Empirical evider	nce Model 000000	Calibration 00	Results 00000	Final ○	Extension 00	Appendix 0000000	References
F	Firing Costs	and Labor	Market Fl	uctuatio	ons: A Cro	ss-Country	,
			Analys	is			

L.G Llosa L.E. Ohanian A. Raffo R. Rogerson

BCRP XLI Encuentro de Economistas

October 23, 2023

The views expressed here are solely those of the authors and do not reflect the views of the Federal Reserve Board or any other person associated with the Federal Reserve System or with the BCRP

Empirical evidence	Model 000000	Calibration	Results 00000	Final 0	Extension 00	Appendix 0000000	References
	-l2. C+.		- 4 - 1	the allow	la contra a con		
What do we	aog Stu	idy aggreg	ate nours	in the	business c	ycie	

- **Data**: Business cycle volatility of total hours worked widely differ across countries.
- **Theory**: Heterogeneous firm model with extensive and intensive margins of labor and fixed labor adjustment costs (i.e. firing costs).

Empirical evidence	Model 000000	Calibration 00	Results 00000	Final 0	Extension 00	Appendi x 0000000	References
What do we	find?						

- Differences in firing costs can account for the cross-country variation of the business cycle volatility of total hours worked.
- Abstracting from the intensive margin has important quantitative implications for the effect of firing costs.
 - With the intensive margin, small firing costs have greater effect on the extensive margin fluctuations.

Empirical evidence	Model 000000	Calibration 00	Results 00000	Final o	Extension 00	Appendix 0000000	References
Agenda							

1 Empirical evidence.

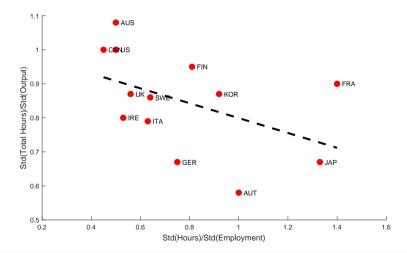
2 Model with overtime.

3 Quantitative analysis.

- Calibration.
- Results.
- Extensions.

4 Final remarks.

Empirical evidence ●00	Model 000000	Calibration	Results 00000	Final 0	Extension 00	Appendix 0000000	References
Stylized facts							


Cross-country patterns of labor market fluctuations:

1 Business cycle volatility of total hours worked widely differ across countries.

2 Countries that adjust more via the extensive margin tend to show more volatile total hours worked.

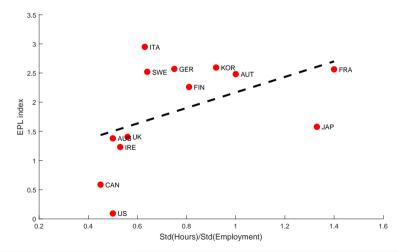

Empirical evidence	Model	Calibration	Results	Final	Extension	Appendix	References
○●○	000000	00	00000	0	00	0000000	

Figure: Volatility of Total Hours Worked vs. Relative volatility Intensive/Extensive Margins

Empirical evidence ○○●	Model 000000	Calibration	Results 00000	Final 0	Extension 00	Appendix 0000000	References

Figure: EPL vs. Relative volatility Intensive/Extensive Margins

Empirical evidence	Model ●○○○○○	Calibration 00	Results 00000	Final 0	Extension 00	Appendix 0000000	References
Household							
Model - Hous	sehold (1	.)					

- Indivisible labor framework (Hansen and Sargent, 1988).
 - There one family composed by population of individuals (normalized = 1).
 - Individuals choose $\{0, h_1, h_1 + h_2\}$ hours (convexification via lotteries).
 - Family chooses: consumption C, employment levels $N_{1,2}$, next period capital K'.
 - Employment is N_1 , from which N_2 works $h_1 + h_2$ and the rest works h_1 hours.

