Asset Betas under Regime-Switching Market Illiquidity and Return Innovations

Luis Chávez-Bedoya ¹ Carlos Loaiza ² Giannio Téllez ³

¹Esan Graduate School of Business

²Universidad Peruana de Ciencias Aplicadas

³Pontificia Universidad Católica del Perú

November 4th 2014 XXXII Encuentro de Economistas BCRP

Outline

- Motivation
- 2 Theoretical model
- 3 Empirical methodology
- 4 Conclusions and recommendations

• US market: Brennan and Subrahmanyan (1996), Amihud (2002), Acharya and Pedersen (2005), Watanabe and Watanabe (2008)

- US market: Brennan and Subrahmanyan (1996), Amihud (2002), Acharya and Pedersen (2005), Watanabe and Watanabe (2008)
- Emerging markets (not Peru): Bekaert et al. (2007)

- US market: Brennan and Subrahmanyan (1996), Amihud (2002), Acharya and Pedersen (2005), Watanabe and Watanabe (2008)
- Emerging markets (not Peru): Bekaert et al. (2007)
- Explore the relationship between illiquidity and expected returns in the Peruvian Stock Market (BVL)

- US market: Brennan and Subrahmanyan (1996), Amihud (2002), Acharya and Pedersen (2005), Watanabe and Watanabe (2008)
- Emerging markets (not Peru): Bekaert et al. (2007)
- Explore the relationship between illiquidity and expected returns in the Peruvian Stock Market (BVL)
- Compute asset betas in the presence of illiquidity

- US market: Brennan and Subrahmanyan (1996), Amihud (2002), Acharya and Pedersen (2005), Watanabe and Watanabe (2008)
- Emerging markets (not Peru): Bekaert et al. (2007)
- Explore the relationship between illiquidity and expected returns in the Peruvian Stock Market (BVL)
- Compute asset betas in the presence of illiquidity
- Introduce a regime-switching methodology to compute asset betas

- US market: Brennan and Subrahmanyan (1996), Amihud (2002), Acharya and Pedersen (2005), Watanabe and Watanabe (2008)
- Emerging markets (not Peru): Bekaert et al. (2007)
- Explore the relationship between illiquidity and expected returns in the Peruvian Stock Market (BVL)
- Compute asset betas in the presence of illiquidity
- Introduce a regime-switching methodology to compute asset betas

Theoretical model

• Liquidity-adjusted version of the CAPM by Acharya and Pedersen (2005)

- Liquidity-adjusted version of the CAPM by Acharya and Pedersen (2005)
- There are I securities indexed by i = 1, ..., I with a total of S^i shares of security i

- Liquidity-adjusted version of the CAPM by Acharya and Pedersen (2005)
- There are I securities indexed by i = 1, ..., I with a total of S^i shares of security i
- At time t, security i pays a dividend of D_t^i , has an ex-dividend share price of P_t^i , and has an illiquidity cost C_t^i

- Liquidity-adjusted version of the CAPM by Acharya and Pedersen (2005)
- There are I securities indexed by i = 1, ..., I with a total of S^i shares of security i
- At time t, security i pays a dividend of D_t^i , has an ex-dividend share price of P_t^i , and has an illiquidity cost C_t^i
- ullet The illiquidity cost, C_t^i , is modeled as the per-share cost of selling security i

• Asset *i* (gross) return and relative illiquidity cost:

$$r_t^i = rac{D_t^i + P_t^i}{P_{t-1}^i}$$
 and $c_t^i = rac{C_t^i}{P_{t-1}^i}$

• Asset *i* (gross) return and relative illiquidity cost:

$$r_t^i = rac{D_t^i + P_t^i}{P_{t-1}^i}$$
 and $c_t^i = rac{C_t^i}{P_{t-1}^i}$

• Market return and relative illiquidity:

$$r_t^M = rac{\sum_i S^i(D_t^i + P_t^i)}{\sum_i S^i P_{t-1}^i}$$
 and $c_t^M = rac{\sum_i S^i C_t^i}{\sum_i S^i P_{t-1}^i}$

Under certain assumptions (overlapping generations economy, exponential utility function, etc.) Acharya and Pedersen (2005) state that the conditional expected net return of security i is:

