for r = 2, . . . , p , (21)
√

TR1vec(Ĉ1 + Ĥ ) =
√

TR1vec(Ĉ1 ) + op(1)
d−→ N(0,Ω1) .

whereΩr denote positive definite covariance matrices forr = 1, 2, . . . , p. It follows that, regardless of the
stationarity properties of the data, the statistics involved in testing aggregation hypothesis are asymptotically
Gaussian, and thus the corresponding Wald tests have the usual asymptoticχ2 distribution.
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B Long-run homogeneity

Consider the stylized model, equation (8) with p = 1,

∆yt = −γ(yt−1 − xt−1) + θxt−1 + εt , (22)

where∆xt = vt andεt are stationary processes with zero mean and unconditional variancesσ2
v andσ2

ε, respectively.
It is assumed thatvt andεt are uncorrelated at all leads and lags, which essentially implies that equation (22) is
correctly specified. The arguments below are still valid foraugmented equations that include lags of∆xt and∆yt,
such that the uncorrelatedness betweenvt andεt is guaranteed.

The purpose is to testH0 : θ = 0 in (22). For concreteness letzt−1 = yt−1 − xt−1, which is stationary underH0. It is
not difficult to verify that, becausezt ∼ I (0) andxt ∼ I (1),

1
T

∑

t xt−1zt−1
∑

t zt−1εt
∑

t(zt−1)2
=

1
T

Op(T)Op(
√

T)

Op(T)
= op(1) and

1

T2

(
∑

t xt−1zt−1)2

∑

t(zt−1)2
=

1

T2

Op(T2)

Op(T)
= op(1) . (23)

On the other hand, letWε(·) andWv(·) be two standard Weiner processes onC(0, 1), associated to the standardized
seriesεt/σε and vt/σv, respectively. These processes are uncorrelated and hence, due to the Gaussianity of the
increments, independent. A standard result for integratedprocesses (cfHamilton, 1994, section 17.5) is that

1
T2

∑

t

(xt−1)2 d−→ σ2
v

∫ 1

0
Wv(r)

2dr ≡ D2 , (24)

whereasPhillips (1986, p. 327) andPark and Phillips(1988, Lemma 5.1) show that

1
T

∑

t

xt−1εt
d−→ σvσε

∫ 1

0
Wv(r) dWε(r) = N(0, σ2

εD2) ≡ D1 . (25)

The above limiting distributionD1 is mixed Gaussian. This is to be understood as a normal distribution with
variance proportional toD2 which is itself a random drawing from the space of positive scalars, in this case quadratic
functionals of a Weiner process.

Finally, let s2 denote the usual maximum likelihood estimator of the regression error variance, i.e. the average of
the sum of squared residuals in regression (22), which is consistent forσ2

ε. Upon gathering the results in (23), (24)
and (25), thet statistic for testingH0 : θ = 0 satisfies, under this null hypothesis,

τ =

∑

t xt−1εt −
∑

t xt−1zt−1
∑

t zt−1εt/
∑

t(zt−1)2

√

s2∑
t(xt−1)2 − s2(

∑

t xt−1zt−1)2/
∑

t(zt−1)2
=

∑

t xt−1εt/T
√

s2∑
t(xt−1)2/T2

+ op(1)
d−→

D1
√

σ2
εD2

≡ N(0, 1) , (26)

which follows from the continuous mapping and Cramér theorems. Therefore, the limiting distribution ofτ is
standard Gaussian, even though the least squares estimatorof θ itself is not asymptotically Gaussian (the limiting
distribution of Tθ̂ is D1/D2). Similar arguments show that the asymptoticχ2 statistics for tests for general
restrictions on the coefficientsθ across equations are also generated in the standard way.
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Figure 1. Economic regions in Peru

1
2 2 333 4 4 5 55 66 6 6
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99 1 Lima (66.02)
2 Piura, Tumbes (2.57)
3 Lambayeque, Cajamarca, Amazonas (3.83)
4 La Libertad, Ancash (7.25)
5 Ica, Ayacucho, Huancavelica (2.21)
6 Arequipa, Moquegua, Tacna, Puno (7.57)
7 Junín, Pasco, Huánuco (3.07)
8 Cusco, Apurímac, Madre de Dios (3.55)
9 Loreto, San Martín, Ucayali (3.93)

Note: Classification of Peruvian Departments into 9 economic regions, following Gonzales de Olarte(2003, p. 41). The numbers in
parentheses are the weights inflation in each region receives in composing national inflation, according to INEI.

