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Abstract

We extend the methodology put forward in Yamada and Yoon (2014, Journal of International
Money and Finance, 42(C), 193-207) to analyze the trend and cyclical behavior of relative
primary commodity prices. These authors propose the use of the so-called `1-filter that renders
piecewise linear trends of the underlying data. Our focus in on the calibration of such filter and its
implications for the empirical analysis of primary commodity prices, especially the interpretation
given to the resulting trend. We also illustrate how suitably calibrated filters may be used to
compute piecewise linear (super) cycles, whose turning points are easy to identify.
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1 Introduction

The Prebisch-Singer hypothesis (PSH henceforth) plays a central role in the study of the evolution of primary
commodity prices. It claims that the relative prices of primary commodities in terms of manufactures are
driven by a secular downward trend. Since such declining terms of trade for primary exporters have profound
policy implications, testing the validity of the PSH has always been a subject of great empirical interest. Since
the early contributions of Cuddington and Urzua (1989) and Cuddington (1992), the bulk of the literature
examines the PSH through the lens of unit root tests (see Ghoshray, 2011, for a recent account). It is decided
whether a particular relative price should be modeled as a trend stationary or as difference stationary process,
possibly subject to structural breaks. Then, a negative estimated time slope or drift is taken as supportive
evidence on the PSH. See Cuddington et al. (2008) for a comprehensive survey.

Recently, Yamada and Yoon (2014) suggest an alternative, fresh view to assess the PSH. They propose a
direct attack to the problem by estimating the trend component of relative prices using the `1-filter advanced
in Kim et. al (2009). This filter resembles in many ways the celebrated Hodrick and Prescott (1997) filter,
but has the peculiarity that the resulting trend is piecewise linear. Thus, the changes in slope of the estimated
trend, which are very easy to detect, reflect structural breaks in the underlying time series. This feature of the
`1-filter makes it very suitable for the empirical evaluation of the PSH, since the segments of the piecewise
trend that are negatively sloped are to be associated with periods when the PSH prevails. With this technique,
Yamada and Yoon conclude that the PSH holds “sometimes”.

Like the Hodrick and Prescott filter, the characteristics of the `1-trend depend on a smoothing parameter λ.
However, in clear contrast to the case of the Hodrick and Prescott filter, the literature on the `1-filter is still
incipient and a remaining open question, of considerable practical importance, is how to suitably calibrate
λ. In their empirical exploration, Yamada and Yoon estimate `1-trends for several relative commodity prices
using the same value of λ. This gives the impression that a uniform filter is applied to different time series.
Nevertheless, it is shown below that this is not the case, rendering the various estimated trends incomparable.

The first goal of this paper is to reexamine the evidence put forward by Yamada and Yoon, with special
focus on the calibration of the `1-filter and the interpretation of their estimated trends. To this end, we further
exploit the analogies between the `1-filter and the readily interpretable Hodrick and Prescott filter as a low-
pass filter. In particular, the smoothing parameter of Hodrick and Prescott filter is tightly related to a cutoff

period T , such that the estimated trend accounts for the movements of the time series of T years or more.
Such a direct interpretation is not possible for the `1-filter because, we argue, a meaningful calibration of
its smoothing parameter needs to be data-dependent and, hence, case-specific. It is argued, however, that the
`1-trend can be made close enough to a T-year Hodrick and Prescott trend, so that it may be interpreted as a
T-year piecewise linear trend. Besides the robustness check to the results of Yamada and Yoon, we also apply
the `1-filter methodology to the extended database of relative commodity prices of Harvey et al. (2010).

The second goal is explore the notion of a super cycle vis-á-vis long-run trends in primary commodity prices,
recently brought (back) to attention by Cuddington and Jerrett (2008) and Erten and Ocampo (2013), using
the `1-filter. It is well-known that a band-pass filter, which isolates the cyclical component of a series, can
be constructed as the differences between two low-pass filters. Thus, using suitably calibrated `1-filters we
are able to obtain estimates of the cycles in primary commodities prices. Importantly, the derived cycles are
also piecewise linear, a fact that facilitates enormously the identification of their turning points. It is worth
mentioning that the slope of this analysis is limited to the characterization of the cycles. Important questions
related to their causes and commonalities are left open for future research.

The remaining of this paper is organized as follows. Section 2 discusses methodological issues. Section 3
presents empirical results. Even though the details on individual relative prices may differ considerably from
those reported in Yamada and Yoon, the main conclusion that the PSH holds sometimes remain. The same
holds true for the Harvey et al. data. In both cases, short-run trends differ significantly from long-run trends,
which provides evidence for super cycles in relative commodity prices. Their properties and turning points
are also documented. Section 4 gives closing remarks.
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2 Methodological issues

Let us introduce some notation. Let z ∈ Rn be a n-vector whose i-th element is denoted by zi . The length
of z may be measured by alternative norms: namely, the Euclidean `2-norm ‖ z ‖22 =

∑
i (zi )2 or the `1-

norm ‖ z ‖1 =
∑

i |zi |. On the other hand, consider a (n − 2) × n matrix D such that Dz ∈ Rn−2 is a
(n − 2)-vector whose entries correspond to the second differences of the entries of z; the i-th element of
Dz is ∆2zi = zi+2 − 2zi+1 + zi for i = 1,2, . . . ,n − 2.

2.1 The Hodrick-Prescott filter and its interpretation

By trend we refer to the smoothed version of a time series that isolates its medium- to long-run movements
from short-run fluctuations (cycles, seasonality, noise, among others). The Hodrick and Prescott filter,
henceforth `2-filter, is admittedly the most popular univariate method in economics for trend estimation,
and its properties have been thoroughly documented (see, inter alia, King and Rebelo, 1993).

Given an n-vector of data y, the `2-trend is obtained by minimizing

Q2(x,λ2 | y) = ‖ y − x ‖22 + λ2‖ Dx ‖22 , (1)

with respecto to x. Determining the `2-trend, x2, can be regarded as a fitting problem, where the error ‖ y−x ‖22
is minimized, subject to smoothing constraints captured by the penalty term ‖ Dx ‖22 . The constant λ2 controls
the trade-off between goodness of fit and smoothness. The larger λ2, the smoother the resulting `2-trend. It is
well-known that if λ2 → 0, then the `2-trend converges to the original series, x2 → y, whereas at the other
extreme, if λ2 → ∞, then x2 approaches the linear trend that fits the data best.

Since (1) is a quadratic function of x, its minimizer is a linear function of y, i.e. it can be expressed as
x2 = A(λ2)y, where A(λ2) depends on λ2 but does not depend on y. This linearity, well understood by
practitioners, is manifested when the data is subject to an affine transformation. More precisely, given λ2, if
x2 is the `2-trend of y, then ax2 + c is the `2-trend of ay + c, where a and c are arbitrary scalars. In fact, it is
simple to verify that Q2(ax + c,λ2 | ay + c) = a2Q2(x,λ2 | y), which is proportional to Q2(x,λ2 | y). Thus,
the objective functions of the original and transformed problems lead to the same filtering operation A(λ2).