Under certain assumptions (overlapping generations economy, exponential utility function, etc.) Acharya and Pedersen (2005) state that the conditional expected net return of security i is:

$$\mathbb{E}_{t}[r_{t+1}^{i} - c_{t+1}^{i}] = r^{f} + \lambda_{t} \frac{\mathsf{Cov}_{t}(r_{t+1}^{i} - c_{t+1}^{i}, r_{t+1}^{M} - c_{t+1}^{M})}{\mathsf{Var}_{t}(r_{t+1}^{M} - c_{t+1}^{M})}$$

Under certain assumptions (overlapping generations economy, exponential utility function, etc.) Acharya and Pedersen (2005) state that the conditional expected net return of security i is:

$$\mathbb{E}_{t}[r_{t+1}^{i} - c_{t+1}^{i}] = r^{f} + \lambda_{t} \frac{\mathsf{Cov}_{t}(r_{t+1}^{i} - c_{t+1}^{i}, r_{t+1}^{M} - c_{t+1}^{M})}{\mathsf{Var}_{t}(r_{t+1}^{M} - c_{t+1}^{M})}$$

where $\lambda_t = \mathbb{E}_t[r_{t+1}^M - c_{t+1}^M - r^f]$ is the risk premium and r^f is the risk-free rate of return

Under certain assumptions (overlapping generations economy, exponential utility function, etc.) Acharya and Pedersen (2005) state that the conditional expected net return of security i is:

$$\begin{split} \mathbb{E}_{t}[r_{t+1}^{i}] &= r^{f} + \mathbb{E}_{t}[c_{t+1}^{i}] \\ &+ \lambda_{t} \frac{\mathsf{Cov}_{t}(r_{t+1}^{i}, r_{t+1}^{M})}{\mathsf{Var}_{t}(r_{t+1}^{M} - c_{t+1}^{M})} + \lambda_{t} \frac{\mathsf{Cov}_{t}(c_{t+1}^{i}, c_{t+1}^{M})}{\mathsf{Var}_{t}(r_{t+1}^{M} - c_{t+1}^{M})} \\ &- \lambda_{t} \frac{\mathsf{Cov}_{t}(r_{t+1}^{i}, c_{t+1}^{M})}{\mathsf{Var}_{t}(r_{t+1}^{M} - c_{t+1}^{M})} - \lambda_{t} \frac{\mathsf{Cov}_{t}(c_{t+1}^{i}, r_{t+1}^{M})}{\mathsf{Var}_{t}(r_{t+1}^{M} - c_{t+1}^{M})}. \end{split}$$

The model generates three additional effects which could be interpreted as different forms of liquidity risk:

The model generates three additional effects which could be interpreted as different forms of liquidity risk:

• $\mathsf{Cov}_t(c_{t+1}^i, c_{t+1}^M)$: investors wants to be compensated for holding a security that becomes illiquid when the market become illiquid

The model generates three additional effects which could be interpreted as different forms of liquidity risk:

- $\operatorname{Cov}_t(c_{t+1}^i, c_{t+1}^M)$: investors wants to be compensated for holding a security that becomes illiquid when the market become illiquid
- $Cov_t(r_{t+1}^i, c_{t+1}^M)$: investors are willing to accept a lower return on an asset with a high return in times of market illiquidity

The model generates three additional effects which could be interpreted as different forms of liquidity risk:

- $Cov_t(c_{t+1}^i, c_{t+1}^M)$: investors wants to be compensated for holding a security that becomes illiquid when the market become illiquid
- $Cov_t(r_{t+1}^i, c_{t+1}^M)$: investors are willing to accept a lower return on an asset with a high return in times of market illiquidity
- $Cov_t(c_{t+1}^i, r_{t+1}^M)$: disposition of investors to accept a lower expected return on a security that is liquid in a down market

Under certain additional assumptions we have the unconditional version of the liquidity-adjusted CAPM:

Under certain additional assumptions we have the unconditional version of the liquidity-adjusted CAPM:

$$\mathbb{E}[r_t^i - r^f] = \mathbb{E}[c_t^i] + \lambda \beta^{i1} + \lambda \beta^{2i} - \lambda \beta^{3i} - \lambda \beta^{4i}$$

Under certain additional assumptions we have the unconditional version of the liquidity-adjusted CAPM:

$$\mathbb{E}[r_t^i - r^f] = \mathbb{E}[c_t^i] + \lambda \beta^{i1} + \lambda \beta^{2i} - \lambda \beta^{3i} - \lambda \beta^{4i}$$

$$\beta^{i1} = \frac{\operatorname{Cov}\left(r_t^i, r_t^M - \mathbb{E}_{t-1}[r_t^M]\right)}{\operatorname{Var}\left(\left(r_t^M - \mathbb{E}_{t-1}[r_t^M]\right) - \left(c_t^M - \mathbb{E}_{t-1}[c_t^M]\right)\right)}$$

