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Abstract

There exists a large set of leading indicators that are directly related with GDP growth. However, it
is often very difficult to select which of these indicators can be used in order to choose the best short-
term forecasting (nowcasting) model. In addition, it may be the case that more than one model can
do this job accurately. Therefore, it would be convenient to average these potentially non-nested
models. Following Scott and Varian (2015), we estimate a Structural State Space model through
Gibbs Sampling and a spike-slab prior in order to perform the Stochastic Search Variable Selection
(SSVS) method. Posterior simulations can be used to then compute the inclusion probability of
each variable for the whole set of models considered. In-sample GDP estimates are very precise,
taking into account the large set of regressors considered for the estimation. Data comes from the
BCRPs database plus other additional sources.

Resumen

Existe un conjunto grande de indicadores adelantados que están directamente relacionados con el
crecimiento del PBI. Sin embargo, a menudo nos cuesta mucho trabajo seleccionar cuáles de estos
indicadores conforman el mejor modelo de regresión y predicción de corto plazo (nowcasting). Es
más, es posible que exista más de un modelo que pueda realizar esta tarea de manera satisfactoria,
por lo que seŕıa conveniente tomar el promedio de estos mismos, los cuales son potencialmente no
anidados. Siguiendo a Scott and Varian (2015), se estima un modelo de espacio de estados a través
del muestreo de Gibbs y un prior spike-and-slab para la selección estocástica de variables (SSVS).
Con ello, se obtiene la probabilidad de inclusión de cada variable dentro del conjunto de modelos
posible. Los resultados muestran un ajuste bastante preciso para el PBI, teniendo en cuenta el gran
número de variables utilizadas, las cuales provienen de la base de datos macroeconómicos del BCRP
y de otras fuentes adicionales.
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1 Introduction

Information is a valuable item for decision makers. In particular, policy makers and private

economic agents such as investors need all the time new information related with the aggregate

economy in order to take proper decisions for the future. A well known issue is the fact that

GDP growth data is only available with a lag. The length of this lag is variable across countries,

but it is usually the case that the new GDP data is released with more than one month of lag.

Therefore, given that current GDP is non-observable, economic agents need to perform an

exercise of forecasting the present, i.e. nowcasting.

The latter is possible since there exists a large set of leading indicators and economic variables

that i) are related with the GDP and ii) are released almost in real time, i.e. in advance of the

GDP. As a result, we as econometricians can think on a linear regression model of the GDP onto

a subset of these leading indicators in order to forecast the current value of GDP. In particular,

previous nowcasting exercises for GDP growth with Peruvian data can be found in Pérez-Forero

et al. (2017)1. However, it turns out that this task of nowcasting macroeconomic time series is

not straightforward, since tons of potential regressors and model specifications can be spotted

by different experts and professional forecasters at any point in time. Then the question is,

which is the best linear regression model? How can we select the best regressors among a very

large set of variables? Can we use different models? It is likely that more than one model is

popular at any point in time, given the heterogeneity of views across the different experts. As

a matter of fact, most of these experts can claim that they have ’the model’, and when we take

a look to the set of regressors, it turns out that these models are non-nested. Then, suppose

that we want to take stock of the views of the different experts, since we want to construct an

eclectic approach. Then a more elaborated question is, can we average these non-nested models

with different sets of regressors? In this paper we implement an econometric approach that

allows us give a positive answer to the latter question.

That is, in this paper we specify a Structural Time Series model, which will be estimated through

1In particular, this reference covers the early Peruvian literature related with leading indicators (see e.g.
Escobal and Torres (2002), Ochoa and Lladó (2003), Kapsoli and Bencich (2004), among others).
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Bayesian techniques following the lead of Scott and Varian (2015)2. The latter model has been

used for nowcasting time series using a large set of variables, such as Google Trends data.

Then, in order to select among different models and regressors, we implement the spike-and-

slab approach developed by Madigan and Raftery (1994) and George and McCulloch (1997), and

we use this machinery for finding the best predictors for the Peruvian GDP growth. After that,

given the posterior distribution estimated for this model, we perform the nowcasting exercise,

and we present the forecast density derived from our analysis.

