The Impact of REACTIVA on the Real Economy and on Bank Risk-Taking*

October 23, 2023

* Las opiniones expresadas en este estudio corresponden a los autores y no deben ser atribuidas al BCRP.

Motivation

- The Covid-19 pandemic has produced a strong negative impact on the economy.
- This challenging environment forced Central Banks to implement both conventional and unconventional policies
- In April 2020, the fiscal and monetary authority implemented the REACTIVA program (RP).
- In Peru, a large percentage of entrepreneurs belong to the tertiary and/or informal sectors (the sectors most affected by the pandemic)
- RP was important because it allowed: (i) to give cheap credit to the most affected sectors; and (ii) to preserve financial stability.

Introduction

- Objective:
 - We aim to study the impact of REACTIVA program on both the real economy and financial stability.
 - We use the employment level and the non-performing loans ratio.
 - To capture intensity of the program, we use a dummy or a ratio of REACTIVA loans to total loans.
- Methodology:
 - We develop two empirical models to assess the impact of REACTIVA on:
 - bank risk-taking and
 - real activity (both intensive and extensive margins).
 - In addition we use a DnD approach.

Literature review

- The health crisis of Covid-19 pandemic had real impacts on the Peruvian economy:
 - Sanchez 2022
 - Durán 2021
- ② Governments worldwide deployed unconventional monetary policies. A strand of the literature analyses the real effect of such policies.
 - Acharya et al. 2019
 - Luck and Zimmermann 2020
- A second branch of the literature links unconventional policies and the increment of banks' risk-taking.
 - Jiménez, Lopez, and Saurina 2013
 - Matthys, Meuleman, and Vander Vennet 2020
 - Anzuini and Rossi 2022

The REACTIVA Peru Program

- REACTIVA Peru was a public guarantee program for up to S/ 60 billion (initially S/ 30 billion).
- The amount of the loans is related to working capital needs.
- The guarantee was granted according to a percentage (between 80 and 98 percent), which varied in a decreasing manner to the amount of the loan.

Table: Loans per company (in soles).

Guarantee percentage	Reactiva 1 $^{1/}$	Reactiva 2 ^{2/}
98%	Up to 30,000	Up to 90,000
95%	From 30,001 to 300,000	From 90,001 to 750,000
90%	From 300,001 to 5,000,000	From 750,001 to 7,500,000
80%	From 5,000,001 to 10,000,000	From 7,500,001 to 10,000,000

^{1/} Guaranteed credits before June 1, 2020. ^{2/} Guaranteed loans after June 1, 2020.

Data

- We work with the employment data set of the SUNAT¹ and the credit register (RCC).²
- Our universe are the companies with credit records that report the number of workers to SUNAT. This data is available from January 2010 until now.
- The number of companies represents 12 percent of the total, but the number of workers represents the third part of the total.

Table: Descriptive Statistics.

Period	Companies	Workers	Reactiva Comp.	Reactiva Workers
Dec.2019	989,631	5,594,437	-	-
May.2020	994,363	4,837,615	117,876 (11,9%)	1,698,972 (35,1%)
Dec.2020	1,005,436	5,396,457	119,280 (11,9%)	1,975,356 (36,6%)
Dec.2021	1,023,943	5,680,688	121,123 (11,8%)	2,060,467 (36,3%)

¹Tax authority.

²We thank the division of expenditure, employment and remuneration indicators for providing us with the data.

Data

Table: Descriptive statistics for financial institution-region-time observations: April 2020 - January 2021

Variables	Obs	Mean	S.D.	Minimum	Maximum
REACTIVA _{rbt}	2909	36,30	24,39	0,07	99,94
NPL_{rbt}	2477	8,36	11,18	0,00	89,65
NPL^a_{rbt}	2543	11,46	13,47	0,00	89,76
NPL^{wr}_{rbt}	2458	12,40	14,44	0,00	89,71
$NPL^{wr,a}_{rbt}$	2518	16,77	16,94	0,00	89,71

Source: RCC. Own elaboration. S.D.: Standard deviation. We omit extreme values. Thus we consider: $0 < \text{NPL}_{rbt-1}^{wr} < 0.9$, $0 < \text{REACTIVA}_{rbt} < 100$. We omit credit information that we are able to assign to a specific region due to lack of information.