Under certain additional assumptions we have the unconditional version of the liquidity-adjusted CAPM:

$$\mathbb{E}[r_t^i - r^f] = \mathbb{E}[c_t^i] + \lambda \beta^{i1} + \lambda \beta^{2i} - \lambda \beta^{3i} - \lambda \beta^{4i}$$

Under certain additional assumptions we have the unconditional version of the liquidity-adjusted CAPM:

$$\mathbb{E}[r_t^i - r^f] = \mathbb{E}[c_t^i] + \lambda \beta^{i1} + \lambda \beta^{2i} - \lambda \beta^{3i} - \lambda \beta^{4i}$$

$$\beta^{i2} = \frac{\text{Cov}\left(c_t^i - \mathbb{E}_{t-1}[c_t^i], c_t^M - \mathbb{E}_{t-1}[c_t^M]\right)}{\text{Var}\left((r_t^M - \mathbb{E}_{t-1}[r_t^M]) - (c_t^M - \mathbb{E}_{t-1}[c_t^M])\right)}$$

Under certain additional assumptions we have the unconditional version of the liquidity-adjusted CAPM:

$$\mathbb{E}[r_t^i - r^f] = \mathbb{E}[c_t^i] + \lambda \beta^{i1} + \lambda \beta^{2i} - \lambda \beta^{3i} - \lambda \beta^{4i}$$

Under certain additional assumptions we have the unconditional version of the liquidity-adjusted CAPM:

$$\mathbb{E}[r_t^i - r^f] = \mathbb{E}[c_t^i] + \lambda \beta^{i1} + \lambda \beta^{2i} - \lambda \beta^{3i} - \lambda \beta^{4i}$$

$$\beta^{i3} = \frac{\text{Cov}(r_t^i, c_t^M - \mathbb{E}_{t-1}[c_t^M])}{\text{Var}((r_t^M - \mathbb{E}_{t-1}[r_t^M]) - (c_t^M - \mathbb{E}_{t-1}[c_t^M]))}$$

Under certain additional assumptions we have the unconditional version of the liquidity-adjusted CAPM:

$$\mathbb{E}[r_t^i - r^f] = \mathbb{E}[c_t^i] + \lambda \beta^{i1} + \lambda \beta^{2i} - \lambda \beta^{3i} - \lambda \beta^{4i}$$

Under certain additional assumptions we have the unconditional version of the liquidity-adjusted CAPM:

$$\mathbb{E}[r_t^i - r^f] = \mathbb{E}[c_t^i] + \lambda \beta^{i1} + \lambda \beta^{2i} - \lambda \beta^{3i} - \lambda \beta^{4i}$$

$$\beta^{i4} = \frac{\text{Cov}\left(c_t^i - \mathbb{E}_{t-1}[c_t^i], r_t^M - \mathbb{E}_{t-1}[r_t^M]\right)}{\text{Var}\left((r_t^M - \mathbb{E}_{t-1}[r_t^M]) - (c_t^M - \mathbb{E}_{t-1}[c_t^M])\right)}$$

Empirical methodology

Illiquidity measure

For stock i in month t its illiquidity measure is

$$ILLIQ_{it} = \frac{1}{D_{it}} \sum_{d=1}^{D_{it}} \frac{|r_{itd}|}{VOL_{itd}},$$

where:

- r_{itd} be the percentage return of stock i on day d of month t
- D_{it} is the number of days for which data is available for stock
 i in month t
- VOL_{itd} is daily trading volume in PEN
- Used in Amihud (2002) and Acharya and Pedersen (2005)

Market portfolio return and illiquidity

With the selected stocks we form an equally weighted market portfolio, P, for each month t. If r_t^i and w_t^{iP} are the percentage return and the weight P of stock i in month t, then the return, the un-normalized and the normalized illiquidity of P in t are given by

$$egin{array}{lll} r_t^P &=& \displaystyle\sum_{i \in n_t^P} w_t^{iP} imes r_t^i, \ & ext{ILLIQ}_t^P &=& \displaystyle\sum_{i \in n_t^P} w_t^{iP} imes ext{ILLIQ}_{it}, \ & c_t^P &=& \displaystyle\sum_{i \in n_t^P} w_t^{iP} imes c_t^i, \end{array}$$

