Proyectando la Inflación de Perú con Métodos de Machine Learning

Jairo Flores (BCRP) y Rodrigo Grandez (BCRP)

Encuentro de Economistas 2023

Los puntos de vista expresados en este documento de trabajo corresponden a los de los autores y no reflejan necesariamente la posición del Banco Central de Reserva del Perú.

24 de octubre de 2023

Motivación

- La tarea de predecir la tasa de inflación es esencial para los bancos centrales, pero también es una labor difícil debido a factores como inestabilidad de parámetros, errores en la especificación del modelo, entre otros.
- En años recientes, la aplicación de métodos de machine learning (ML) para la proyección de inflación ha aumentado significativamente.
- Estos métodos han demostrado ser superiores en capacidad predictiva a los métodos tradicionales, especialmente cuando se cuenta con una amplia gama de predictores.

Idea Principal y Contribución

Idea Principal:

- Aplicación de métodos de machine learning (ML) para la proyección de inflación en Perú.
- Comparación de la eficacia predictiva de modelos de ML con modelos estadísticos tradicionales.
- Evaluar el desempeño de algunas métodos de Combinación de Pronósticos.

Contribución:

- Evidencia de que los métodos de ML y la combinación de pronósticos mejoran la predicción de la inflación total y la inflación de alimentos dentro del hogar en Perú en comparación de los métodos estadísticos tradicionales de predicción.
- En particular, entre las técnicas de ML, LASSO y los modelos basados en arboles de decisiones (Random Forest y XGBoost) son preferibles en el corto y largo plazo, respectivamente.

Outline

1 Literatura

2 Metodología

Oatos

4 Resultados

Revisión de la Literatura I

- Este trabajo se vincula a dos vertientes de la literatura econométrica aplicada enfocada en predicciones con modelos estadísticos.
- La primera vertiente se centra en estudios que utilizan métodos de machine learning (ML) para proyectar la inflación, contrastando su desempeño con los modelos estadísticos tradicionales.
- La segunda vertiente se orienta hacia la combinación de pronósticos con el objetivo de mejorar la precisión de las predicciones individuales de los modelos.
- Los modelos tradicionales de predicción de la inflación se encuentran sintetizados en Stock y Watson 2007, destacando modelos como AR, RW, IMA y UCSV.

Revisión de la Literatura II

- Varios estudios han explorado las capacidades de los métodos de ML para proyectar la inflación en economías avanzadas: Medeiros y Mendes 2016, Chakraborty y Joseph 2017, Cheng, Huang y Shi 2021, Medeiros, G. F. Vasconcelos et al. 2021, entre otros.
- En el ámbito de las economías emergentes, se han realizado investigaciones en países como Rusia (Baybuza et al. 2018), India (Pratap y Sengupta 2019), entre otros.
- A nivel global, Medeiros, Schütte y Soussi 2022 analizaron la proyección de la inflación de un amplio panel de países, destacando la superioridad de RF y redes neuronales.

Revisión de la Literatura III

- En la región, se han aplicado estos estudios en Brasil (Medeiros, G. Vasconcelos y Freitas 2016, Garcia, Medeiros y G. F. Vasconcelos 2017, Araujo y Gaglianone 2023), Chile (Leal, Molina, Zilberman et al. 2020), México (Heeren, O'Neill y Naghi 2021), Colombia (Cárdenas-Cárdenas, Cristiano-Botia y Martínez-Cortés 2023 y Martínez-Rivera, González-Molano y Caicedo-García 2023).
- Estos estudios generalmente encuentran que los métodos de ML, como LASSO y Random Forest, tienen un buen desempeño en la proyección de la inflación.

Revisión de la Literatura IV

- La combinación de pronósticos ha demostrado ser una herramienta eficaz para mejorar la precisión de las proyecciones: Elliott y Timmermann 2008.
- Existen argumentos a favor de la combinación de pronósticos, como la compensación de sesgos y la eficiencia por correlación entre ellos.
 Eurozona (Hubrich y Skudelny 2017), Reino Unido (Kapetanios, Labhard y Price 2008), Estados Unidos (Zhang 2019), India (Pratap y Sengupta 2019), Noruega (Bjørnland et al. 2012), entre otros.
- La combinación de pronósticos también se ha aplicado en países de América Latina. Por ejemplo, Garcia, Medeiros y G. F. Vasconcelos 2017 emplearon el Model Confidence Set (MCS) para buscar los mejores modelos para predecir la inflación de Brasil.