Data

Table: Descriptive statistics for financial institution-region-time observations: March 2020 - August 2020

Variables	Obs	Mean	S.D.	Minimum	Maximum
REACTIVA _{rbt}	7207	12,58	22,07	0,00	100,00
EG_{rbt}	7207	2,16	28,36	-198,59	198,59
n _{rbt}	7412	69,31	474,39	1,00	11 801,00

Source: RCC. Own elaboration. S.D.: Standard deviation. We exclude observations with REACTIVA $_{rbt}=1$.

Figure: Reactiva Ratio per Region

Data: Mean of Workers

Mid-size businesses

Data: Mean of Workers

Small-size businesses

The impact of REACTIVA on the Financial and Macroeconomic Stability

Impact on risk taking

• We propose the following empirical model:

$$NPL_{rbt} = \beta_0 + \lambda_b + \omega_{rt} + \beta_1 NPL_{rbt-1} + \beta_2 REACTIVA_{rbt} + \varepsilon_{rbt},$$
 (1)

r: region, t: a sample month and b: a bank or non-banking institution. NPL_{rbt} : non-performing loans to total loans ratio at region-bank-time level.

• The period analyzed spans from April 2020 to January 2021.

Impact on risk taking

Table: Regression Results

	(1)	(2)	(3)	(4)
	NPL	NPL^a	NPL^{wr}	$NPL^{wr,a}$
REACTIVA _{rbt}	-0.0389***	-0.0476***	0.0266***	0.0220***
$\overline{NPL_{rbt-1}}$	0.841***			
NPL^{a}_{rbt-1}		0.870***		
NPL^{wr}_{rbt-1}			0.926***	
$NPL^{wr,a}_{rbt-1}$				0.953***
Observations	2,477	2,543	2,458	2,518
R-squared	0.903	0.928	0.928	0.941
Bank FE	YES	YES	YES	YES
Region-Time FE	YES	YES	YES	YES

*** Statistically significant at 1%, ** statistically significant at 5%, * statistically significant at 10%. Robust standard errors. We omit extreme values. Thus we consider: $0 < NPL_{rbt-1} < 0.9$, $0 < NPL_{rbt-1}^{wr} < 0.9$, $0 < NPL_{rbt-1$

Impact on risk taking

Table: Regression Results

	(1)	(2)	(3)	(4)
	NPL	NPL^a	NPL^{wr}	$NPL^{wr,a}$
REACTIVA _{rbst}	-0.0560***	-0.0669***	0.0131***	0.00915**
$\overline{NPL_{rbst-1}}$	0.807***			
NPL^{a}_{rbst-1}		0.827***		
$NPL^{\mathit{wr}}_{\mathit{rbst}-1}$			0.919***	
$NPL^{wr,a}_{rbst-1}$				0.937***
Observations	12,705	13,445	12,401	13,058
R-squared	0.855	0.876	0.885	0.910
Bank FE	YES	YES	YES	YES
Region-Time FE	YES	YES	YES	YES
Sector-Time FE	YES	YES	YES	YES

*** Statistically significant at 1%, ** statistically significant at 5%, * statistically significant at 10%. Robust standard errors. We omit extreme values. Thus we consider: $0 < NPL_{rhst-1} < 0.9, 0 < NPL_{rhst-1}^{a} < 0.9, 0 < NPL_{rhst-1}^{wr} < 0.9, 0 < NPL_{rhst-1}^{wr,a} < 0.9,$ $0 < REACTIVA_{rbst} < 100$. We omit credit information that we are able to assign to a specific region due to lack of information. Period: 2020:M4-2021:M1.

14 / 27

The impact of REACTIVA on the Financial and Macroeconomic Stability

Impact on employment

• The following specification aims to capture the impact of REACTIVA across both the intensive and extensive margins:

$$EG_{rbt} = \beta_0 + \lambda_b + \omega_{rt} + \beta_1 REACTIVA_{rbt} + \varepsilon_{rbt}, \qquad (2)$$

 EG_{rbt} : the monthly growth rate of workers at the region-bank-time level.

The time period analyzed spans from March 2020 to August 2020.