Illiquidity measure

Figure: Monthly evolution of ILLIQ_t^P for the period 10/1997-07/2014 and liquidity states

Illiquidity innovations

Since $ILLIQ_{it}$ does not directly measure the cost of a trade, we relate it to c_t^i using the following

$$c_t^i = \min\left(0.25 + 0.41 \times \mathsf{ILLIQ}_{it} \times \overline{P}_{t-1}, 45.00\right)$$
 ;

where

- $oldsymbol{\overline{P}}_{t-1}$ represents the ratio of the total average trading volume (in millon PEN) of portfolio P during month t-1 and its corresponding value when t=0
- Coefficients 0.25 and 0.41 were derived from Table 1 of Chalmers and Kadlec (1998)

Illiquidity measure (selected BVL stocks)

TICKER	Av. ILLIQ _i	Liquidity State	Av. <i>c</i> ^{<i>i</i>}	IGBVL
				at 07/2014
VOLCABC1	0.01	Very liquid	0.26	YES
MINSUR1	0.08	Very liquid	0.31	YES
EDELNOC1	0.93	Very liquid	0.89	YES
CASAGRC1	1.04	Liquid	0.93	YES
MIRL	1.07	Liquid	1.18	YES
TUMANC1	1.85	Liquid	1.64	NO
VP	2.13	Medium liquidity	1.05	NO
RCZ	2.70	Medium liquidity	2.71	NO
LGC	3.20	Medium liquidity	2.79	NO
BACKUYES1	3.72	Illiquid	3.66	NO
IFS	3.84	Illiquid	3.49	YES
BROCALC1	4.67	Illiquid	3.17	NO
MINCORI1	6.80	Very illiquid	6.08	NO
LUISAI1	33.37	Very illiquid	18.85	NO
ANDINBC1	98.13	Very illiquid	40.28	NO

Illiquidity innovations

To compute market illiquidity innovations, $c_t^P - \mathbb{E}_{t-1}[c_t^P]$, we introduce the following

$$\begin{array}{rcl} 0.25 + 0.41\overline{\mathsf{ILLIQ}}_t^P \overline{P}_{t-1} & = & \overline{a_0} + \overline{a_1}(0.25 + 0.41\overline{\mathsf{ILLIQ}}_{t-1}^P) \overline{P}_{t-1} \\ & & + \overline{a_2}(0.25 + 0.41\overline{\mathsf{ILLIQ}}_{t-2}^P) \overline{P}_{t-1} + u_t^P, \end{array}$$

where ${\color{red} u_t^P}\sim {\rm iid}~N(0,\sigma^2)$ and

$$\overline{\mathsf{ILLIQ}}_t^P = \sum_{i \in n_t^P} w_t^{iP} \times \min\left(\mathsf{ILLIQ}_{it}, \frac{45.00 - 0.25}{0.41\overline{P}_{t-1}}\right).$$

Illiquidity innovations

To compute market illiquidity innovations, $c_t^P - \mathbb{E}_{t-1}[c_t^P]$, we introduce the following

$$\begin{array}{rcl} 0.25 + 0.41\overline{\mathsf{ILLIQ}}_t^P \overline{P}_{t-1} & = & \overline{a_0} + \overline{a_1}(0.25 + 0.41\overline{\mathsf{ILLIQ}}_{t-1}^P) \overline{P}_{t-1} \\ & & + \overline{a_2}(0.25 + 0.41\overline{\mathsf{ILLIQ}}_{t-2}^P) \overline{P}_{t-1} + u_t^P, \end{array}$$

where $u_t^P \sim \text{iid} \ \ \text{N}(0,\sigma^2)$ and

$$\overline{\mathsf{ILLIQ}}_t^P = \sum_{i \in n_t^P} w_t^{iP} \times \min\left(\mathsf{ILLIQ}_{it}, \frac{45.00 - 0.25}{0.41\overline{P}_{t-1}}\right).$$

Then, $u_t^P:=c_t^P-\mathbb{E}_{t-1}[c_t^P]$ and the same procedure can be applied to $u_t^i:=c_t^i-\mathbb{E}_{t-1}[c_t^i]$

Market illiquidity innovations

Figure: Monthly evolution of market illiquidity innovations, u_t^P , and market normalized illiquidity, c_t^P , for the period 10/1997-07/2014.