Furthermore, the linearity of the `2-filter allows us to study its properties in the frequency domain (see, inter
alia, Kaiser and Maravall, 1999; Gómez, 2001). The `2-filter is a low-pass filter, designed to preserve variation
in the data associated to low frequencies (in the time domain, the medium-to-long term) and to attenuate or
to remove high-frequency (short-term) variation. This aspect of the filter is quite useful to calibrate the value
of λ2 and to give a precise interpretation to the estimated trend. For data sampled s times per year (s = 1,
annual; s = 4, quarterly; s = 12, monthly) and a cutoff period of T years, setting

λ2 =
1
16

sin
(
π

T s

)−4
(2)

produces a trend that can be interpreted as the component of the series that isolates the series fluctuations of
T years or more, whereas the residual series y−x2 captures variation of less than T years (see Gómez, 2001).
In the business cycles literature, where the `2-filter is extensively used, the popular choice of λ2 = 1600 for
quarterly data (s = 4) is associated with a cutoff period of T s = 39.7 quarters or T = 9.9 years, which reflects
the consensus that fluctuations in economic data beyond approximately 10 years are to be attributed to trend
developments (see King and Rebelo, 1993; Kaiser and Maravall, 1999). The same cutoff period of 9.9 years
corresponds to λ2 = 6.6 for annual data (s = 1) and λ2 ' 129000 for monthly data (s = 12). Since λ2 is an
increasing function of T , then the `2-trend is unsurprisingly smoother for larger values of T .

2.2 Data dependency of the `1-filter

Kim et. al (2009) propose an interesting variation to the Hodrick and Prescott filter. In particular, the `2-norm
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in the penalty term in (1) is replaced by an `1-norm, so the `1-trend is obtained by minimizing

Q1(x,λ1 | y) = ‖ y − x ‖22 + λ1‖ Dx ‖1 . (3)

The constant λ1 is also a smoothing parameter, and Kim et. al (2009) show that like the `2-filter, the `1-trend
converges to the original data vector, x1 → y, when λ1 → 0, whereas it converges to the least squares linear
trend as λ1 → ∞. However, unlike the `2-trend which is a continuous function of time, the `1-trend is a
piecewise function of time that connects k + 1 linear segments, where k is the number of “structural breaks”
in the series. Note that k is expected to decrease with λ1. See Yamada and Jin (2013) and Yamada and Yoon
(2014) for further discussion on the workings of this filter.

A remaining open question is how to suitably calibrate λ1. This task is complicated by the fact that, unlike the
`2-trend, the `1-trend is a nonlinear function of y, schematically x1 = B(λ1,y)y where B(λ1,y) depends on
λ1 and y, which prevents us to obtain clear-cut expressions like (2) for this filter. The main difficulty seems
to be that an adequate calibration of λ1 needs to be data-dependent.

This can be illustrated in several ways. For instance, Kim et. al (2009) show that the `1-trend becomes
invariant to λ1, and equal to the least squares linear trend, for all λ1 ≥ λmax = ‖ (D′D)−1D′y ‖∞, where
‖ z ‖∞ = maxi |zi | is the `∞-norm. That λmax depends on y points out, of course, to the data-driven nature of
the choice of λ1. On the other hand and more formally, it is not difficult to verify that if x1 is the `1-trend
of y, then ax1 + c is not the `1-trend of ay + c unless λ1 changes to reflect the transformation of the data.
Indeed, now we have Q1(ax + c,λ1 | ay + c) = a2Q1(x,λ1/a | y), which is not proportional to Q1(x,λ1 | y).
Thus, given λ1, the objective functions for the original and transformed problems imply different filtering
operations, respectively B(λ1,y) and B(λ1/a,ay + c) , B(λ1,ay + c).

2.3 Calibration of the `1-filter

When λ1 is set in an arbitrary fashion, the nonlinearity of the `1-filter hinders the interpretability of the
estimated trend. Given the analogies with the `2-filter that originally motivated the `1-filter, a sensible course
of action is to choose λ1 such that the resulting `1-trend, whose properties are obscure, resembles an `2-trend
whose properties as a low-pass filter are well understood. Put it differently, since the `2-trend with parameter
λ2 amounts to a T-year trend, where T is implicitly defined in (2), then the “closest” `1-trend might well be
interpreted as a T-year piecewise linear trend. This is the approach followed in the empirical section below.

To elaborate, let x2(λ2) denote the `2-trend that uses λ2 as a smoothing parameter, and x1(λ1) denote the
`1-trend that uses λ1 as a smoothing parameter (to avoid clutter, we leave the dependency on y implicit). In
the literature, a same fitting error criterion is used. Define

E(λ1,λ2) = ‖ y − x2(λ2) ‖22 − ‖ y − x1(λ1) ‖22 . (4)

Kim et. al (2009) determines the value of λ2 that makes E(·, ·) = 0 for a given λ1. It can be shown that
E(λ1,λ2) is a continuous function of λ2, with E(λ1,0) < 0 and limλ2→∞ E(λ1,λ2) > 0 for λ1 ∈ (0,λmax).
Thus, a value λ∗2 such that E(λ1,λ

∗
2) = 0 can always be found.

On the other hand, Yamada and Jin (2013) conduct the converse exercise and seek to determine the value of
λ1 that makes (4) equal to zero for a given λ2. Here, we have that for a positive and finite λ2, E(0,λ2) > 0 and
E(λ1,λ2) < 0 for any λ1 ≥ λmax. However, given that the number of linear segments in x1(λ1) may change
discreetly with a marginal change in λ1, E(λ1,λ2) may not be continuous in λ1. Hence, a suitable value of λ1
in this case may be, for instance, a minimizer of | E(λ1,λ2) |, which brings (4) as close to zero as possible.
Such minima always exist and satisfy λ∗1 ∈ (0,λmax).1

To sum up, the `1-trend that minimizes the above criterion given λ2 may be interpreted as a T-year piecewise

1 An alternative criterion would be to minimize the discrepancies between both trends directly D(λ1,λ2) = ‖ x2(λ2) − x1(λ1) ‖22 .
The function D(·, ·) is also continuous in λ2, with a positive finite global minimum, and it may also be discontinuous in λ1 with
local minima 0 < λ1 < λmax. In practice, the results found by minimizing either (4) or D are likely to be similar.
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linear trend. Conversely, for a given λ1, the value of λ2 found by minimizing the above criterion can be used
to determine the cutoff period T that can be associated to the piecewise linear trend.