Impact on employment

Table: Regression results

	All	micro	small	medium	big	corporate
Without AR(1) term						
REACTIVA _{rbt}	0.232***	0.397***	0.323***	0.108**	0.108*	-0.0337
Observations	7,207	1,147	2,351	2,228	874	581
R-squared	0.098	0.200	0.192	0.168	0.273	0.217
F test ($ ho$ -value)	1.88e-06	3.56e-05	7.91e-07	0.0378	0.0669	0.608
With AR(1) term						
EG_{rbt-1}	-0.0646***	-0.0573*	-0.142***	-0.0448*	-0.0696	-0.0722
REACTIVA _{rbt}	0.240***	0.411***	0.359***	0.120**	0.120*	-0.0222
Observations	7,137	1,110	2,336	2,217	871	576
R-squared	0.104	0.205	0.204	0.171	0.280	0.239
F test ($ ho$ -value)	2.76e-06	0.000339	7.25e-06	0.0397	0.0781	0.218

^{***} Statistically significant at 1%, ** statistically significant at 5%, * statistically significant at 10%. Robust standard errors. We omit extreme values. This is we only consider: REACTIVA $_{rbt}$ < 1 and -200 < EG $_{rbt-1}$ < 200. In all regression, we include bank and region-time fixed effects.

Extensive Margin

• The following specification aims to capture the impact of REACTIVA across the extensive margin:

$$log(n_{rbt}) = \beta_0 + \lambda_b + \omega_{rt} + \beta_1 REACTIVA_{rbt} + \varepsilon_{rbt}, \qquad (3)$$

 n_{rbt} :number of firms (in particular, micro-sized businesses) at the region-bank-time level. As usual we control by region-time effects, ω_{rt} , and by bank effects, λ_b .

• Similarly, the time period analyzed spans from March 2020 to August 2020.

Extensive margin

Table: Regression results

	(1)	(2)	(3)	(4)	(5)	(6)
	All	Micro	Small	Median	Big	Corp
Bank and Reg	ion-Time FE					
$In(n_{\mathit{rbt}-1})$	0.979***	0.862***	0.959***	0.978***	0.991***	0.976***
REACTIVA _{rbt}	0.00294***	0.00458***	0.00388***	0.00100***	0.00125***	-0.000825
Region and Ba	ank-Time FE					
$In(n_{\mathit{rbt}-1})$	0.980***	0.878***	0.964***	0.979***	0.987***	0.976***
REACTIVA _{rbt}	0.00280***	0.00388**	0.00315**	0.000669**	0.00122**	-0.000286
Bank-Time an	d Region-Tin	ne FE				
$In(n_{\mathit{rbt}-1})$	0.980***	0.896***	0.965***	0.980***	0.994***	0.980***
REACTIVA _{rbt}	0.00282***	0.00405**	0.00311**	0.000652***	0.000914	-0.00116
Observations	5,899	755	2,136	1,823	595	309

^{***} Statistically significant at 1%, ** statistically significant at 5%, * statistically significant at 10%. Robust standard errors. We exclude extreme values. Thus, we consider only: $n_{rbt-1} > 1$

 Based on Callaway and Sant'Anna 2021, we propose the following equation in order to measure the effect of participating in the program:

$$log(E_{it}) = \omega_t + \lambda_g + \sum_{e=-K}^{-2} \delta_e^{anticip}.D_{it}^e + \sum_{e=0}^{L} \beta_e.D_{it}^e + \varepsilon_{it}, \quad (4)$$

 $log(E_{it})$: natural logarithm of the number of employees of the business i at time t. ω_t : time fixed effect. λ_g : group fixed effect (firms are grouped according to the month that received REACTIVA). $\delta_e^{anticip}$ is the coefficient associated with the periods of anticipation to the treatment. $D_{it}^e = 1\{t - G_i = e\}$. β_e (if $e \ge 0$): the effect of participating in the treatment at different lengths of exposure to the treatment.

• The time period analyzed spans from January 2019 to December 2022.