Preferences:

$$\log C(\mathbf{s}) - \chi \underbrace{\left(\underline{N_1(\mathbf{s}) - N_2(\mathbf{s})}_{\textit{only }h_1 \textit{ hours}} \frac{h_1^{1+\zeta}}{1+\zeta} - \chi \underbrace{\underline{N_2(\mathbf{s})}_{h_1+h_2}}_{\textit{h_1+h_2}} \frac{(h_1+h_2)^{1+\zeta}}{1+\zeta}$$

Empirical evidence	Model ○●○○○○	Calibration	Results 00000	Final ○	Extension 00	Appendix 0000000	References
Firms							
Model - Firm	ns (1)						

- Fixed population $j \in [0, 1]$.
- Decreasing returns to scale technology:

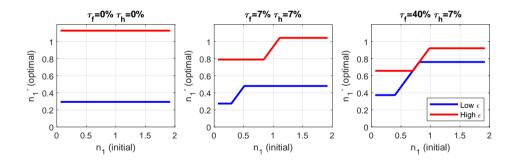
$$y_{jt} = \underbrace{e^{z_t} e^{\varepsilon_{jt}} k_{jt}^{\alpha} n_{1jt}^{\prime \nu} h_1}_{First \ stage} + \underbrace{e^{z_t} e^{\varepsilon_{jt}} k_{jt}^{\alpha} n_{2jt}^{\prime \nu} h_2}_{Second \ stage}, \ \alpha + \nu < 1$$

Where:

- Idiosyncratic productivity $\varepsilon_t \in \{\varepsilon_1, ..., \varepsilon_{n_{\varepsilon}}\} \sim i.i.d.$ Markov.
- Aggregate productivity $z_{t+1} = \rho_z z_t + \sigma_z \omega_{t+1}^z$, where $\omega_{t+1}^z \sim N(0, 1)$.
- Rented capital k_{jt} , stage-1 employment n'_{1it} , and stage-2 employment n'_{2it} .
- Important: $n'_{2jt} \in n'_{1jt} \implies n'_{2jt}$ workers work $h_1 + h_2$ hours.

- $\hat{v}(\varepsilon, n_1; s)$ is the firm (ε, n_1) value function.
- Firm enters the period with n_1 employment and a fraction $q \in (0, 1)$ quits.
- The problem of the firm:

$$\hat{v}(\varepsilon, n_{1}; s) = \max_{k, n'_{1}, n'_{2}} \lambda(s) \begin{bmatrix}
e^{z} e^{\varepsilon} k^{\alpha} (n'_{1}^{\nu} h_{1} + n'_{2}^{\nu} h_{2}) - r(s) k - w_{1}(s) n'_{1} - w_{2}(s) n'_{2} \\
-\tau_{h} \max(0, n'_{1} - (1 - q) n_{1}) \\
-\tau_{f} \max(0, (1 - q) n_{1} - n'_{1}) \\
+\beta E [\hat{v}(\varepsilon', n'_{1}; s') |\varepsilon, n_{1}; s]
\end{bmatrix}$$


Problem of the firm:

$$\hat{v}(\varepsilon, n_{1}; s) = \max_{k, n'_{1}, n'_{2}} \lambda(s) \begin{bmatrix} e^{\varepsilon} e^{\varepsilon} k^{\alpha} (n_{1}'^{\nu} h_{1} + n'_{2}'^{\nu} h_{2}) - r(s) k - w_{1}(s) n'_{1} - w_{2}(s) n'_{2} \\ -\tau_{h} \max(0, n'_{1} - (1 - q) n_{1}) \\ -\tau_{f} \max(0, (1 - q) n_{1} - n'_{1}) \\ +\beta E [\hat{v}(\varepsilon', n'_{1}; s') |\varepsilon, n_{1}; s] \end{bmatrix}$$

• Policy function $n'_1(\varepsilon, n_1; s)$ takes the form of (S,s) band.