Figure 2. Regional inflation (year-on-year percent changes), 1997 - 2011

(a) Lima, maximum and minimum (b) Deviations from national inflation
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Notes: For a given period, panel (a) shows Lima’s inflation and the maximum and minimum rates among the remaining 8 regions. Constants
were added to the series in panel (b) to ease visualization. For each series the vertical scale ranges from−2.5 to about 4.5 percent, and the
dashed horizontal lines are the corresponding zero lines.
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Figure 3. Response of regional inflations relative to Lima’s to a shockin Lima (geographic aggregation)
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Notes: Each graph shows the response ofyi,t − y1,t (in annualized percent terms) to a unit shock in Lima, identified as discussed in section
3.3. Figures in the horizontal axis are months after the occurrence of the shock in period 0. Bootstrap 90 percent confidence intervals are
depicted as shaded areas. The scale of the vertical axis is the same for all graphs.
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Figure 4. Response of regional inflations relative to Lima’s to a regional shock (geographic aggregation)
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Notes: Each graph shows the response ofyi,t − y1,t (in annualized percent terms) to a shock in regioni such thatyi,0 − y1,0 = 1. Figures in the
horizontal axis are months after the occurrence of the shockin period 0. Bootstrap 90 percent confidence intervals are depicted as shaded
areas. The scale of the vertical axis is the same for all graphs.
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Table 1. Testing for aggregation

Geographic aggregation Economic aggregation
χ2 statistic p-value χ2 statistic p-value

1 Lima 31.654 0.630 32.295 0.599
2 Piura, Tumbes 35.446 0.447 38.924 0.297
3 Lambayeque, Cajamarca, Amazonas 27.838 0.800 31.513 0.637
4 La Libertad, Ancash 28.050 0.792 30.108 0.703
5 Ica, Ayacucho, Huancavelica 39.261 0.285 39.527 0.275
6 Arequipa, Moquegua, Tacna, Puno 28.221 0.785 31.129 0.656
7 Junín, Pasco, Huánuco 29.078 0.749 26.446 0.850
8 Cusco, Apurímac, Madre de Dios 37.764 0.344 36.229 0.411
9 Loreto, San Martín, Ucayali 35.291 0.454 38.136 0.329

Notes: Wald tests (asymptoticallyχ2) for H0 : δi j (r) = 0 in equation (6), for all i = 1, . . . ,n, j , i and r = 1, . . . , p, and for different
aggregation schemes. The lag length was set top = 5, which was found to be the minimum value to render serially uncorrelated residuals in
all equations (both in the unrestricted and in the restricted models). In all tests, the number of degrees of freedom isp(n− 2) = 35.

Table 2. Estimation results

Breusch–Godfrey γi θi γi γi

LM test (θi = 0) (θi = γ1 = 0)

Geographic aggregation

1 Lima 0.074 (0.929) 0.548 (0.122) 0.274 (0.109) 0.399 (0.084) −
2 Piura, Tumbes 2.036 (0.134) 1.128 (0.014) 0.194 (0.449) 1.056 (0.015) 1.059 (0.016)
3 Lambayeque, Cajamarca, Amazonas 0.474 (0.623) 0.769 (0.011) 0.224 (0.107) 0.743 (0.010) 0.787 (0.005)
4 La Libertad, Ancash 0.038 (0.963) 0.855 (0.034) 0.148 (0.545) 0.755 (0.028) 0.763 (0.022)
5 Ica, Ayacucho, Huancavelica 0.177 (0.838) 0.800 (0.058) 0.255 (0.108) 0.718 (0.041) 0.729 (0.032)
6 Arequipa, Moquegua, Tacna, Puno 1.478 (0.231) 0.997 (0.007) 0.197 (0.311) 0.982 (0.003) 1.000 (0.003)
7 Junín, Pasco, Huánuco 1.044 (0.354) 0.681 (0.023) 0.165 (0.211) 0.645 (0.020) 0.647 (0.025)
8 Cusco, Apurímac, Madre de Dios 2.046 (0.133) 0.692 (0.016)0.057 (0.778) 0.635 (0.015) 0.625 (0.018)
9 Loreto, San Martín, Ucayali 3.390 (0.076) 0.806 (0.001) 0.245 (0.216) 0.704 (0.002) 0.647 (0.004)