Outline

Literatura

Metodología

Oatos

4 Resultados

Metodología: Marco General

- Sea P_t el índice de precios mensual de Perú, definimos la tasa de inflación anualizada como $\pi_t = 1200(\ln(P_t) \ln(P_{t-1}))$.
- Existen K potenciales variables predictoras en un vector X_t de tamaño $K \times 1$.
- Se buscan predecir π_{t+h} . Esto se puede representar de la siguiente manera:

$$\pi_{t+h} = F_h(X_t, \lambda) + e_{t+h} \tag{1}$$

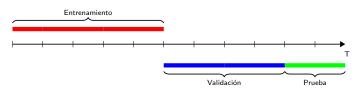
donde h = 1, 2, ..., H es el horizonte de proyección.

- En la ecuación (1), F_h(·) representa una relación potencialmente no lineal entre X_t, el conjunto de predictores, y la inflación π_{t+h}.
- El parámetro λ denota tanto los parámetros de los modelos consideramos como los hyperparámetros de los modelos de ML.
- El conjunto de predictores X_t incluye una constante, rezagos de la inflación, una serie de variables débilmente exógenas, así como sus rezagos.

Metodología: Muestra de Entrenamiento, Validación y Prueba

- Para realizar un análisis del poder de predicción de los métodos de ML y de los métodos estadísticos clásicos, dividimos el total de la muestra en 3 submuestras consecutivas:
 - 1 Entrenamiento (estimación)
 - 2 Validación (calibración de los hyperprámetros)
 - 3 Prueba (análisis fuera de la muestra para la evaluación de modelos)
- Representación gráfica:

Figura: División de la Muestra

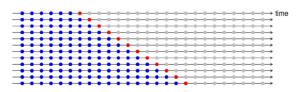


Fuente: Elaboración Propia.

Metodología: Walk Forward Cross-Validation

- Se emplea el método walk forward cross-validation que busca preservar la estructura de serie de tiempo de los datos.
- Para una ventana de entrenamiento-validación dada, creamos 12 divisiones de prueba-entrenamiento donde los datos de la muestra de entrenamiento consisten en observaciones anteriores al de la muestra de prueba.
- Los 12 conjuntos de prueba se seleccionan para corresponder a las 12 observaciones en nuestra muestra de validación. Con ello, el hyperparámetro óptimo se construye como el que registra la mejor precisión del pronóstico como un promedio a través de los 12 conjuntos de prueba (validación).

Figura: Walk Forward Cross-Validation



Metodología: Evaluación de los modelos

- Evaluamos el poder de predicción de los modelos en base a la raíz cuadrada del error cuadrático medio (RECM) y al error absoluto medio (REAM) en la muestra de Prueba (24 meses).
- Dado una proyección $\hat{\pi}_{t+h}$, para cada modelo calculamos el RECM para el horizonte h como:

$$RECM_h^m = \sqrt{\frac{1}{24} \sum_{t=T-24-h}^{T-h} (\pi_{t+h} - \hat{\pi}_{t+h|t}^m)^2}$$
 (2)

donde $\hat{\pi}^m_{t+h|t}$ indica la predicción generada por el modelo m.

• Por su parte, el REAM para el horizonte h se define como:

$$REAM(h) = \frac{1}{24} \sum_{t=T-24-h}^{T-h} |\pi_{t+h} - \hat{\pi}_{t+h|t}|$$
 (3)

Metodología: Combinación de Pronósticos

- Sea $\hat{\pi}_{t+h|t}^m$ la predicción del método m de la inflación en t+h utilizando información hasta el período t.
- El promedio simple de candidatos o el pronóstico promedio ponderado con pesos iguales:

$$\hat{\pi}_{t+h|t}^{promedio} = \sum_{m=1}^{L} \frac{\hat{\pi}_{t+h|t}^{m}}{L} \tag{4}$$

donde L es el número total de modelos considerados para construir la combinación. También es posible considerar la mediana o la media truncada.