The results indicate that the best predictors for the Peruvian GDP growth are i) electricity

production, ii) the volume of imported inputs, iii) internal consumption of cement and some

financial variables. For those readers who are familiar with the mentioned variables, this exercise

is just a corroboration of their prior. As it was mentioned above, we present the full forecast

density, rather than point estimates. The latter allows us to quantify the support of the forecast

and also the probability of any particular forecast point, which could potentially be turned into

a fanchart. Our result is inherently robust, since we depart from a very large set of economic

indicators, including both contemporaneous values and lags, and we let the algorithm to select

the main regressors conditional on the observed data and using standard conjugated priors. We

expect to use this algorithm routinely as one of the satellite models for short run forecasting at

the BCRP.

The document is organized as follows: section 2 describes the structural time series model,

section 3 describes the estimation procedure, section 4 discusses the main results, and section

5 concludes.

2The literature of nowcasting GDP is large and it is still growing. The main references in this topic that are
worth to mention are Evans (2005) and Giannone et al. (2008), Banbura et al. (2013) among others. For the
specific case of Small Open Economies, we can mention the case of Brazil, India and Japan by Bragoli et al.
(2015), and Bragoli and Fosten (2016) and Bragoli (2017), respectively.
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2 A Structural time series model

2.1 The setup

Consider the stochastic generalization of the classic constant-trend regression model (Scott and

Varian, 2015). In particular, the dependent variable yt, which is in this case the GDP growth,

is determined through the relationship:

yt = µt + γt,1 + zt + vt, vt ∼ N (0, V ) (1)

µt = µt−1 + bt−1 + w1,t, w1,t ∼ N (0,W1) (2)

bt = bt−1 + w2,t, w2,t ∼ N (0,W2) (3)

γt,1 = −
S−1∑
i=1

γt−1,i + w3,t, w3,t ∼ N (0,W3) (4)

γt,i = γt−1,i, i = 1, . . . , S − 1 (5)

zt =

K∑
i=1

βixi,t (6)

where µt is the trend term, which follows a random walk, bt is an auxiliar random walk term,

γt,1 is the seasonal component, being S the data frequency 3 and zt the exogenous component.

As we pointed out above, the latter model is a generalization of a linear regression model where

W1 = W2 = W3 = 0. As a result, our model is sufficiently capable of capturing the time

variation in trend and seasonal components. The latter is desirable, since we want to increase

the precision of our forecasts.

Moreover, the set of regressors xt can be potentially very large, where we will consider leading

indicators both in the contemporaneous period t as well as lagged values t− j. In this case, we

denote K = dim (xt) = dim (β). As a result, we have huge amount of candidate models, each

one considering only a subset of these regressors. In the next subsection we explain how we

determine each of these models and how we can adapt this approach in the bayesian estimation

of the presented state space model.

3S = 4 when using quarterly data and S = 12 when using monthly data.
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2.2 Spike and slab variable selection

Given the previous setup, we now need to explain how we implement the Stochastic Search

Variable Selection (SSVS) procedure. First, let γ denote a vector the same length as the list

of possible regressors xt that indicates whether or not a particular variable xi,t is included in

the model. That is, γ is a vector that has the same length as β, i.e K = dim (γ), where γi = 1

means that βi 6= 0 and γi = 0 means that βi = 0, where βi is the coefficient associated with xi,t.

In other words, each possible value of the binary vector γ is a regression model.

Furthermore, given the value of γ, let βγ be the subset of entries from β for which γi = 1, and

let σ2 be the residual variance from the regression model γ. In this context, a spike and slab

prior for the joint distribution of
(
β, γ, σ−2

)
can be re-expressed as:

p
(
β, γ, σ−2

)
= p

(
βγ | γ, σ−2

)
p
(
σ−2 | γ

)
p (γ)

In particular, since we are going to consider a significant amount of zeros in each model γ, the

spike part of a spike-and-slab prior refers to the point mass at zero, for which we assume an

independent Bernoulli distribution for each entry γi with a probability of success equal to πi.

As a consequence, the joint prior for γ is a product of Bernoulli random variables:

γ ∼
∏
i

πγii (1− πi)1−γi (7)

It is then important to remark that, when detailed prior information is unavailable, it is con-

venient to set all πi equal to the same number π, i.e. a flat prior. In fact, the common prior

inclusion probability can easily be elicited from the expected number of nonzero coefficients for

the average model. That is, if k out of K coefficients are expected to be nonzero, then we will

set π = k/K as our prior mean.