Economic aggregation

1 Lima 0.084 (0.920) 0.125 (0.696) 0.178 (0.210) 0.071 (0.756) −
2 Piura, Tumbes 1.318 (0.271) 1.044 (0.022) 0.043 (0.885) 0.969 (0.008) 0.960 (0.006)
3 Lambayeque, Cajamarca, Amazonas 0.238 (0.788) 0.900 (0.008) 0.099 (0.607) 0.890 (0.004) 0.873 (0.005)
4 La Libertad, Ancash 0.121 (0.886) 0.873 (0.008) 0.037 (0.876) 0.800 (0.005) 0.793 (0.005)
5 Ica, Ayacucho, Huancavelica 2.157 (0.119) 0.969 (0.008) 0.153 (0.382) 0.985 (0.002) 0.968 (0.002)
6 Arequipa, Moquegua, Tacna, Puno 1.242 (0.292) 0.848 (0.003) 0.112 (0.601) 0.842 (0.001) 0.834 (0.001)
7 Junín, Pasco, Huánuco 0.551 (0.577) 0.873 (0.001) 0.084 (0.510) 0.878 (0.000) 0.866 (0.000)
8 Cusco, Apurímac, Madre de Dios 1.351 (0.262) 0.787 (0.002)0.021 (0.913) 0.750 (0.000) 0.749 (0.000)
9 Loreto, San Martín, Ucayali 1.707 (0.185) 0.806 (0.013) 0.166 (0.330) 0.790 (0.007) 0.787 (0.006)

Notes: SUR estimates. The Breusch–Godfrey is asymptotically distributed as aχ2 variate with one degree of freedom under the null
hypothesis of no first-order serial correlation in the regression errors. Figures in parentheses arep-values. In the case of coefficient estimates,
the p-values are for the null hypothesis that the corresponding coefficient is equal to zero.
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Table 3. Contribution of a shock in Lima (permanent) to the forecast error variance

h = 0 h = 1 h = 6 h = 12 h = 18 h = 24 h→ ∞

Geographic aggregation
2 Piura, Tumbes 51.8 55.5 60.3 65.9 70.3 73.7 77.2
3 Lambayeque, Cajamarca, Amazonas 56.5 63.2 68.8 73.9 77.6 80.6 83.3
4 La Libertad, Ancash 49.3 57.3 64.3 70.6 75.1 78.4 80.9
5 Ica, Ayacucho, Huancavelica 56.5 61.8 67.8 74.0 78.2 81.3 83.3
6 Arequipa, Moquegua, Tacna, Puno 44.4 50.0 57.9 66.4 72.0 76.0 78.2
7 Junín, Pasco, Huánuco 53.7 56.7 66.3 73.9 78.8 82.2 83.7
8 Cusco, Apurímac, Madre de Dios 18.2 25.1 39.9 53.2 61.2 66.8 69.1
9 Loreto, San Martín, Ucayali 40.0 47.3 60.3 68.7 74.1 77.9 80.1

Average 76.1 76.3 79.0 82.7 85.5 87.6 89.7

Economic aggregation
2 Piura, Tumbes 50.5 57.3 64.4 71.4 76.1 79.4 81.2
3 Lambayeque, Cajamarca, Amazonas 56.4 66.2 74.8 81.1 84.8 87.3 88.3
4 La Libertad, Ancash 49.7 59.3 68.3 75.7 80.3 83.3 84.6
5 Ica, Ayacucho, Huancavelica 58.5 68.4 77.1 83.3 86.8 89.1 89.8
6 Arequipa, Moquegua, Tacna, Puno 46.2 53.8 65.1 73.6 78.9 82.3 83.6
7 Junín, Pasco, Huánuco 58.2 62.7 77.6 84.9 88.7 91.0 91.4
8 Cusco, Apurímac, Madre de Dios 21.0 28.0 46.0 59.5 67.6 73.0 74.6
9 Loreto, San Martín, Ucayali 41.3 50.8 67.7 77.0 82.2 85.4 86.5

Average 78.2 82.2 88.0 91.8 93.7 94.9 95.3

Notes: The shock to Lima’s inflation is identified as discussed in section 3.3. The figures show the percentage of the forecast error variance
that is attributable to this shock, for various forecastinghorizonsh. The caseh → ∞ corresponds to the contribution to the unconditional
variable of the forecast error.
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