2.4 Cycles

Following Cuddington and Jerrett (2008) and Erten and Ocampo (2013), it is of interest to explore whether
primary commodity relative prices exhibit long-lasting cycles. It is well-known that a band-pass filter, which
isolates series variation within a frequency window (i.e., the cycle), can be constructed as the difference
between two low-pass filters (see inter alia Gómez, 2001). Thus, the `1 cyclical component of y can be
estimated simply as

c = x1(λst1 ) − x1(λlt1 ) , (5)

where x1(λst1 ) and x1(λlt1 ) are, respectively, estimated “short-term” and “long-term” `1-trends: as discussed
previously, λst1 is the smoothing parameter associated to a T st-year trend, whereas λlt1 corresponds to a T lt-
year trend. Cuddington and Jerrett (2008) suggest that super cycles are associated to a series component
lasting from twenty to seventy years, whereas long-run trends should be defined as a component whose
variation lasts at least seventy years. Thus, we set T lt = 20 and T lt = 70.

A particularly appealing feature of the estimated cyclical component c is that, just like its constituent `1-
trends, it is piecewise linear. Therefore, the identification of turning points and the measurement of cycle
durations are straightforward. The leading algorithm for dating cycles is that of Bry and Boschan (1971).
Most of the algorithm deals with the noisiness of the data, and incorporates a number of smoothing operations
that are redundant for an already smooth estimate such as c. Thus, our approach to identify turning points in
c takes only a few steps from the original algorithm. In particular, if ci denotes the i-th element of c, then...

... a peak occurs in period i if ci ≥ ci−h and ci ≥ ci+h for h = 1,2, . . . ,HP , and ci > KP ,

... a trough occurs in period i if ci ≤ ci−h and ci ≤ ci+h for h = 1,2, . . . ,HT , and ci < −KT ,

... peaks and troughs alternate.

A peak is defined as a local maximum within a window of width 2HP . Also, the peak should be significant by
exceeding a predetermined threshold KP . A trough follows an analogous definition. Finally, by convention,
alternation is enforced: a peak is to be followed by a trough and vice versa. In our empirical exploration, we
set HP = HT = 20 years, and KP = KT = 10% of the standard deviation of the cycle-plus-noise component
y − x1(λlt1 ). Surely, different setups of the algorithm would render different set of turning points; yet, these
choices lead to very sensible dates that can even be visually detected.

3 Results

In this section we use the `1-filter to illustrate various issues on its calibration, to assess the PSH and to
estimate super cycles. We use two datasets well-known in the literature, accounting to a total of 49 series
of relative primary commodity prices (many of them may refer to the same relative commodity price but
measured differently). The output of our estimations is abundant. We present relevant statistics in tables for
all time series, but to save space in the figures we display results only for selected prices. The complete output
is available as an online supplement to this paper.

3.1 Extended Grilli and Yang (EGY) data

We first present some interpretations and robustness checks to Yamada and Yoon (2014). We use the same
annual data, over the period from 1900 to 2010 (n = 111 observations), for 24 primary commodities (11
foodstuff, 7 nonfood soft commodities and 6 metals). The dataset is the major extension of the popular Grilli

4



and Yang (1988) dataset documented in Pfaffenzeller et. al (2007).2 The series of interest are 100 times the
logarithm of the ratio of the prices of each commodity to a manufacturing unit value index.

Trends and the PSH

Table 1 presents the results, where the commodity prices are sorted as in Yamada and Yoon. Figure 1 shows
the evolution of selected relative prices (two food, two nonfood and two metals) and their `1-trends under
various calibrations.

The first block of Table 1 replicates the results in Yamada and Yoon, which are obtained by applying the
`1-filter to each of the 24 series after setting λ1 = 1000.3 As discussed above, even though this may look like
uniform filtering of the series, it is not. For each series, the value of λ2 that made the discrepancy (4) equal to
zero was computed (column “λ2”) and so the corresponding cutoff period (column “T”). It can be seen that
λ2 and T vary widely, with T ranging from below 40 years (for lamb, rubber, tin and silver) to more than 70
years (for cotton and zinc).

On the other hand, the figures in the column labeled “k” represents the number of slope changes in the
estimated piecewise linear trends, as reported in Yamada and Yoon. It is common to find episodes where
a single underlying change in the data produces various shifts in the piecewise linear trends. Most of them
are surely transitional (or not very significant in magnitude) and hence we also report, in braces, a cleansed
number that restricts the duration of the linear segment to be more than 5 years. Thus, k + 1 can be regarded
as the number of regimes in the sample, as estimated by the `1-filter.

Finally, the column “PSH” reports the proportion of years where the `1-trend is negatively sloped, as a
simple measure of the prevalence of the PSH. These proportions also vary considerably, averaging 0.55
across commodities.

The second block of the table shows the results of an exercise closer to uniform filtering. Yamada and Yoon’s
trends have an average cutoff period of 53 years. Thus, the 50-year `2-trend was computed for each series
(using λ2 = 4021) and the corresponding `1-trend was obtained by minimizing E. The column “λ1” presents
the resulting smoothing constants. Their variation with respect to the benchmark λ1 = 1000 mirrors the
differences between the values of λ2 implicit in Yamada and Yoon’s calculations and λ2 = 4021. As expected,
the number of structural breaks in the piecewise linear trends, k, is smaller [larger] for commodities whose
λ1 are greater [less] than 1000. Curiously, on average k is the same as in Yamada and Yoon’s baseline results.
Lacking of a better explanation, we conjecture that this equivalence is driven by the fact that both sets of
results have, on average, the same cutoff period.

The conclusions regarding the incidence of the PSH are robust. Out of 24 commodity prices, the proportions
of negatively slope trends are significantly different, between the baseline and the 50-year `1-trend, in only
5 instances: higher in the case of cocoa, jute and zinc, and lower in the case of maize and cotton. These
proportions average 0.57 across commodities.

Following the definitions for short-term and long-term trends suggested by Cuddington and Jerrett (2008),
the last two blocks of Table 1 display the results for the 20 and 70-year trends. Note that since the PSH is
concerned to long-term trends, attention should be paid to the latter. In this point, the inconvenience of the
data-dependent nature of the calibration of λ1 arises again. The only conclusion we can safely reach about
this smoothing parameter is that, compared to the 50-year trend, it should be smaller for the 20-year trend
and larger for the 70-year trend. The E criterion answers by how much.