On the other hand, the slab component is a prior for the values of the nonzero coefficients,

conditional on the knowledge of which coefficients are nonzero, i.e. conditional on γ. Let

b be a vector that represents the prior mean for regression coefficients, let Ω−1 be a prior

precision matrix, and let Ω−1γ denote rows and columns of Ω−1 for which γi = 1. As a result,
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a conditionally conjugate ”slab” prior is a follows a typical Bayesian linear regression model as

in Zellner (1971) and Koop (2003), where we have a normal distribution for coefficients:

βγ | γ, σ−2 ∼ N
(
bγ , σ

2
(
Ω−1γ

)−1)

and an inverse-gamma distribution for the variance:

1

σ2
∼ Γ

(
df

2
,
ss

2

)

Moreover, following the classical linear regression theory, X ′X/σ2 is the total Fisher information

in the full data, which can be reasonable to parametrize as Ω−1 = κX ′X/T . However, since

X ′X is potentially rank deficient, we assume that

Ω−1 =
κ

T

(
wX ′X + (1− w) diag

(
X ′X

))
(8)

where 0 ≤ w ≤ 1. With that assumption, it is possible to always have a positive definite matrix

Ω−1. It is important to remark that the actual value of w is very close to 1, so that we try to

do not distort the sample properties of the data, and we just use this shortcut in order to get a

stable numerical simulation. The complete information related with priors is shown in table 14.

Parameter Distribution Hyper-parameters

α0 Normal N (0dimα×1, Idimα)

V Inverse-Gamma IG
(
1
2 ,

0.01
2

)
Wi=1,2,3 Inverse-Gamma IG

(
1
2 ,

0.01
2

)
βγ Normal N

(
0dimβγ×1, σ

2
(
Ω−1γ

)−1)
σ2 Inverse-Gamma IG

(
1
2 ,

0.01
2

)
γ Spike-slab πi = 5/K

Table 1: Priors for state-space parameters

4Where κ = 0.25, w = 0.9925 in Ω−1 = κ
T

(wX ′X + (1 − w) diag (X ′X))
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2.3 Bayesian model averaging

As we have mentioned in a previous subsection, bayesian inference with spike-and-slab priors is

an effective way to implement Bayesian model averaging, since it allows us to explore the entire

space of time series regression models. As a result, using efficient Markov-Chain Monte Carlo

(MCMC) methods, we will get the posterior simulation of the whole set of model parameters.

Furthermore, having simulated the posterior distribution for the parameter space via MCMC

methods, then each draw of parameters from the posterior distribution can be combined with

the available data to produce a forecast of yt+1 for that particular draw. Moreover, repeating

these draws many times gives us an estimate of the posterior density of the forecast yt+1. As it

is pointed out by Scott and Varian (2015), the latter approach is motivated by the Madigan and

Raftery (1994)’s proof that averaging over an ensemble of models does no worse than using the

best single model in the ensemble5. As a consequence, we can simulate the full forecast density

and then take the corresponding percentiles in order to get an average forecast.

3 Bayesian Estimation

The statistical model presented above has to be estimated as a previous step for obtaining the

nowcasting of GDP. In this section we will use Markov Chain Monte Carlo (MCMC) methods

in order to perform this task. First, we need to re-write the model correctly as a state-space

system, and then we need to explain the simulation routine that is going to be used for the

bayesian estimation.

3.1 State-Space form

The model (1)-(2)-(3)-(4)-(5)-(6) can be re-written as a state-space system with an exogenous

component and time varying matrices, so that:

yt = Dtαt + ZtXt + εt, εt ∼ N (0, Ht) (9)

5Regarding Bayesian Model Averaging see also Fragoso et al. (2018), Hoeting et al. (1999) and Raftery et al.
(1997).
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αt = Atαt−1 +Rtηt, ηt ∼ N (0, Qt) (10)

Denote ψ =
(
θ, αT

)
as the parameter set of the model. Then, the complete posterior distribution

for the parameter set ψ is:

p
(
ψ | yT

)
= p

(
θ, αT | yT

)
∝ p (θ) p (α0)

T∏
t=1

p (yt | αt, θ) p (αt | αt−1, θ)

Notice that in this case the model is linear and normally distributed conditional on a value of γ.

In line with that, the analytical computation of the posterior distribution is possible conditional

on γ. In the next subsection we describe the main estimation algorithm.