Illiquidity regimes

Considering the following equation

$$\begin{split} & \mathsf{ILLIQ}_t^P \overline{P}_{t-1} = \mathsf{a}_0 + \mathsf{a}_1 \mathsf{ILLIQ}_{t-1}^P \overline{P}_{t-1} + \mathsf{a}_2 \mathsf{ILLIQ}_{t-2}^P \overline{P}_{t-1} + \epsilon_t^P, \\ & \mathsf{and} \ \epsilon_t^P \sim \mathsf{iid} \ \ \mathsf{N}(0, \vartheta^2). \end{split}$$

Illiquidity regimes

Considering the following equation

$$\begin{split} & \mathsf{ILLIQ}_t^P \overline{P}_{t-1} = \mathsf{a}_0 + \mathsf{a}_1 \mathsf{ILLIQ}_{t-1}^P \overline{P}_{t-1} + \mathsf{a}_2 \mathsf{ILLIQ}_{t-2}^P \overline{P}_{t-1} + \epsilon_t^P, \\ & \mathsf{and} \ \epsilon_t^P \sim \mathsf{iid} \ \mathsf{N}(0, \vartheta^2). \end{split}$$

The two-state Markov regime-switching version of the equation above is

$$\mathsf{ILLIQ}_t^P \overline{P}_{t-1} = \mathsf{a}_{0,s_t} + \mathsf{a}_{1,s_t} \mathsf{ILLIQ}_{t-1}^P \overline{P}_{t-1} + \mathsf{a}_{2,s_t} \mathsf{ILLIQ}_{t-2}^P \overline{P}_{t-1} + \widetilde{\epsilon}_t^P,$$

where the unobserved variable $s_t \in \{L, H\}$ evolves according to the first order Markov-switching process and $\tilde{\epsilon}_t^P \sim \text{iid} \ \ \text{N}(0, \vartheta_{s_t}^2)$.

Illiquidity regimes: calibration results

Parameter	Coeff.	Std. Error	Robust S.E.	t-value	t-prob
a ₀	0.793	0.367	-	2.16	0.032
a_1	0.446	0.095	-	4.70	0.000
a_2	0.446	0.088	-	5.07	0.000
ϑ	3.742	-	-	-	-
а _{0,Н}	4.486	1.515	1.260	3.56	0.000
$a_{0,L}$	0.524	0.203	0.307	1.70	0.000
$a_{1,H}$	0.403	0.107	0.108	3.74	0.000
$a_{1,L}$	0.558	0.095	0.135	4.14	0.000
$a_{2,H}$	0.245	0.125	0.126	1.94	0.054
$a_{2,L}$	0.238	0.082	0.109	2.19	0.030
ϑ_H	5.701	0.472	1.166	4.89	0.000
ϑ_L	0.958	0.073	0.112	8.52	0.000
p_H	0.982	0.007	0.010	98.40	0.000
p_L	0.993	0.007	0.010	98.40	0.000

Illiquidity regimes: calibration results

Figure: Transition probabilities for the regime-switching model

Market return innovations

The innovations in the market portfolio return

$$\xi_t^P = r_t^P - \mathbb{E}_{t-1}[r_t^P],$$

are determined using the following an AR(2) model

$$r_t^P = \theta_0 + \theta_1 r_{t-1}^P + \theta_2 r_{t-2}^P + \xi_t^P, \quad \text{with} \quad \xi_t^P \sim \text{iid} \quad \text{N}(0, \nu^2).$$

Market return innovations

The innovations in the market portfolio return

$$\xi_t^P = r_t^P - \mathbb{E}_{t-1}[r_t^P],$$

are determined using the following an AR(2) model

$$r_t^P = \theta_0 + \theta_1 r_{t-1}^P + \theta_2 r_{t-2}^P + \xi_t^P, \quad \text{with} \quad \xi_t^P \sim \text{iid} \quad \mathsf{N}(0, \nu^2).$$

The two-state Markov regime-switching version of the equation above is

$$\mathbf{r}_{t}^{P} = \theta_{0,v_{t}} + \theta_{1,R} \mathbf{r}_{t-1}^{P} + \theta_{2,R} \mathbf{r}_{t-2}^{P} + \tilde{\xi}_{t}^{P},$$

where $v_t \in \{L^P, H^P\}$ and $\tilde{\xi}_t^P \sim \text{iid} \ \ \mathsf{N}(0, \nu_{v_t}^2)$.