- Otra alternativa de pesos que consideramos en esta versión es la propuesta en Hubrich y Skudelny 2017: pesos cambiantes en el tiempo en relación inversa al RECM que se obtiene en la muestra de Validación.
- La intuición: se asigna un menor pesos a los pronósticos de modelos que registraron un mayor RECM, mientras aquellos modelos con menores RECM tiene un peso mayor en la combinación de pronósticos.

Metodología: Modelos de Proyección

- Se emplean algunos modelos de ML que han sido implementados con éxito en muchos ejercicios de pronósticos.
- Modelos ARIMA como modelo estadístico clásico y el RW se presenta como el modelo de referencia.

Cuadro: Modelos de Pronóstico de Inflación

Modelos de Pronóstico de Inflación					
Modelos Shrinkage	Métodos Clásicos				
LASSO	ARIMA				
Ridge Regression	Random Walk				
Elastic Net					
Modelos No Lineales	Modelos Combinación				
Random Forest	Promedio simple				
Support Vector Regressor	Promedio Pesos-RECM				
Decision Tree					
Modelos Ensamble					
Adaboost					
Gradiant Boost					
Extreme Gradiente Boost					
Fuente: Elaboración Propia					

Outline

Literatura

2 Metodología

Oatos

4 Resultados

Datos

- Nos centramos en la proyección de las inflaciones mensuales tanto del IPC Total como del IPC de alimentos dentro del hogar (ADH) obtenidas de las estadística del BCRP.
- El horizonte de predicción, h varía desde 1 mes hasta los 12 meses. El periodo de la muestra cubre 20 años, desde enero 2003 hasta diciembre 2022 (T = 240 observaciones).
- Debido a la persistencia usual en la series de inflaciones, se ha considerado 12 rezagos de la variable dependiente, así como variables de expectativas de inflación, vinculadas a la producción y a las variables financieras.
- Además, utilizamos un conjunto amplio de predictores (76 variables y hasta 3 de sus rezagos), la mayoría de los cuales provienen de las cuentas nacionales y de las tablas estadísticas del BCRP y MINAGRI. También incorporamos variables vinculadas a las condiciones climatologías recopiladas por el National Weather Service.

Outline

Literatura

2 Metodología

3 Datos

4 Resultados

Resultados: Inflación IPC Total

Cuadro: RECM (IPC Total)

Modelos	h=1	h=3	h=6	h=9	h=12
LASSO	0.68	0.68	1.26	0.86	0.71
Ridge	0.74	0.69	1.69	1.61	1.94
ElasticNEt	0.69	0.65	1.24	1.45	0.94
AdaBoost	0.71	0.68	1.28	0.78	0.70
Gboost	0.68	0.65	1.28	0.78	0.67
Xgboost	0.65	0.63	1.21	0.77	0.63
Random Forest	0.69	0.66	1.23	0.78	0.66
SVR	0.67	0.67	1.29	0.86	0.65
Decision Tree	0.65	0.61	1.42	0.81	0.72
Promedio_Simple	0.64	0.55	0.92	0.69	0.70
Promedio_RECM	0.65	0.62	1.22	0.85	0.70
ARIMA	0.68	0.63	1.14	0.74	0.67
RW	1.00	1.00	1.00	1.00	1.00

Fuente: Elaboración Propia. El cuadro muestra el RECM de cada modelo horizonte selecionado relativo al RECM del RW.

Resultados: Inflación IPC ADH

Cuadro: RECM (IPC ADH)

Modelos	h=1	h=3	h=6	h=9	h=12
LASSO	0.55	0.83	1.00	1.55	0.96
Ridge	0.73	1.07	2.88	2.37	1.92
ElasticNet	0.56	0.82	0.99	1.92	0.99
Gboost	0.60	0.80	1.04	0.89	0.82
AdaBoost	0.62	0.77	1.06	0.89	0.84
Xgboost	0.57	0.73	1.07	0.91	0.79
Random Forest	0.59	0.77	1.03	0.87	0.80
SVR	0.61	0.82	1.07	0.90	0.88
Decision Tree	0.63	0.79	1.14	0.97	0.99
Promedio_Simple	0.53	0.69	0.88	0.83	0.79
Promedio_RECM	0.58	0.76	1.01	0.99	0.86
ARIMA	0.63	0.84	1.09	0.93	0.91
RW	1.00	1.00	1.00	1.00	1.00

Fuente: Elaboración Propia. El cuadro muestra el RECM de cada modelo para horizonte selecionado relativo al RECM del RW.