3.2 A Gibbs Sampling routine

Bayesian estimation and posterior simulation is typically implemented through Markov Chain

Monte Carlo (MCMC) methods. In this section we split the parameter set into many different

blocks such that simulation is feasible, i.e. e implement a Gibbs Sampling routine as in Scott

and Varian (2015). The algorithm sequence is as follows:

Algorithm 1

1. Simulate {αt}Tt=1 from p
(
αt | yT , ψ−αt

)
: Carter and Kohn (1994)

αt | yT , ψ−αt ∼ N
(
αt|T , P t|T

)
, t ≤ T (11)

2. Simulate V from p
(
V | Y T , ψ−V

)
: Inverse-Gamma

3. Simulate W1 from p
(
W1 | yT , ψ−W1

)
: Inverse-Gamma

4. Simulate W2 from p
(
W2 | yT , ψ−W2

)
: Inverse-Gamma

5. Simulate W3 from p
(
W3 | yT , ψ−W3

)
: Inverse-Gamma

6. Simulate β from p
(
β | yT , ψ−β

)
: Normal

7. Simulate σ2 from p
(
σ2 | yT , ψ−σ2

)
: Inverse-Gamma
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8. Simulate γ from p
(
γ | yT , ψ−γ

)
: Metropolis step as in George and McCulloch (1997)

Notice that since γ is a binary vector where each component follows a discrete distribution, its

posterior is non-standard in this context. Therefore, in order to sample from p
(
γ | yT , ψ−γ

)
as in George and McCulloch (1997), we implement a Metropolis-Hastings step. The algorithm

step for this part is as follows:

Algorithm 2

1. Generate a candidate value γ∗ with probability distribution q
(
γ(j), γ∗

)
.

2. Set γ(j+1) = γ∗ with probability:

αMH
(
γ(j), γ∗

)
= min

{
q
(
γ∗, γ(j)

)
q
(
γ(j), γ∗

) g (γ∗)

g
(
γ(j)
) , 1}

Otherwise γ(j+1) = γ(j).

In particular, q
(
γ(j), γ∗

)
is such that γ∗ is generated by randomly changing one component

of γ(j). As a consequence, q (.) is a symmetric proposal. The use of symmetric proposal

distributions in fairly standard in the literature, and it gives us the possibility to simplify the

kernel transition associated with the Metropolis-Hastings.

3.3 Estimation setup

We run the Gibbs sampler for K = 500, 000 and discard the first 100, 000 draws in order to

minimize the effect of initial values. In order to reduce the serial correlation across draws, we

set a thinning factor of 100. As a result, we have 4, 000 draws for conducting inference. The

acceptance rate of the metropolis-step associated with γ is around 0.29.

4 Results

After simulating the posterior distribution of different block parameters, we analyze the frequen-

cies and capture the best predictors ranking, which are depicted in figure 1. We can observe

that among the main regressors we have detected the following variables: electricity production,
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consumption of cement and the volume of imported input goods, all of them in contemporane-

ous form (t). The good fit of the model is shown in figure 2, where the suffix after each label

represents the lag order of the regressor starting in 0.

Inclusion Probability for Top Ten predictors

GeneralStockMkt1 CredSoles0 InputVolume1 LaborIncome1 USIndPro0 Cement1 Electricity1 InputVolume0 Cement0 Electricity0
0

0.1

0.2

0.3
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0.6

0.7

0.8

0.9

1

Figure 1: Top Ten Predictors for GDP

2006 2008 2010 2012 2014 2016 2018
-4

-2

0

2

4

6

8

10

12

14

16

Figure 2: Predicted GDP growth

Given the posterior estimates of the parameter set ψ =
(
θ, αT , γ

)
, then for each draw i =
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1, . . . , S of ψ we can forecast the latent variable such that:

α
(i)
T+h|T =

[
A

(i)
T

]h
α
(i)
T |T + ηT+h

where ηT+h ∼ N (0, QT ). The latter, together with the data available of exogenous regressors

up to a horizon h, is useful in order to forecast the dependent variable using the measurement

equation:

y
(i)
T+h|T = D

(i)
T+hα

(i)
T+h|T + (β | γ)(i) xT+h + vT+h

where vT+h ∼ N (0, V ). That is, as long as we have out of sample data available of the vector

x, then it is possible to compute the conditional forecast.

