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Objectives

Develop specialized neural network architectures for forecasting.
Explore the impact of different architectural paradigms on
forecasting performance.

Assess the influence of components like Time2Vec and non-local

blocks.
Conduct empirical evaluations using real-world data
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Why Use Neural Networks for Macroeconomic Forecasting?

e Timely and Accurate Decisions: Central banks B

shape economic policies, requiring precise
and timely decisions.

¢ Challenges in Traditional Methods: -
Traditional forecasting struggles with complex
financial systems.

¢ Information Overload: Central banks manage
massive datasets, requiring advanced tools.

e Policy Formulation: Al-driven forecasting aids |
adaptive policy formulation. @

e Competitive Advantage: Central banks using
Al gain a policy-making edge.
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Recurrent Neural Networks

e Specialized to process sequential data

e Key Features recurrent unit representation
o Cell States
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Advanced RNN Units

e Recurrent neural networks with gates: regulate information flow to capture and retain
long-term dependencies
e Two Explored
o Long Short-Term Memory (LSTM): Fundamental components of the LSTM include the
input, forget, and output gates, and cell state.
m Used in Seq2Seq networks
o Gated Recurrent Unit (GRU): merges the cell state and hidden state and uses fewer gates.
m Used in FixedSeq networks
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FixedSeq Network

e FixedSeq is composed of a set of GRU
units alone

¢ Fixed length constraint: Inputs (X)
must have the length as Outputs (y)

e Inputs (X) : Sequential data to infer
from
o Analysis time windows

e OQutputs (y): Sequential data to fit /
predict
o Forecast time windows
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Seq2Seq Network

e Seq2Seq is consists of an
encoder-decoder mechanism

¢ Flexible length features: Inputs (X)
can have different lengths as Outputs

(y)

e Encoder: Composed of LSTM units
o Inputs are fed and Cell State is
output as “Context”
e Decoder: Composed of LSTM units
o Context from Encoder block is fed
and final Outputs (y) are released

Inputs
(Analysis Sequence)

) Inputs
RNN | 7 (Forecast Sequence)
Units .}

I |

Cf¢/6maP>

©— 1< |m
e t Units
Context \ I /

Outputs
(Forecast Sequence)




Data Collection and Processing

e Baseline: 20-year dataset of
monthly inflation index data from
Peru, spanning until October 2023

¢ Sliding window batches: Multiple
sequential sector pairs
o Sector 1: analysis time window
o Sector 2: forecast time window
e Random shuffling of above batches
for training and testing sets
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import bcrpy

banco = bcrpu.Marcod)
banco.codigos = L["PHO1273PM' 1
banco. fechaini = "2003-10"
banco. fechafin = '2023-10"
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Non-Local Blocks (Component Integrations)

e Inspired by Transformer architecture’s Attention Layers
o Multihead attention layers are specialized to process
embedded string information (‘words’)
¢ Non-local blocks process numerical data
o Developed by Facebook Research (2017) to capture
long-range dependencies of spatial information
e Here used to prove whether they can further improve
capturing long-range dependencies in time series
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Time2Vec Time Encoding (Component Integrations)

e Developed by Borealis Al (2019)

e Reported to learn features of time (progression, periodicity,
scale) through time encoding

e The Time2Vec encoder may take a time series (or scalar
notion of time) and encode it to a series of vectors with the
same length:
o Trend Component (one vector)
o Periodic Components (custom number of vectors)
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B a re F ixed Se q - Training and Test Loss

® Training loss
—— Test loss

e Effect of analysis [time] window lengths

e Hypothesis: Providing more information to 1004
neural network will result in improved data
inferences

¢ FixedSeq network using the longest monthly
analysis windows top-performing according to a . . - ——

Loss

M

3-year time windows

learning curves. Epchs
o Lowest overall MSE loss
Training and Test Loss

o More narrow training-testing loss gap e s Taningioss
m Implies better generalization from =
unseen data 9-year time windows
¢ Shortcomings of long windows:
o More Information is demanded
o Less training and testing batches
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FixedSeq with Component Integrations

Lesser performing RNN
with non-local block and

time encoding

o FixedSeq-FULL (top)
And with nonlocal block

alone

o FixedSeg-NLB (bottom)

Both show dramatic
improvement, though

FixedSeq-NLB shows
superior performance
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Bare Seg2Seq - 1-year forecast windows

e Reducing the forecast time
windows to 12 months
(1-year) while changing the
analysis time window size.

e Both cases show significant
improvement to the
analogous FixedSeq results

¢ Longer analysis time windows
give better learning curve
performance

O Lower errors
o Better generalization

101

109 4

Loss

Inputs
(Analysis Sequence)

Inputs
(Forecast Sequence)

Decoder
101

Training and Test Loss

1071

® Training loss
—— Test loss

f.’,ﬁ o °
® "' X

~ *..:‘&.

1-year analysis windows

0 20 40 60 80 100
Epochs

Training and Test Loss

|
=
-
Hb ) RNN
_’;ﬁ Units

?

'

Outputs 10° 1
(Forecast Sequence)

Context

Loss

1071 A

® Training loss
—— Test loss

L Uty
6-year analysis windows *

0 20 40 60 80 100
Epochs




Forecast Evaluations

e Develop a methodology inspired by Mincer
and Zarnowitz (1969) to compare forecasting
error of RNN against benchmarks
o Across-time comparison of errors

between realizations (ground-truth) and

Batches
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Forecast Evaluations

e Most information-intensive model
o Bare FixedSeq, 9-year (108 months)
analysis & forecast windows
e Beats the random walk and AR(1)
benchmarks at longer times
¢ Fails to do so at earlier forecast time
regimes
o Compare against other
better-performing designs
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FixedSeq 9-year windows

Forecast Evaluations —
e Compare the latter model,
o bare FixedSeq (top), to a
o FixedSeqg-NLB with 3-year analysis
[/ forecast windows (bottom)
e bare FixedSeq noise attributed to S
significantly lower batch density o otaon s
FixedSeq-NLB 3-year windows
o Less power to report accurate B
forecast eI

e Model # 2 surpasses random walk
and AR(1) with greater confidence
o Mean and deviation significantly
lower to benchmarks
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Forecast Evaluations - Seq2Seq

e Best performing Seq2Seq along with
FixedSeq counterpart
o Same Forecast Window Size
(1-year)
e FixedSeq cannot take longer Analysis
Windows than its Forecast Length
¢ Significant overperformance of
Seq2Seq
o Beats benchmarks after 2 months
o FixedSeq unable to beat
benchmarks
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Conclusion

e Developed a methodology for assessing forecasting accuracy for neural

networks
¢ Choice of neural network architecture and input characteristics significantly

impacts forecasting performance

e Seq2Seq models demonstrate superior performance for cases where data
availability is limited

e Adoption of specific architectural components can optimize forecasting
accuracy
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THANK YOU
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