Figure 2 presents the differences graphically. It shows the periods when the slopes of the piecewise linear

2 Publicly available at www.stephan-pfaffenzeller.com.
3 Important: There are some minor differences in implementation with respect to Yamada and Yoon (2014). First, the data

in our case is 100 times Yamada and Yoon’s. Second, we compute the `1-filter by minimizing (3), using the freely available
codes provided by Kim et. al (2009) at www.stanford.edu/∼boyd/l1_tf. In our notation, Yamada and Yoon would minimize
QYY = ‖ y − x ‖22 + 50λYY‖ Dx ‖1 instead. Thus, the value of λYY = 20 used in their paper corresponds to λ1 = 1000. Despite
these marginal differences, we were able to replicate Yamada and Yoon’s results exactly.
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trends are found to be negative for each commodity. The inspection of the 70-year trends provides support
for the PSH in all the sample period for 5 commodities (rice, sugar, palmoil, rubber and aluminium), and for
3 commodities (wheat, maize and wool) in most of the sample. On the other hand, the PSH does not hold at
all for 3 commodities (beef, lamb and timber), and barely holds in 4 cases (coffee, tin, lead and zinc). For
the remaining 9 commodities (cocoa, tea, banana, cotton, jute, hide, tobacco, copper and silver), the PSH
holds “sometimes”, in about half the sample. Relative to the results in Yamada and Yoon, the PSH statistic is
almost identical for 10 commodities, lower for 5 and higher for 9. Thus, our results would be slightly more
supportive of the PSH.

Super cycles

The notion of a super cycle can be informally tested by comparing the properties of the 20 and 70-year trends
in Table 1. In particular, it is found that the PSH statistic is significantly different in most cases (17 out of
24) which points out to an important long-lasting cyclical component in these series. These discrepancies are
apparent in Figure 2. To explore this issue more deeply, Table 2 reports the turning points associated to each
relative commodity price, identified using the algorithm described in section 2.4, whereas Figure 4 shows the
evolution of the cyclical component of selected relative prices.

Our findings are in agreement with those previously documented in the literature (e.g., Cuddington and
Jerrett, 2008; Erten and Ocampo, 2013). It is argued that the presence of super cycles in primary commodity
prices is a demand-driven phenomenon fueled by the surge of large industrial economies. In recorded
modern history, prolonged expansive phases in commodity prices have been associated to the American
industrialization (late 19th century), the post-war reconstruction of Europe and Japan (mid 20th century),
and the Chinese vigorous economic expansion (late 20th century). The median number of peaks and troughs
identified by the `1-filter is 2, which indeed suggests the presence of two cyclical waves during the sample
period (the 20th century). The median durations of a contractionary phase, i.e. the transition from peak to
trough, and of an expansionary phase, i.e. the transition from through to peak, are both about 20 years,
suggesting a cycle duration of 40 years. Moreover, most prices produce a trough surrounding 1920 (the end
of the American industrialization momentum), a peak during the 1950s (the reconstruction of Europe), and a
trough by the late 1980s (the beginning of the Chinese boost).

Surely, aggregation hides certain distinctive patterns among group of commodities. Food prices tend to have
shorter cycles (a median durantion of 30 years) than metals (50 years), with other soft commodities being an
intermediate case (25 years). Furthermore, the contractionary phase is much longer in food prices (a median
of 17 years against a median of 13 years of the expansionary phase), whereas the expansionary phase lasts
more in metals (a median duration of 25 years against 22 years of the peak to trough transition).

Figure 4 shows the proportion of commodities in each group that, in a given period, are experiencing an
expansionary phase. The cyclical behavior is apparent and so are the commonalities across commodity
groups. Erten and Ocampo (2013) conclude that the World GDP cycle is a good predictor of commodity
prices cycles, in both cases agricultural goods and metals, which explains the high correlation in these cycles.
More interestingly, however, a glance at the Figure suggests that cycles in food prices tend to lead the cycles
in metal prices. To the best of my knowledge, such phenomenon has been overlooked by the literature and
seems to be an interesting open question for future reseach.

3.2 Harvey, Kellard, Madsen and Wohar (HKMW) data

Next, we repeat the analysis but employing the much longer dataset of 25 relative commodity prices
constructed by Harvey et al. (2010).4 Again, the series of interest are 100 times the logarithm of the
commodity prices deflated with a manufacturing value-added price index. The dataset ends in 2005. For
eight commodity prices (beef, coal, gold, lamb, lead, sugar, wheat and cotton) it begins in 1650; it begins in
1670 for cotton, 1673 for tea, 1687 for rice and silver, 1709 for coffee, 1741 for tobacco, 1782 for pig iron,

4 The data are publicly available at the Review of Economics and Statistics Dataverse (http://hdl.handle.net/1902.1/15039).
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1800 for cocoa, copper and hide, 1808 for tin, 1840 for nickel, 1850 for aluminium, 1853 for zinc, 1859 for
oil, and 1900 for banana and jute. Thus, depending on data availability, the number of observations ranges
between n = 106 and n = 356.

Relative to the EGY dataset, it excludes 4 commodities (maize, palmoil, rubber and timber) but includes 5
different commodities (coal, gold, pig iron, nickel and oil). Whenever both datasets are comparable (basically,
the 20th century, from 1900 to 2005), the main differences lie on the way the deflator (a manufacture price
index) is computed, with the index in the EGY data having a lower growth rate. Thus, on a priori grounds
the Grilli and Yang data is expected to provide less supporting evidence of the PSH.

Trends and the PSH

Table 3 and Figure 6 present the results, where the commodity prices are sorted according to data availability.
Figure 5 shows the evolution of selected relative prices (two food, two nonfood and two metals) with
information for the complete 1650-2005 period, and their 20-year and 70-year `1-trends.

For the sake of comparison to the results obtained with the EGY dataset, Table 3 presents computations
for the PSH statistic using all available information, and for the subsample that corresponds to the 20th
century (in the column labeled “PSHXX”). Focusing on the 70-year trend to assess the PSH, the aggregate
conclusions reached with the 20th century data are qualitative the same as before. The average PSH statistic
is 0.57 across commodities, and the evidence for the PSH is local and not global. The inspection of the 70-
year trends provide support for the PSH for 4 commodities (wheat, wool, pig iron and aluminium) in all the
subsample period, and for 2 commodities (lamb and copper) in most of the subsample. The PSH does not
hold at all only for oil, and it barely holds for 5 commodities (beef, coal, gold, tin and jute). For the remaining
13 commodities, the PSH holds “sometimes”, in about half the sample period.

Out of the 20 common commodities in the EGY and HKMW databases, the EGY results are more supportive
of the PSH only for 2 commodities (rice and sugar), whereas the HKMW data provides more empirical
support for the PSH in 8 cases (coffee, wheat, beef, lamb, wool, copper, lead and zinc). Most of these
discrepancies are explained by differences in the sources of information and measurement methods, as well
as the aforementioned differences in the manufacture price index used as a deflator. Yet, in the case of wheat,
lead and copper a further and important source of discrepancy is that EGY dataset includes the period 2006-
2010, where these particular relative commodity prices increased substantially, thereby affecting the slope of
the `1-trends near the end of the sample. On the other hand, in the case of sugar the (negative) slope of its
`1-trend with the HKMW data is much steeper, given the influence of higher prices during the end of the 19th
century. This makes the change in slope around the 1940s to be more pronounced than with the EGY data, to
the extend that it becomes positive for about 3 decades.