5 Concluding Remarks

Peruvian GDP short term forecasting and Nowcasting is not straightforward. We have selected

and ranked regressors among a large set of variables using Bayesian techniques. Among the

main regressors we have detected the following variables: electricity production, consumption

of cement and the volume of imported input goods, all of them in contemporaneous form

(t), among others. The method suggested by Scott and Varian (2015) is very powerful and

promising. Model averaging using the method suggested by Scott and Varian (2015) allows

us to produce density forecasts and quantify the uncertainty associated with the estimation,

i.e. the outcome is not only a point forecast of GDP growth. This seems to be very powerful

and promising for policymakers interested in producing risk scenarios. More work is needed

related with the ex-ante selection of variables and with the sensitivity analysis of the results

with different priors. Finally, our goal is also to use a wider set of indicators and apply big data

techniques such as Bok et al. (2017). The latter is part of the research agenda.
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A Data Description

We include monthly data from January 2003 until July 2018 of more than 30 regressors related

with economic activity indicators, money aggregates, stock markets, labor market and also

external variables, with both current values and lags. Details are depicted in Table 2.

Table 2: List of regressors included in the model

No. Variable Original Units of Measure Transformation Label Source

1 Credit in Soles Millions of Soles Year-to-Year change (in %) CredMN BCRP

2 Credit in Dollars Millions of Dollars Year-to-Year change (in %) CredME BCRP

3 Total Credit Millions of Soles Year-to-Year change (in %) CredTT BCRP

4 Mortgage Credit Millions of Soles Year-to-Year change (in %) CredHip BCRP

5 Consumption Credit Millions of Soles Year-to-Year change (in %) CredCons BCRP

6 Deposits in Soles Millions of Soles Year-to-Year change (in %) LiquMN BCRP

7 Deposits in Dollars Millions of Dollars Year-to-Year change (in %) LiquME BCRP

8 Monetary Base Millions of Soles Year-to-Year change (in %) Emis BCRP

9 Cash Millions of Soles Year-to-Year change (in %) Circ BCRP

10 Electricity Production GWh Year-to-Year change (in %) PELEC COES

11 Consumption of Cement Metric Tons Year-to-Year change (in %) CINTC UNACEM

12 Indirect Taxes Millions of Soles Year-to-Year change (in %) IGVInt SUNAT

13 Chicken Sales Average Daily Metric Tons Year-to-Year change (in %) VPOLLOS BCRP

14 Labor Force Units Year-to-Year change (in %) PEAO BCRP

15 Monthly labor income Millions of Soles Year-to-Year change (in %) Ingreso BCRP

16 Unemployment rate Percentages Levels Desempleo BCRP

17 Non-Financial Government Expenditures Millions of Soles Year-to-Year change (in %) GNF BCRP

18 Volume of Imported Inputs Units Year-to-Year change (in %) VOL M INPUT BCRP

19 General Stock Market Index of Lima (31/12/91 = 100) Year-to-Year change (in %) IGBVL BCRP

20 Selective Stock Market Index of Lima (31/12/91 = 100) Year-to-Year change (in %) ISBVL BCRP

21 Consumer Price Index (2009=100) Year-to-Year change (in %) IPC BCRP

22 Non Food and Energy Price Index (2009=100) Year-to-Year change (in %) IPCae BCRP

23 Wholesale price Index (2009=100) Year-to-Year change (in %) IPM BCRP

24 Terms of Trade (2007=100) Year-to-Year change (in %) TI BCRP

25 LIBOR 3-Month rate Percentages Levels Libor3M FRED

26 Peruvian EMBI Spread Basis points Levels EMBI BCRP

27 Oil Prices (WTI) Dollars per Barrel Year-to-Year change (in %) WTI FRED

28 Real Exchange Rate (2009=100) Year-to-Year change (in %) TCRB BCRP

29 United States Consumer Price Index (1982-1984=100) Year-to-Year change (in %) IPCUS FRED

30 Industrial Production Index (2012=100) Year-to-Year change (in %) INDPRO FRED

31 Producer Price Index for All Commodities (1982=100) Year-to-Year change (in %) PPIACO FRED

32 CBOE Volatility Index: VIX Units Levels VIXCLS FRED
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B The posterior distribution of hyper-parameters

1 2 3 4

10-4

0

100

200

300

400

500

W
1

0.008 0.01 0.012 0.014 0.016 0.018
0

100

200

300

400

500

600

W
2

0.01 0.012 0.014 0.016 0.018 0.02
0

100

200

300

400

500

W
3

0.5 1 1.5 2

10-4

0

100

200

300

400

500
V

0.5 1 1.5 2

10-4

0

100

200

300

400

500

2

Figure 3: Posterior Distribution of hyper-parameters (GDP Model)
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Figure 5: Posterior Distribution of latent factors (GDP Model)
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Figure 6: Posterior Distribution of coefficients (GDP Model) (1)
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Figure 7: Posterior Distribution of coefficients (GDP Model) (2)
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