Table: Reactiva Peru Program Treatment Effect Estimates with Non-Anticipation

(a) Using Never-Treated	Comparisor	1 Group							
				Partially A	Aggregated				Single Parameters
Simple Weighted Average									0.034*
									(0.003)
Group-Specific Effects	g=May-20	g=Jun-20	g=Jul-20	g=Aug-20	g=Sep-20	g=Oct-20	g=Nov-20	g=Dec-20	
	0.041*	0.034*	0.039*	0.024*	0.014*	0.016*	0.008	0.036*	0.033*
	(0.003)	(0.005)	(0.004)	(0.004)	(0.004)	(0.005)	(0.008)	(0.013)	(0.003)
Event Study	e=8m	e=14m	e=20m	e=24m					
	0.031*	0.041*	0.048*	0.057*					0.033*
	(0.003)	(0.003)	(0.004)	(0.004)					(0.003)
Calendar Time Effects	t=May-20	t=Jun-20	t=Jul-20	t=Aug-20	t=Sep-20	t=Oct-20	t=Nov-20	t=Dec-20	
	-0.010*	-0.001	0.009*	0.014*	0.016*	0.024*	0.028*	0.030*	0.032*
	(0.001)	(0.002)	(0.002)	(0.002)	(0.002)	(0.002)	(0.002)	(0.002)	(0.002)
(b) Using Not-Yet-Treat	ed Comparis	on Group							
				Partially A	Aggregated				Single Parameters
Simple Weighted Average									0.034*
									(0.002)
Group-Specific Effects	g=May-20	g=Jun-20	g=Jul-20	g=Aug-20	g=Sep-20	g=Oct-20	g=Nov-20	g=Dec-20	
	0.041*	0.033*	0.039*	0.024*	0.014*	0.016*	0.008	0.036*	0.033*
	(0.003)	(0.005)	(0.005)	(0.004)	(0.004)	(0.005)	(0.008)	(0.013)	(0.003)
Event Study	e=8m	e=14m	e=20m	e=23m					
	0.035*	0.041*	0.053*	0.057*					0.035*
	(0.003)	(0.004)	(0.004)	(0.005)					(0.003)
Calendar Time Effects	t=May-20	t=Jun-20	t=Jul-20	t=Aug-20	t=Sep-20	t=Oct-20	t=Nov-20	t=Dec-20	
	-0.005*	-0.002	0.009*	0.012*	0.013*	0.021*	0.028*	0.030*	0.032*
	(0.001)	(0.001)	(0.002)	(0.002)	(0.002)	(0.002)	(0.003)	(0.003)	(0.002)

^{*} Confidence band does not cover 0. Doubly Robust approach used.

Table: Reactiva Peru Program Treatment Effect Estimates with 1 month Anticipation

() 3	Comparisor	. стопр		Partially A	Aggregated				Single Parameters
Simple Weighted Average					-00: -0				0.021*
									(0.003)
Group-Specific Effects	g=May-20	g=Jun-20	g=Jul-20	g=Aug-20	g=Sep-20	g=Oct-20	g=Nov-20	g=Dec-20	` ,
	0.018*	0.021*	0.042*	0.027*	0.016*	0.019*	0.010	0.035*	0.021*
	(0.003)	(0.005)	(0.005)	(0.004)	(0.004)	(0.006)	(0.008)	(0.013)	(0.003)
Event Study	e=8m	e=14m	e=20m	e=24m					
	0.023*	0.029*	0.038*	0.034*					0.022*
	(0.003)	(0.003)	(0.003)	(0.005)					(0.003)
Calendar Time Effects	t=May - 20	t=Jun-20	t=Jul-20	t=Aug-20	t=Sep-20	t=Oct-20	t=Nov-20	t=Dec-20	
	-0.033*	-0.022*	-0.009*	-0.001	0.016	0.011*	0.016*	0.018*	0.019*
	(0.002)	(0.002)	(0.003)	(0.002)	(0.003)	(0.003)	(0.003)	(0.003)	(0.003)
(b) Using Not-Yet-Treat	ed Comparis	on Group							
. , –				Partially A	Aggregated				Single Parameters
Simple Weighted Average									0.021*
									(0.003)
Group-Specific Effects	g=May-20	g=Jun-20	g=Jul-20	g=Aug-20	g=Sep-20	g=Oct-20	g=Nov-20	g=Dec-20	
	0.018*	0.021*	0.042*	0.027*	0.015*	0.019*	0.010	0.035*	0.021*
	(0.003)	(0.005)	(0.005)	(0.004)	(0.004)	(0.006)	(0.008)	(0.012)	(0.003)
Event Study	e=8m	e=14m	e=20m	e=24m					
	0.023*	0.029*	0.038*	0.034*					0.022*
	(0.003)	(0.003)	(0.003)	(0.005)					(0.003)
Calendar Time Effects	t=May-20	t=Jun-20	t=Jul-20	t=Aug-20	t=Sep-20	t=Oct-20	t=Nov-20	t=Dec-20	
	-0.027*	-0.019*	-0.009*	-0.004	0.002	0.011*	0.016*	0.018*	0.019*

Confidence band does not cover 0. Doubly Robust approach used.