Figure: Policy functions $n'_1(\varepsilon, n_1; s)$

Empirical evidence	Model ○○○○○●	Calibration	Results 00000	Final 0	Extension 00	Appendix 0000000	References
Market clearing							

Model - Market clearing and firm size distribution

Market clearing:

$$\int n'_{1}(\varepsilon, n_{1}; s) d\mu(\varepsilon, n_{1}) = N_{1}(s)$$

$$\int n'_{2}(\varepsilon, n_{1}; s) d\mu(\varepsilon, n_{1}) = N_{2}(s)$$

$$\int k(\varepsilon, n_{1}; s) d\mu(\varepsilon, n_{1}) = K$$

$$\int y(\varepsilon, n_{1}; s) d\mu(\varepsilon, n_{1}) = C(s) + K'(s) - (1 - \delta) K$$

• Take a set $\Delta_{n'_1}$, the law of motion of $\mu'(z,\mu)$ is

$$\mu'(z,\mu)\left(\varepsilon'\times\Delta_{n_1'}\right)=\sum_{\varepsilon}\pi\left(\varepsilon'|\varepsilon\right)\int\mathbb{I}\left(n_1'\left(\varepsilon,n_1;\mathsf{s}\right)\in\Delta_{n_1'}\right)d\mu\left(\varepsilon,n_1\right)$$

Empirical evidence	Model 000000	Calibration ●○	Results 00000	Final 0	Extension 00	Appendix 0000000	References
Calibration							
Calibration (2	1)						

Most parameters take the standard values.

	Parameter	Value	Note
Discount factor	β	0.99	
Depreciation rate	δ	0.025	
Curvature in technology (labor)	ν	0.64	Khan and Thomas (2008)
Curvature in technology (capital)	α	0.256	Khan and Thomas (2008)
Firing costs	$ au_{f}$	0.07	Percent of full-time wage Bloom (2009)
Hiring cost	$ au_h$	0.07	Percent of full-time wage Bloom (2009)
Persistence of aggregate productivity	ρ_z	0.95	
Persistence of idiosyncratic productivity	ρ_{ϵ}	0.75	Cooper et al. (2015)

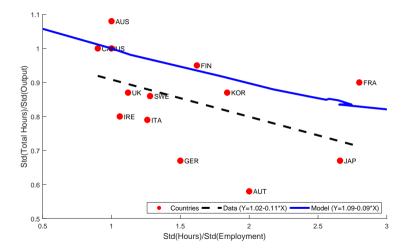
- These parameters are chosen to match US moments.
- Straight-time and overtime interpretation (Hansen and Sargent, 1988).

	Parameter	Value	Target
Quit rate	q	0.06	6% average quarterly quit rate
Curvature in utility	ζ	0.50	50% overtime wage premium
Scaling in utility	χ	9.55	0.6 employment to population ratio.
Stage-1 hours	h_1	0.46	Full-time hours.
Stage-2 hours	h_2	0.13	Over-time hours.
Volatility of idiosyncratic productivity	σ_ϵ	0.07	5% average job destruction rate.
Volatility of aggregate productivity	σ_z	0.007	1.5% standard deviation of HP GDP.

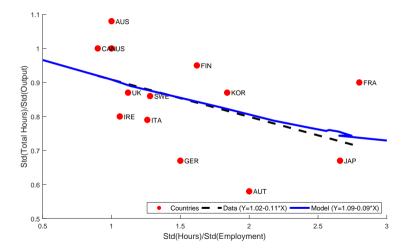
Empirical evidence	Model 000000	Calibration 00	Results ●○○○○	Final 0	Extension 00	Appendix 0000000	References
Steady state							
Steady state	effects -	overtime					

- Substitution of extensive and intensive margins is limited given a permanent changes in firing costs.
- Major impact in terms of job flows.