Resultados: Prepandemia - Inflación IPC Total

Cuadro: RECM (IPC Total)

Modelos	h=1	h=3	h=6	h=9	h=12
LASSO	0.89	0.27	1.08	0.41	0.91
Ridge	2.16	0.44	2.36	0.91	1.67
ElasticNet	1.04	0.31	1.09	0.44	0.97
Gboost	0.77	0.24	1.12	0.39	0.74
AdaBoost	0.76	0.22	1.06	0.35	0.71
Xgboost	0.86	0.25	1.06	0.33	0.70
Random Forest	0.79	0.21	0.98	0.35	0.69
SVR	0.69	0.23	0.97	0.39	0.82
Decision Tree	1.19	0.25	1.44	0.45	0.90
Promedio_Simple	0.95	0.37	2.18	1.08	3.26
Promedio_RECM	0.73	0.22	1.05	0.32	0.65
ARIMA	0.90	0.28	0.85	0.38	0.84
RW	1.00	1.00	1.00	1.00	1.00

Fuente: Elaboración Propia. El cuadro muestra el RECM de cada modelo para cada horizonte selecionado relativo al RECM del RW.

Resultados: Prepandemia - Inflación IPC ADH

Cuadro: RECM (IPC ADH)

Modelos	h=1	h=3	h=6	h=9	h=12
LASSO	0.95	0.24	1.08	0.31	0.86
Ridge	2.03	0.54	3.21	0.78	2.41
ElasticNet	0.94	0.27	1.07	0.31	1.05
Gboost	0.69	0.21	0.87	0.27	0.71
AdaBoost	0.76	0.23	1.05	0.29	0.82
Xgboost	0.77	0.25	1.05	0.35	0.90
Random Forest	0.69	0.19	0.91	0.26	0.76
SVR	0.75	0.18	0.93	0.27	0.84
Decision Tree	1.09	0.27	2.08	0.50	1.20
Promedio_Simple	0.99	0.30	1.75	0.55	2.05
Promedio_RECM	0.75	0.21	1.07	0.27	0.79
ARIMA	1.16	0.30	1.47	0.40	1.33
RW	1.00	1.00	1.00	1.00	1.00

Fuente: Elaboración Propia. El cuadro muestra el RECM de cada modelo para cada horizonte selecionado relativo al RECM del RW.

Importancia de variables - Inflación IPC Total

Figura: Lasso - Importancia de variables h=1

Inflación: Variables Relevantes (h=12)

Figura: Lasso - Importancia de variables h=12

Inflación Alimentos Dentro del Hogar: Variables Relevantes (h=1)

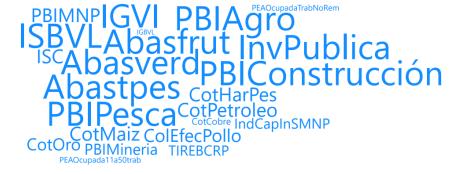


Figura: Lasso - Importancia de variables h=1

Inflación Alimentos Dentro del Hogar: Variables Relevantes (h=12)

Figura: Lasso - Importancia de variables h=12

Outline

Literatura

2 Metodología

3 Datos

4 Resultados

- Incorporación de más modelos de ML (RNN, por ejemplo).
- Incorporación de más modelos clásico (AR, VAR, entre otros).
- Incorporar Métodos Bayesianos.
- Aplicar el MCS.
- Más análisis de Robustez (diferente divisiones de la muestra, probar otros métodos de estimación de los hypeparámetros).
- Open the Black-box: aplicar método sugerido en Araujo y Gaglianone 2023 para mostrar qué variables son relevantes para predecir inflación.

Gracias!