Market return regimes: calibration results

Parameter	Coeff.	Std. Error	Robust S.E.	t-value	t-prob
θ_0	0.017	0.008	-	2.14	0.035
$ heta_1$	0.182	0.070	-	2.60	0.010
$ heta_2$	0.270	0.068	-	4.00	0.000
u	0.061	-	-	-	-
$\theta_{0,H}$	0.009	0.009	0.009	1.00	0.317
$ heta_{0,L}$	0.008	0.004	0.005	1.84	0.067
$ heta_{1,R}$	0.241	0.072	0.080	3.02	0.003
$ heta_{2,R}$	0.244	0.070	0.071	3.47	0.001
$ u_{H}$	0.078	0.007	0.007	11.1	0.000
$ u_{L}$	0.041	0.004	0.004	9.71	0.000
p_{H^P}	0.972	0.023	0.021	47.2	0.000
p_{L^P}	0.980	0.023	0.021	47.2	0.000

Market return regimes: calibration results

Figure: Transition probabilities for the regime-switching model

Illiquidity and market return regimes: comparison

Figure: Transition probabilities for the regime-switching model

Beta estimation

Asset i betas can be expressed as

$$\begin{split} \beta^{i1} &= \frac{\operatorname{Cov}\left(r_t^i, \xi_t^P\right)}{\operatorname{Var}\left(\xi_t^P - u_t^P\right)}, \quad \beta^{i2} &= \frac{\operatorname{Cov}\left(u_t^i, u_t^P\right)}{\operatorname{Var}\left(\xi_t^P - u_t^P\right)}, \\ \beta^{i3} &= \frac{\operatorname{Cov}\left(r_t^i, u_t^P\right)}{\operatorname{Var}\left(\xi_t^P - u_t^P\right)}, \quad \beta^{i4} &= \frac{\operatorname{Cov}\left(u_t^i, \xi_t^P\right)}{\operatorname{Var}\left(\xi_t^P - u_t^P\right)}. \end{split}$$

Beta estimation

Asset i betas can be expressed as

$$\begin{split} \beta^{i1} &= \frac{\operatorname{Cov}\left(r_t^i, \xi_t^P\right)}{\operatorname{Var}\left(\xi_t^P - u_t^P\right)}, \quad \beta^{i2} &= \frac{\operatorname{Cov}\left(u_t^i, u_t^P\right)}{\operatorname{Var}\left(\xi_t^P - u_t^P\right)}, \\ \beta^{i3} &= \frac{\operatorname{Cov}\left(r_t^i, u_t^P\right)}{\operatorname{Var}\left(\xi_t^P - u_t^P\right)}, \quad \beta^{i4} &= \frac{\operatorname{Cov}\left(u_t^i, \xi_t^P\right)}{\operatorname{Var}\left(\xi_t^P - u_t^P\right)}. \end{split}$$

where u_t^P is the innovation in normalized market illiquidity, ξ_t^P is the innovation in market portfolio return, and u_t^i is the innovation in normalized illiquidity for asset i.

Beta estimation: numerical results ($\times 100$)

Stock	Regime	β^1	β^2	β^3	β^4	Net beta
VOLCABC1	Full sample	141.44	0.00	-4.27	-0.01	145.72
(Very liquid)	Low mkt illiquidity	157.36	0.00	-2.98	-0.01	160.35
$c^i = 0.26\%$	High mkt illiquidity	123.25	0.00	-5.90	-0.01	129.16
	Low mkt return	167.14	0.00	-1.05	-0.01	168.20
	High mkt return	136.57	0.00	-4.95	-0.01	141.53
FERREYC1	Full sample	59.13	-0.01	-2.71	0.08	61.75
(Very liquid)	Low mkt illiquidity	48.99	0.00	-2.37	0.06	51.30
$c^i = 0.34\%$	High mkt illiquidity	76.29	-0.02	-3.62	0.12	79.76
	Low mkt return	34.21	-0.01	-0.92	0.39	34.73
	High mkt return	66.45	-0.01	-3.31	-0.01	69.76
ALICORP	Full sample	49.89	0.15	-1.59	-0.03	51.66
(Very liquid)	Low mkt illiquidity	37.71	0.17	-0.45	0.09	38.24
$c^i = 0.52\%$	High mkt illiquidity	69.04	0.09	-3.22	-0.16	72.51
	Low mkt return	65.57	0.18	2.49	-0.40	63.66
	High mkt return	44.98	0.14	-2.97	0.08	48.01