The longer span of the HKMW allows us to evaluate whether the conclusions for the 20th century also hold
in a broader historical perspective. The corresponding average PSH statistic in Table 3 is 0.55, an average
that nets out the fact that, compared to all available information, the 20th century is more supportive of the
PSH in 7 cases, and less supportive in 6 cases. The first group includes a moderate but sustained decrease in
the relative prices of coal, rice and coffee from the mid 18th century to the late 19th century, and a sharp fall
in the relative prices of sugar, nickel, zinc and oil from the mid to the late 19th century. The second group
includes a sustained increase during the 19th century in the relative price of lamb, wool, pig iron and copper,
and since the mid 18th century to the late 19th century in the relative price of wheat and cotton. All these
comparisons are apparent in Figure 6.

Super cycles

The differences between the 20 and 70-year trends reported in Table 3 point out to the present of a cyclical
component in these series. Table 4 reports the turning points associated to each relative commodity price, and
Figure 7 shows the evolution of the cyclical component of selected relative prices.

As before, for the sake of comparison, we first focus on the events of the 20th century. The number of
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coincidences between the turning points identified with the EGY and HKMW datasets is remarkable. The
dates of most of these turning points are in agreement between both datasets, sometimes displaying minor
differences of few years. There are, of course, some important exceptions. Namely, a peak in the price of lead
in 1952 identified in the HKMW dataset, but dubbed as insignificant in the EGY data; a trough in the price of
silver in 1943, which is identified in 1960 in the EGY data; a peak in the price of tobacco in 1960, identified
much later, in 1984, with the EGY data; a trough in the price of aluminum in 1993 in the EGY which is
not identified in the HKMW data; and a trough in the price of banana in 1999 in the EGY data, dubbed as
insignificant in the HKMW data. Despite the differences, the similarity of the results suggest that the `1-filter
is able to produce piecewise lineal cycles that are robust to measurement errors.

As stressed by Harvey et al. (2010), the mere existence of super cycles implies that a century long data
may be too short to adequately assess the properties of such cycles. The availability of various centuries of
observations in the HKMW dataset, thus, gives us the opportunity to perform such task. When compared
the full sample figures in Table 4 with those corresponding to the 20th century a clear pattern emerges: with
very few exceptions (the cases of tin and to a lesser extent copper and wool), the duration of the cycles has
decreased significantly in the 20th century. Put it differently, the cyclical behavior in commodity markets
has accentuated relatively recently in history. These dynamics coincide with the more frequent surge of
industrial powers, since the mid 19th century. Figure 8 illustrates, through the proportion of commodity prices
experiencing an expansionary phase, how super cycles have become faster by commodity group. Unlike
Figure 4, the longer dataset allows us to depict the super cycle derived from the American industrialization
in the 19th century.

4 Concluding remarks

We have extended the methodology put forward in Yamada and Yoon (2014) to analyze the behavior of
relative primary commodity prices. Our focus has been the calibration of the `1-filter, that renders piecewise
linear trends of the underlying data. In particular, it has been argued that the evaluation of the PSH should
be made on a suitably calibrated long-term trend (in our case, associated to a cutoff period of 70 years).
Even though we did find important differences for individual prices, the aggregate qualitative conclusion of
Yamada and Yoon, that the PSH holds locally rather than globally, remains robust.

Furthermore, we have extended the analysis by estimating and characterizing super cycles in relative primary
commodity prices, using the difference of suitably calibrated `1-filters to approximate the workings of a
band-pass filter. An attractive feature of this method is that the resulting cycle is also piecewise linear, which
simplifies considerably the identification of turning points. With this approach, we find clear evidence of
super cycles in almost all series analyzed, which, in agreement with Cuddington and Jerrett (2008), Harvey
et al. (2010) and Erten and Ocampo (2013), highlights the importance of these unobserved component in
primary commodity prices. We reckon an interesting avenue for future research is to further enquire the
drivers and cross-correlations amongst these cycles.

On the other hand, a revealing finding in Yamada and Yoon (2014) that is also present in our estimations,
is that if the underlying trend of relative primary commodity prices is to be modeled as a broken linear
trend, then the number of slope changes to be considered should be, at least, moderate (see Tables 1 and
3). This has important implications for the literature on unit root tests applied to primary commodity prices.
It is well-known that such tests have low power (i.e., the propensity of favoring the presence of unit roots
in the data) against unmodeled structural breaks in the alternative hypothesis. Since most of the literature
focus on unit root tests allow for, at most, 2 structural breaks under the alternative hypothesis (see inter alia
Ghoshray, 2011), their conclusions may be misleading. Furthermore, the evidence of super cycles in these
series may also affect the power of unit root tests, which would tend to confound the inherent persistence of
a long-lasting, but stationary, cyclical phenomenon with unit root nonstationarity. Thus, it seems promising
to explore more powerful unit root procedures that may take into account the possibility of several slope
changes and super cycles, at least as applied to primary commodity prices.

8



Finally, it is worth mentioning that the piecewise linearity of the `1-trend makes it an interesting tool for future
research in various empirical economic branches, beyond the PSH. For instance, Kim et. al (2009) compute
the trend of the S&P 500 index to identify bearish and bullish episodes in the stock market, whereas Yamada
and Jin (2013) use the filter to determine the output gap in Japan. We hope our discussion on calibration to
be a useful guidance for future applications.
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Table 1. Estimation results (EGY dataset)

Yamada and Yoon 50-year trend 20-year trend 70-year trend
(λ1 = 1000) (λ2 = 4021) (λ2 = 104) (λ2 = 15426)