Hiring cost τ_h	0.0 <i>w</i> ₁	0.07 <i>w</i> ₁	0.07 <i>w</i> ₁	0.07 <i>w</i> ₁
Firing cost $ au_f$	$0.0 w_1$	$0.07 w_1$	0.5 <i>w</i> ₁	w ₁
Output	103.61	100.00	97.04	95.90
Employment	104.99	100.00	95.80	94.15
Hours per worker	99.19	100.00	100.79	101.13
Total hours	104.14	100.00	96.55	95.21
Job destruction rate	11.47	4.92	3.27	2.68


Table: Steady state effects (overtime)

Empirical evidence	Model 000000	Calibration	Results ○●000	Final ○	Extension 00	Appendix 0000000	References
Business Cycles							
Business cyc	cle effects	- overtime	3				


Table: Business Cycle Effects

Hiring cost τ_h	0.0 <i>w</i> ₁	0.07 <i>w</i> ₁	0.07 <i>w</i> ₁	0.07 <i>w</i> 1
Firing cost $ au_f$	$0.0 w_1$	$0.07 w_1$	0.5 <i>w</i> ₁	w_1
A. Standard deviation				
Output	1.62	1.51	1.37	1.37
B. Relative volatility				
Consumption	0.35	0.36	0.37	0.37
Investment	4.07	4.01	3.97	3.98
Employment	0.70	0.63	0.52	0.50
Hours per worker	0.00	0.02	0.04	0.04
Total hours	0.70	0.64	0.55	0.54

Empirical evidence	Model 000000	Calibration	Results ○0●00	Final o	Extension 00	Appendix 0000000	References
Business Cycles							

Empirical evidence	Model 000000	Calibration	Results ○○○●○	Final 0	Extension 00	Appendix 0000000	References
Business Cycles							

Empirical evidence	Model 000000	Calibration 00	Results ○○○○●	Final 0	Extension 00	Appendix 0000000	References
Business Cycles							
Business cyc	cle effects	- overtime	2				

Table: Intensive vs. extensive margin (overtime)

Hiring cost τ_h	0.0 <i>w</i> ₁	0.07 <i>w</i> ₁	0.07 <i>w</i> ₁	0.07 <i>w</i> ₁
Firing cost $ au_f$	$0.0 w_1$	$0.07 w_1$	$0.5 w_1$	w_1
Extensive margin only				
Employment	0.71	0.70	0.63	0.59
Extensive and intensive				
Employment	0.70	0.63	0.52	0.50
Hours per worker	0.00	0.02	0.04	0.04
Total hours	0.70	0.64	0.55	0.54

• The intensive margin matters for the labor fluctuations along the business cycle.

Empirical evidence	Model 000000	Calibration	Results 00000	Final ●	Extension	Appendix 0000000	References
Final remarks							
Final remarks							

- **Data**: We document the following facts:
 - Business cycle volatility of total hours worked widely differ across countries.
 - Countries that adjust more via the extensive margin tend to show more volatile total hours worked.
- **Theory**: Heterogeneous firm model with extensive and intensive margins of labor and fixed firing costs.
- Results: Firing costs quantitatively account for the cross-country variation of the business cycle volatility of total hours worked.
 - Substitution between extensive and intensive margins of labor.
- Working progress: adding part-time employment.

Preferences

$$\frac{C\left(\mathsf{s}\right)^{1-\sigma}-1}{1-\sigma}-\chi_{f}\left(\mathsf{N}_{f}\left(\mathsf{s}\right)-\mathsf{N}_{o}\left(\mathsf{s}\right)\right)h_{f}-\chi_{o}\mathsf{N}_{o}\left(\mathsf{s}\right)\left(h_{f}+h_{o}\right)-\chi_{p}\mathsf{N}_{p}\left(\mathsf{s}\right)h_{p}$$

- Full-time employment includes overtime.
- Part-time employment is a different type of labor.

Technology:

$$y = e^{z} e^{\varepsilon} k^{\alpha} \left(n_{f}^{\nu} h_{f} + A_{o} n_{o}^{\nu} h_{o} + A_{p} n_{p}^{\nu} h_{p} \right)$$

• Only n_f faces hiring and firing costs.