Figure: Reactiva Peru Program Time Average Treatment Effects: Non anticipation

Figure: Reactiva Peru Program Time Average Treatment Effects: 1m anticipation

Endogeneity Issue and Spill Over Effects

- We propose a specification that aims to handle with the endogeneity issue and try to see if there is any spillover effect.
- We define spillover effect as the indirect benefit that companies that did not access to the program received.

$$EG_{it} = \beta_0 + \lambda_b + \mu_{st} + \eta_{rt} + \beta_1 REACTIVA_{b(i)t} + \beta_2 D_i REACTIVA_{b(i)t} + \varepsilon_{it},$$
 (5)

where EG_{it} refers to the monthly growth rate of the number of workers at the firm-time level. $\mathsf{REACTIVA}_{b(i)t}$ is the percentage of Reactiva loans over the total portfolio of the main bank of firm $i.\ D_i$ is our dummy variable and it takes one if the firm participated in REACTIVA program, and zero if the firm did not. We also include bank fixed effects, λ_b , and economic sector-time fixed effects, μ_{st} , and region- time fixed effects η_i .

Endogeneity Issue and Spill Over Effects

Table: Regression results

	(1)	(2)	(3)	(4)	(5)	(6)
	ÀÍÍ	Micro	Small	Mèdian	Èig	Corp
A. Sample: All firm	ns					
$REACTIVA_{b(i)t}$	-0.00551	-0.0123	0.00588	-0.0113	-0.0131	0.0392***
D*REACTIV $\hat{A}_{b(i)t}$	0.00528***	-0.00340*	-0.00859***	0.0136***	0.0311***	0.0452***
Observations	3,220,912	816,811	1,299,765	985,717	84,845	33,736
R-squared	0.007	0.004	0.009	0.011	0.029	0.035
B. Sample: Firms	meet require	ments to ge	t REACTIVA			
$REACTIVA_{b(i)t}$	-0.00798*	0.0133	-0.00353	-0.0213**	-0.00740	0.0378**
D*REACTIV $\hat{A}_{b(i)t}$	0.0145***	0.000131	0.00895***	0.0172***	0.0279***	0.0310***
Observations	1,901,032	120,850	843,437	835,450	75,148	26,109
R-squared	0.010	0.009	0.010	0.012	0.032	0.048
C. Sample: Firms	that get REA	CTIVA and	firms that do	not meet t	he requirem	ients
$REACTIVA_{b(i)t}$	-0.00597	-0.0202**	0.0114	-0.0160	-0.0125	0.0272**
D*REACTIV $\hat{A}_{b(i)t}$	0.00294***	-0.00384*	-0.0137***	0.0115***	0.0379***	0.0646***
Observations	2,890,931	734,383	1,155,637	904,501	71,021	25,332
R-squared	0.007	0.005	0.009	0.011	0.033	0.039

*** Statistically significant at 1%, ** statistically significant at 5%, * statistically significant at 10%. We include bank fixed effects, region-time fixed effects, economic sector-time fixed effects. Clustered (at region level) standard errors.

Conclusions

- We find evidence of a positive impact of REACTIVA on employment on both the intensive and extensive margins.
- Similarly, we find a negative impact of it on total bank risk-taking, but a positive impact if we focus on the loan portfolio without REACTIVA loans.

References

- Acharya, Viral V et al. (Jan. 2019). "Whatever It Takes: The Real Effects of Unconventional Monetary Policy". In: *The Review of Financial Studies* 32.9, pp. 3366–3411. ISSN: 0893-9454.
- Anzuini, Alessio and Luca Rossi (Mar. 2022). "Unconventional monetary policies and expectations on economic variables". In: *Empirical Economics*. ISSN: 1435-8921.
- Callaway, Brantly and Pedro H.C. Sant'Anna (2021). "Difference-in-Differences with multiple time periods". In: *Journal of Econometrics* 225, pp. 200–230.
- Durán, Rosa Luz (Sept. 2021). "COVID-19 and heterogeneous vulnerabilities in the Peruvian labor market: implications for social inequalities and for gender gaps". Inglés. In: *Economia Politica* 39.1, pp. 129–156. ISSN: 1120-2890.
- Jiménez, Gabriel, Jose A. Lopez, and Jesús Saurina (2013). "How does competition affect bank risk-taking?" In: *Journal of Financial Stability* 9.2, pp. 185–195. ISSN: 1572-3089.
- Luck, Stephan and Tom Zimmermann (2020): □'Employment effects of ~