Beta estimation: numerical results ($\times 100$)

Stock	Regime	β^1	β^2	β^3	β^4	Net beta
TELEFBC1	Full sample	74.70	0.19	-3.14	-1.04	79.07
(Liquid)	Low mkt illiquidity	69.37	0.24	-3.75	-1.54	74.91
$c^i = 1.25\%$	High mkt illiquidity	83.19	0.06	-2.34	-0.24	85.83
	Low mkt return	112.06	0.14	-4.08	-0.13	116.40
	High mkt return	64.34	0.17	-2.87	-1.25	68.63
BACKUSI1	Full sample	28.65	2.32	-1.05	-14.68	46.70
(Illiquid)	Low mkt illiquidity	29.97	1.44	-0.02	-7.91	39.34
$c^i = 3.66\%$	High mkt illiquidity	25.96	3.45	-2.50	-25.51	57.41
	Low mkt return	46.08	0.97	-0.98	0.64	47.39
	High mkt return	23.55	2.45	-1.10	-19.33	46.43
BROCALC1	Full sample	148.45	0.38	-3.73	-9.22	161.79
(Illiquid)	Low mkt illiquidity	146.15	0.95	-1.10	-15.65	163.84
$c^i = 3.17\%$	High mkt illiquidity	151.75	-0.34	-7.19	0.53	158.07
	Low mkt return	180.29	-0.12	5.10	-17.55	192.61
	High mkt return	140.44	0.46	-6.01	-7.08	153.99

Beta estimation: numerical results ($\times 100$)

Stock	Regime	β^1	β^2	β^3	β^4	Net beta
BAP	Full sample	70.98	0.69	-2.10	2.98	70.79
(Very illiquid)	Low mkt illiquidity	69.77	1.41	-1.53	1.58	71.12
$c^i = 4.44\%$	High mkt illiquidity	73.41	-0.25	-3.08	4.64	71.60
	Low mkt return	68.93	3.90	-0.42	-3.12	76.37
	High mkt return	71.39	-0.45	-2.76	4.83	68.87
SCCO	Full sample	88.46	0.33	-2.26	-2.02	93.08
(Very illiquid)	Low mkt illiquidity	85.38	0.73	-1.33	-5.50	92.95
$c^i = 4.61\%$	High mkt illiquidity	93.94	-0.31	-4.02	3.77	93.88
	Low mkt return	90.98	2.05	0.88	-2.65	94.80
	High mkt return	87.71	-0.17	-3.19	-1.84	92.57
SCOTIAC1	Full sample	107.30	2.59	-4.72	-7.98	122.60
(Very illiquid)	Low mkt illiquidity	111.50	3.74	-2.69	-7.71	125.65
$c^i = 4.88\%$	High mkt illiquidity	100.99	0.91	-8.45	-8.41	118.76
	Low mkt return	107.30	2.59	-4.72	-7.98	122.60
	High mkt return	108.01	1.38	-6.71	-9.79	125.88

• We developed an indicator of Peruvian market illiquidity

- We developed an indicator of Peruvian market illiquidity
- Information of illiquidity and market return regimes (political events)

- We developed an indicator of Peruvian market illiquidity
- Information of illiquidity and market return regimes (political events)
- $\mathsf{Cov}_t(r_{t+1}^i, c_{t+1}^M)$ tends to be significant even for very liquid stocks while $\mathsf{Cov}_t(c_{t+1}^i, c_{t+1}^M)$ and $\mathsf{Cov}_t(c_{t+1}^i, r_{t+1}^M)$ tend to become more relevant as we consider more illiquid stocks

- We developed an indicator of Peruvian market illiquidity
- Information of illiquidity and market return regimes (political events)
- $Cov_t(r_{t+1}^i, c_{t+1}^M)$ tends to be significant even for very liquid stocks while $Cov_t(c_{t+1}^i, c_{t+1}^M)$ and $Cov_t(c_{t+1}^i, r_{t+1}^M)$ tend to become more relevant as we consider more illiquid stocks
- To do: work with portfolios instead of individual assets, compute the liquidity-adjusted market risk premium, and compare with other emerging markets

Thank you