T λ2 k PSH λ1 k PSH λ1 k PSH λ1 k PSH

Coffee 50 3980 6 [5] 0.64 1004 6 [5] 0.64 156 19 [11] 0.52‡ 1719 4 [3] 0.30‡*
Cocoa 42 1959 7 [5] 0.47 1511 5 [5] 0.61† 168 13 [9] 0.59 2793 4 [3] 0.60
Tea 54 5635 4 [3] 0.64 848 4 [3] 0.64 108 15 [8] 0.67 1451 4 [3] 0.47‡*
Rice 52 4843 4 [4] 0.91 926 4 [4] 0.91 158 12 [9] 0.51‡ 1457 4 [2] 1.00‡*
Wheat 65 11152 5 [3] 0.74 670 7 [5] 0.74 119 11 [9] 0.57‡ 1089 4 [4] 0.73 *
Maize 59 7915 5 [4] 0.85 769 7 [5] 0.75† 115 12 [7] 0.50‡ 1180 5 [4] 0.85‡*
Sugar 50 3937 6 [5] 0.63 1008 6 [5] 0.63 314 10 [7] 0.55 1363 3 [3] 1.00‡*
Beef 43 2175 4 [3] 0.35 1751 3 [2] 0.35 181 10 [8] 0.42 3069 3 [3] 0.00‡*
Lamb 38 1342 7 [5] 0.13 1746 3 [3] 0.14 195 12 [8] 0.25‡ 2407 3 [3] 0.00‡*
Banana 66 12287 5 [3] 0.53 536 7 [5] 0.55 84 12 [9] 0.50 1108 5 [2] 0.52
Palmoil 59 7688 4 [3] 0.69 747 7 [5] 0.69 132 12 [6] 0.49‡ 1432 5 [3] 1.00‡*
Cotton 73 18216 2 [2] 0.84 649 5 [4] 0.68† 100 16 [9] 0.60 929 4 [3] 0.66
Jute 58 7260 6 [4] 0.32 809 8 [4] 0.51† 100 17 [9] 0.47 1445 3 [2] 0.44
Wool 47 3194 7 [4] 0.66 1109 6 [3] 0.65 78 13 [10] 0.64 2168 5 [3] 0.77‡*
Hide 56 6186 4 [3] 0.63 789 5 [3] 0.65 140 9 [8] 0.66 1347 4 [3] 0.62
Tobacco 54 5522 5 [3] 0.40 745 5 [3] 0.39 75 12 [9] 0.35 1688 4 [3] 0.40
Rubber 40 1596 5 [5] 0.90 1351 5 [4] 0.89 235 11 [7] 0.75‡ 2509 2 [2] 1.00‡*
Timber 64 10785 3 [3] 0.00 615 4 [4] 0.00 123 11 [8] 0.22‡ 1169 3 [3] 0.00 *
Copper 42 1938 4 [4] 0.58 1340 5 [4] 0.57 152 11 [8] 0.69‡ 2033 3 [3] 0.58 *
Aluminum 60 8595 2 [2] 1.00 644 5 [4] 1.00 134 12 [8] 0.54‡ 3021 1 [1] 1.00 *
Tin 39 1503 4 [3] 0.17 1641 4 [3] 0.18 137 15 [9] 0.35‡ 2224 4 [3] 0.30‡
Silver 38 1290 8 [4] 0.55 1613 5 [3] 0.56 240 10 [7] 0.50 2167 3 [3] 0.68‡*
Lead 41 1833 6 [4] 0.40 1421 4 [3] 0.38 131 12 [9] 0.76‡ 2373 4 [3] 0.35 *
Zinc 76 21455 2 [2] 0.28 608 6 [5] 0.51† 161 7 [7] 0.50 895 4 [3] 0.28‡*

Average 53 5 [4] 0.56 5 [4] 0.57 12 [8] 0.53* 4 [3] 0.57

Notes: The number of observations is n = 111. “k” is the number of slope changes of the `1-trend, and in braces the number of
significant changes (each linear segment lasts at least 5 years). “PSH” is the proportion of years where the `1-trend is negatively
sloped. In the first block, “λ2” is the value of λ2 that makes E(1000,λ2) = 0, whereas “T” is the corresponding cutoff period, using
equation (2). In the remaining blocks, “λ1” is the value of λ1 that minimizes |E(λ1,λ2) |.

z-scores were computed to test H0 : p = π, z = (p − π)/
√
π(1 − π)/n. “†” denotes rejection of H0 (|z | > 2) for p = PSH in the

50-year trend and π = PSH in Yamada and Yoon’s calibration; “‡” denotes rejection of H0 for p = PSH in the 20 or 70-year trend
and π = PSH in the 50-year trend; “∗” denotes rejection of H0 for p = PSH in the 70-year trend and π = PSH in the 20-year trend.
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Figure 1. Selected relative primary commodity prices and piecewise linear trends (EGY dataset)
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Notes: The (red) thin lines are 100 times the logarithm of the relative commodity price. The remaining lines are the piecewise linear
trends computed for the values of λ1 given in Table 1.
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Figure 2. Periods of negatively sloped piecewise linear trends (EGY dataset)
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Table 2. Turning points and duration of super cycles (EGY dataset)

Peaks (P) Troughs (T) Mean duration in years
NP Dates NT Dates P → P T → T T → P P → T

Coffee 3 1928, 1954, 1978 3 1940, 1968, 1991 25 26 12 13
Cocoa 2 1954, 1978 3 1940, 1965, 1992 24 26 14 13
Tea 2 1927, 1960 3 1920, 1946, 1993 33 37 11 26
Rice 2 1911, 1974 2 1934, 1987 63 53 40 18
Wheat 3 1917, 1948, 1974 3 1941, 1960, 1991 29 25 11 18
Maize 3 1917, 1947, 1974 3 1932, 1960, 1990 29 29 15 15
Sugar 3 1920, 1950, 1974 3 1932, 1967, 1986 27 27 13 14
Beef 2 (1917), 1942, 1968 3 1924, 1952, 1998 26 37 17 20
Lamb 2 1937, 1980 3 1927, 1952, 1992 43 33 19 14
Banana 3 1911, 1932, 1955 3 1920, 1944, 1999 22 40 12 22
Palmoil 2 1917, (1950), 1979 2 1931, (1961), 1990 62 59 48 13
Cotton 2 1923, 1951, (1977) 2 1938, (1969), 2002 28 64 13 33
Jute 2 1914, 1966 2 1934, 2003 52 69 32 29
Wool 2 1918, 1951 2 1932, 1999 33 67 19 31
Hide 3 1915, 1949, 1989 2 1923, 1967 37 44 24 13
Tobacco 2 1921, 1984 3 1913, 1941, 2005 63 46 26 21
Rubber 2 1910, 1956 2 1932, 2000 46 68 24 33
Timber 2 1917, 1942, (1977) 2 1909, 1932, (1967), (2001) 25 23 9 15
Copper 2 1916, 1970 2 1945, 2001 54 56 25 30
Aluminum 2 1933, 1985 3 1922, 1947, 1993 52 36 25 11
Tin 2 1912, 1981 2 1945, 1993 69 48 36 23
Silver 1 (1916), 1981 2 1960, 1992 32 21 11
Lead 1 (1951), 1979 2 1934, (1961), 2001 67 45 22
Zinc 2 1915, 1950, (1975) 2 1933, (1961), 2002 35 69 17 35