Llosa, Ohanian, Raffo, Rogerson

Firing Costs and Labor Fluctuations

Empirical evidence	Model 000000	Calibration 00	Results 00000	Final o	Extension ○●	Appendix 0000000	References

Thanks

Empirical evidence	Model 000000	Calibration	Results	Final 0	Extension 00	Appendix ●000000	References
Appendix							
Calibration -	details						

- 2% Average monthly quit rate from BLS's JOLTS.
- 50% overtime wage premium, see Hart (2004) US Fair Labor Standards Act
- $h_1 = 0.46$ straight-time hours is consistent with an average of 40 weekly hours per worker and 3 weekly overtime hours per worker, see Hansen and Sargent (1988).
- $h_2 = 0.13$ over-time hours from Hansen and Sargent (1988).
- **5%** average job destruction rate from US Census Bureau BDS.

Empirical evidence	Model 000000	Calibration 00	Results 00000	Final 0	Extension 00	Appendix o●oooooo	References
Appendix							
Model - Fami	ly						

Resources:

- **1** Rents the initial level of capital K at the rate r(s).
- **2** Supplies labor $N_1(s)$ and $N_2(s)$ at the wage rates $w_1(s)$ and $w_2(s)$.
- **3** Receives transfers from firms $\int \pi(\varepsilon, n_1; s) d\mu(\varepsilon, n_1; s)$ and a lump-sum transfer T(s).
- Uses:
- **1** Consumes C(s).
- 2 Invest in new capital $K'(s) (1 \delta) K$

Empirical evidence	Model 000000	Calibration 00	Results 00000	Final 0	Extension 00	Appendix 00●0000	References
Appendix							
Model - Fami	ly						

From the family problem:

$$N_{1}(s) : \chi \frac{h_{1}^{1+\zeta}}{1+\chi} = \lambda(s) w_{1}(s)$$
$$N_{2}(s) : \chi \frac{(h_{1}+h_{2})^{1+\zeta}}{1+\zeta} - \chi \frac{h_{1}^{1+\zeta}}{1+\zeta} = \lambda(s) w_{2}(s)$$

• Which implies a constant *premium*:

$$\frac{w_{2}\left(\mathsf{s}\right)/h_{2}}{w_{1}\left(\mathsf{s}\right)/h_{1}} \ = \ \frac{h_{1}}{h_{2}}\left[\left(\frac{h_{1}+h_{2}}{h_{1}}\right)^{1+\zeta}-1\right] > 1$$

Empirical evidence	Model 000000	Calibration	Results 00000	Final ○	Extension 00	Appendix 000●000	References
Appendix							
Model overt	ime - Firr	ns					

Problem of the firm:

$$\hat{v}(\varepsilon, n_{1}; s) = \max_{k, n'_{1}, n'_{2}} \lambda(s) \begin{bmatrix} e^{z} e^{\varepsilon} k^{\alpha} (n'_{1}^{\nu} h_{1} + n'_{2}^{\nu} h_{2}) - r(s) k - w_{1}(s) n'_{1} - w_{2}(s) n'_{2} \\ -\tau_{h} \max(0, n'_{1} - (1 - q) n_{1}) \\ -\tau_{f} \max(0, (1 - q) n_{1} - n'_{1}) \end{bmatrix} \\ +\beta E \left[\hat{v}(\varepsilon', n'_{1}; s') |\varepsilon, n_{1}; s \right]$$

• First order conditions of $k \& n'_2$ are static.

- Marginal product = factor price.
- Marginal products are equalized across firms.

Empirical evidence	Model 000000	Calibration	Results 00000	Final ○	Extension 00	Appendix 0000●00	References
Appendix							
Model overt	ime - Firr	ns					

• Hiring: $n'_1 > (1-q)n_1$ FOC is:

$$\lambda(\mathbf{s})\left[\nu\frac{e^{z}e^{\varepsilon}k^{\alpha}n_{1}^{\nu}h_{1}}{n_{1}^{\prime}}-w_{1}(\mathbf{s})-\tau_{h}\right]+\beta E\left[\frac{\hat{\upsilon}\left(\varepsilon^{\prime},n_{1}^{\prime};\mathbf{s}^{\prime}\right)}{\partial n_{1}^{\prime}}|\varepsilon,n_{1};\mathbf{s}\right]=0$$