Notes: The number of observations is n = 111. NP is the number of peaks and NT is the number of troughs, identified as explained
in section 2.4. The dates in parenthesis are turning points eliminated due to insignificance or alternation.
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Figure 3. Piecewise cyclical components of selected relative primary commodity prices (EGY dataset)
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Notes: The (red) thin lines are deviations of the actual data from its 70-year trend. The (black) thick lines depict deviations of the
20-year trend from the 70-year trend, our measure of cycle. Peaks are labeled with “P” and troughs with “T”. (P) or (T) indicate
turning points that were eliminated due to insignificance or alternation.
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Figure 4. Proportion of relative primary commodity prices in expansionary phases (EGY dataset)
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Table 3. Estimation results (HKMW dataset)

20-year trend 70-year trend
(λ2 = 104) (λ2 = 15426)

n λ1 k D PSH PSHXX λ1 k D PSH PSHXX

Beef 356 116 35 [26] 13 0.34 0.48 1765 7 [6] 51 0.09* 0.30*
Coal 356 76 47 [28] 12 0.45 0.31 2010 8 [7] 45 0.50 0.24*
Gold 356 127 36 [21] 16 0.52 0.62 2368 13 [9] 36 0.38* 0.22*
Lamb 356 137 33 [22] 15 0.30 0.32 1676 9 [7] 45 0.45* 0.74*
Lead 356 112 39 [28] 12 0.48 0.45 1633 14 [10] 32 0.58* 0.62*
Sugar 356 240 22 [17] 20 0.81 0.75 2694 8 [7] 45 0.78 0.60*
Wheat 356 108 38 [27] 13 0.48 0.68 1041 11 [10] 32 0.65* 1.00*
Wool 356 119 44 [27] 13 0.62 0.71 2370 9 [7] 45 0.81* 1.00*
Cotton 336 203 32 [25] 13 0.60 0.66 3088 11 [8] 37 0.44* 0.61
Tea 333 112 40 [27] 12 0.71 0.62 2242 8 [7] 42 0.69 0.60
Rice 319 147 35 [21] 15 0.53 0.44 1443 10 [8] 35 0.81* 0.69*
Silver 319 156 26 [19] 16 0.50 0.51 3729 8 [5] 53 0.48 0.62*
Coffee 297 163 40 [24] 12 0.69 0.59 3040 9 [6] 42 0.86* 0.62
Tobacco 265 111 34 [21] 12 0.44 0.54 1248 8 [6] 38 0.25* 0.42*
PigIron 224 93 26 [18] 12 0.71 0.67 1085 8 [6] 32 0.71 1.00*
Cocoa 206 193 25 [16] 12 0.52 0.62 3327 11 [7] 26 0.55 0.58
Copper 206 105 22 [13] 15 0.51 0.54 2666 8 [5] 34 0.53 0.71*
Hide 206 116 19 [15] 13 0.46 0.49 1837 8 [6] 29 0.46 0.60*
Tin 198 115 23 [15] 12 0.22 0.21 3284 5 [4] 40 0.14* 0.26
Nickel 166 151 24 [13] 12 0.62 0.60 2171 5 [4] 33 0.63 0.42*
Aluminum 156 257 14 [9] 16 0.92 0.89 5868 5 [4] 31 1.00* 1.00*
Zinc 153 126 15 [10] 14 0.59 0.56 1315 4 [4] 31 0.72* 0.60
Oil 147 286 15 [9] 15 0.70 0.58 2848 4 [3] 37 0.22* 0.00*
Banana 106 78 13 [8] 12 0.48 0.48 1527 2 [1] 53 0.49 0.49
Jute 106 111 13 [9] 11 0.55 0.55 2769 4 [2] 35 0.36* 0.36*

Average 31 [21] 14 0.54 0.55 9 [7] 39 0.55 0.57

Notes: The number of observations for each relative prices is “n”. “k” is the number of slope changes of the `1-trend, and in braces
the number of significant changes (each linear segment lasts at least 5 years). “D” is the average duration of each linear segment,
D = n/(k + 1). “PSH” [“PSHXX”] is the proportion of years where the `1-trend is negatively sloped [since 1900]. “λ1” is the value
of λ1 that minimizes |E(λ1,λ2) |.

“∗” denotes rejection of H0 : p = π (an absolute z-score) for p = PSH in the 70-year trend and π = PSH in the 20-year trend; in this
case, rejection is taken as evidence of a super cycle in the relative price.
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Figure 5. Selected relative primary commodity prices and piecewise linear trends (HKMW dataset)
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Notes: The (red) thin lines are 100 times the logarithm of the relative commodity price. The remaining lines are the piecewise linear
trends computed for the values of λ1 given in Table 3.
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Figure 6. Periods of negatively sloped piecewise linear trends (HKMW dataset)

1650 1700 1750 1800 1850 1900 1950 2000

JuteJute
BananaBanana
OilOil
ZincZinc
AluminumAluminum
NickelNickel
TinTin
HideHide
CopperCopper
CocoaCocoa
Pig ironPig iron
TobaccoTobacco
CoffeeCoffee
SilverSilver
RiceRice
TeaTea
CottonCotton
WoolWool
WheatWheat
SugarSugar
LeadLead
LambLamb
GoldGold
CoalCoal
BeefBeef

 

 

Negatively sloped 70−year trend Negatively sloped 20−year trend Data availability

18



Ta
bl
e
4.

Tu
rn

in
g

po
in

ts
an

d
du

ra
tio

n
of

su
pe

r
cy

cl
es

(H
K

M
W

da
ta

se
t)