• Firing
$$n'_1 < (1-q)n_1$$
 FOC is:

$$\lambda(\mathbf{s})\left[\nu\frac{e^{z}e^{\varepsilon}k^{\alpha}n_{1}^{\prime\prime}h_{1}}{n_{1}^{\prime}}-w_{1}(\mathbf{s})+\tau_{f}\right]+\beta E\left[\frac{\hat{\upsilon}\left(\varepsilon^{\prime},n_{1}^{\prime};\mathbf{s}^{\prime}\right)}{\partial n_{1}^{\prime}}|\varepsilon,n_{1};\mathbf{s}\right]=0$$

• Inaction : $n'_1 = (1-q)n_1$.

Empirical evidence	Model 000000	Calibration 00	Results 00000	Final 0	Extension 00	Appendi x 00000●0	References
Appendix							

Figure: Part-time employment share (35 hours/week or less), Source: Borowczyk-Martins and Lalé (2019). Blue line (working-age population), green dotted line (prime-age population)

Empirical evidence	Model 000000	Calibration	Results	Final ○	Extension 00	Appendix 000000●	References
Appendix							
Model - Solu	tion met	hod					

- The aggregate state is $\mathbf{s}\equiv(\mathbf{z},\mathbf{K},\boldsymbol{\mu})$
- The solution is computed using Boppart et al. (2018) method.
 - Deterministic transition path given a transitory productivity shock $\{z_t\}_{t=0}^T$.
 - Steady state $t = 0 \rightarrow$ steady state t = T.
 - Guess a sequence for the interest rate $\{\hat{r}_t\}_{t=0}^T$
 - Family's FOC: $\{\lambda_t, w_{1t}, w_{2t}\}_{t=0}^T$ ■ Backward shooting $t = T \rightarrow 0$: $\{k_{jt}, n'_{1jt}, n'_{2jt}, y_{jt}\}_{t=0}^T$ from firms' FOC. ■ Forward shooting $t = 0 \rightarrow T$: $\{K_t, N_{1t}, N_{2t}, Y_t, r_t\}_{t=0}^T$ integrated by $\mu(\epsilon, n_1; s)$. ■ If sup $|\hat{r}_t - r_t| \le \epsilon \rightarrow$ convergence, otherwise $\hat{r}_t = (1 - \gamma)r_t + \gamma \hat{r}_t$

Empirical evidence	Model 000000	Calibration	Results 00000	Final ○	Extension 00	Appendix 0000000	References
Appendix							
Bloom, N.	(2009). Th	e impact of ι	incertainty s	shocks. E	conometrica,	77(3):623-68	35.
Boppart, T	., Krusell, F	P., and Mitma	an, K. (2018	3). Exploi	ting mit shoc	ks in	
heteroge	neous-agent	economies:	the impulse	response	as a numerio	al derivative.	
Journal o	of Economic	c Dynamics a	nd Control,	89:68-92	. Fed St.		
Louis-JE	DC-SCG-SN	NB-UniBern (Conference,	titled: "F	iscal and Mor	netary Policies	s''.
Borowczyk-	Martins, D.	and Lalé, E.	(2019). Er	nploymen	t adjustment	and part-tim	е
-			```		-	erican Econol	
Journal:	Macroecon	omics, 11(1):	389–435.		C		
Cooper, R.	Haltiwang	er, J., and Ŵ	ïllis, J. L. (2	2015). Dy	namics of lat	oor demand:	
	-		•	, -	implications.		
Economi	<i>cs</i> , 69(1):37	' —50.			·		
Hansen, G.	D. and Sar	gent, T. J. (1988). Strai	ght time	and overtime	in equilibriur	n.
		Economics	,	-		·	
			()		Cambridge U	niversity Pres	S.
```	,			•	-	e of nonconve	
		```			<i>etrica</i> , 76(2):		
	ian, Raffo, Rogers				_abor Fluctuations	30 / 30	