Pe
ak

s
(P

)
Tr

ou
gh

s
(T

)
M

ea
n

du
ra

tio
n

in
ye

ar
s

N
P

D
at

es
N
T

D
at

es
P
→

P
T
→

T
T
→

P
P
→

T

B
ee

f
3

{2
}

18
66

,1
94

4,
19

70
4

{3
}

18
51

,1
92

5,
19

53
,1

99
7

52
{2

6}
49

{3
6}

17
{1

8}
32

{1
8}

C
oa

l
3

{1
}

16
90

,1
86

5,
19

78
4

{2
}

16
81

,1
80

0,
19

69
,1

99
5

14
4

10
5

{2
6}

28
{

9}
77

{1
7}

G
ol

d
4

{3
}

17
89

,1
90

7,
19

38
,1

98
2

4
{3

}
17

99
,1

92
0,

19
68

,1
99

9
64

{3
8}

67
{4

0}
47

{1
6}

18
{2

0}
L

am
b

3
{2

}
18

66
,1

93
8,

19
80

4
{3

}
18

58
,1

92
8,

19
52

,1
99

2
57

{4
2}

45
{3

2}
15

{1
9}

29
{1

3}
L

ea
d

5
{2

}
16

71
,1

72
9,

18
66

,1
90

7,
19

52
5

{2
}

17
16

,1
81

5,
18

94
,1

93
5,

19
94

70
{4

5}
70

{5
9}

24
{1

7}
46

{3
5}

Su
ga

r
4

{3
}

18
41

,1
92

1,
19

52
,1

97
5

5
{4

}
18

12
,1

90
3,

19
33

,1
96

8,
19

86
45

{2
7}

44
{2

8}
18

{1
5}

25
{1

3}
W

he
at

7
{3

}
16

98
,1

72
7,

17
73

,1
86

8,
19

20
,1

94
9,

19
75

8
{3

}
16

55
,1

70
4,

17
45

,1
79

8,
18

95
,1

94
2,

19
67

,1
99

2
46

{2
8}

48
{2

5}
29

{
8}

19
{1

9}
W

oo
l

6
{2

}
17

03
,1

75
2,

18
36

,1
86

5,
19

24
,1

95
2

6
{2

}
17

11
,1

78
3,

18
50

,1
88

5,
19

33
,1

99
4

50
{2

8}
57

{6
1}

33
{1

9}
21

{2
6}

C
ot

to
n

5
{2

}
17

17
,1

79
1,

18
65

,1
92

4,
19

52
4

{2
}

17
55

,1
84

6,
19

01
,1

93
9

59
{2

8}
61

{3
8}

23
{1

8}
36

{1
5}

Te
a

6
{2

}
16

93
,1

71
8,

17
77

,1
82

8,
19

27
,1

95
7

6
{3

}
17

05
,1

76
1,

17
97

,1
92

0,
19

47
,1

99
2

53
{3

0}
57

{3
6}

15
{

9}
37

{2
8}

R
ic

e
5

{2
}

17
15

,1
78

8,
18

18
,1

91
2,

19
75

5
{2

}
17

29
,1

79
8,

18
30

,1
93

5,
19

89
65

{6
3}

65
{5

4}
50

{4
0}

15
{1

9}
Si

lv
er

3
{1

}
17

89
,1

83
1,

19
81

3
{2

}
18

13
,1

94
3,

19
93

96
90

{5
0}

28
{3

8}
49

{1
2}

C
off

ee
6

{3
}

17
51

,1
82

4,
18

95
,1

92
8,

19
55

,1
98

5
7

{4
}

17
41

,1
81

8,
18

54
,1

90
4,

19
41

,1
96

9,
19

92
47

{2
9}

42
{2

9}
19

{1
8}

23
{1

1}
To

ba
cc

o
6

{2
}

17
83

,1
81

1,
18

65
,1

89
2,

19
22

,1
96

0
6

{2
}

17
70

,1
80

3,
18

30
,1

87
9,

19
16

,1
94

2
35

{3
8}

34
{2

6}
16

{1
2}

19
{2

0}
Pi

gI
ro

n
3

{1
}

18
27

,1
86

7,
19

54
4

{2
}

18
00

,1
85

0,
19

29
,1

96
5

64
55

{3
6}

23
{2

5}
32

{1
1}

C
oc

oa
4

{2
}

18
13

,1
86

5,
19

55
,1

97
9

4
{3

}
18

30
,1

94
1,

19
66

,1
99

3
55

{2
4}

54
{2

6}
21

{1
4}

30
{1

3}
C

op
pe

r
3

{2
}

18
65

,1
90

7,
19

70
4

{2
}

18
19

,1
89

4,
19

46
,2

00
0

53
{6

3}
60

{5
4}

28
{2

4}
33

{3
5}

H
id

e
4

{3
}

18
65

,1
91

6,
19

51
,1

98
9

4
{2

}
18

39
,1

89
4,

19
33

,1
96

8
41

{3
7}

43
{3

5}
22

{2
0}

21
{1

7}
Ti

n
3

{2
}

18
65

,1
91

3,
19

82
3

{2
}

18
97

,1
94

6,
19

94
59

{6
9}

49
{4

8}
26

{3
6}

26
{2

3}
N

ic
ke

l
2

{1
}

18
75

,1
97

3
2

{2
}

19
47

,1
99

9
98

52
{5

2}
26

{2
6}

49
{2

6}
A

lu
m

in
um

3
{2

}
18

89
,1

93
4,

19
80

2
{1

}
18

99
,1

94
8

46
{4

6}
49

34
{3

2}
12

{1
4}

Z
in

c
3

{2
}

18
65

,1
91

6,
19

52
2

{1
}

18
84

,1
93

3
44

{3
6}

49
26

{1
9}

18
{1

7}
O

il
3

{3
}

19
20

,1
94

4,
19

82
4

{3
}

18
83

,1
93

4,
19

70
,1

99
5

31
{3

1}
37

{3
1}

20
{1

1}
18

{1
8}

B
an

an
a

3
{3

}
19

09
,1

93
3,

19
56

3
{3

}
19

20
,1

94
5,

19
75

24
{2

4}
28

{2
8}

12
{1

2}
14

{1
4}

Ju
te

2
{2

}
19

14
,1

96
9

2
{2

}
19

35
,1

99
4

55
{5

5}
59

{5
9}

34
{3

4}
23

{2
3}

N
ot
es

:N
P

is
th

e
nu

m
be

r
of

pe
ak

s
an

d
N
T

is
th

e
nu

m
be

r
of

tr
ou

gh
s,

id
en

tifi
ed

as
ex

pl
ai

ne
d

in
se

ct
io

n
2.

4.
To

sa
ve

sp
ac

e,
on

ly
si

gn
ifi

ca
nt

tu
rn

in
g

po
in

ts
ar

e
sh

ow
n.

T
he

co
m

pl
et

e
se

to
f

tu
rn

in
g

po
in

ts
(i

nc
lu

di
ng

th
os

e
el

im
in

at
ed

du
e

to
in

si
gn

ifi
ca

nc
e

or
al

te
rn

at
io

n)
ar

e
sh

ow
n

in
th

e
on

lin
e

su
pp

le
m

en
tt

o
th

is
pa

pe
r.

19



Figure 7. Piecewise cyclical components of selected relative primary commodity prices (HKMW dataset)
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Notes: The (red) thin lines are deviations of the actual data from its 70-year trend. The (black) thick lines depict deviations of the
20-year trend from the 70-year trend, our measure of cycle. Peaks are labeled with “P” and troughs with “T”. (P) or (T) indicate
turning points that were eliminated due to insignificance or alternation.
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Figure 8. Proportion of relative primary commodity prices in expansionary phases (HKMW dataset)
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Supplementary material (not intended for publication): EGY dataset

Figure. Relative commodity prices, piecewise linear trends and super cycles (EGY dataset)
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Figure (cont’). Relative commodity prices, piecewise linear trends and super cycles (EGY dataset)

1900 1920 1940 1960 1980 2000
 

 

Wheat
20−year trend
70−year trend
Y&Y (T = 65)

1900 1920 1940 1960 1980 2000

P P P

T

T

T

 

 

Wheat

1900 1920 1940 1960 1980 2000
 

 

Maize
20−year trend
70−year trend
Y&Y (T = 59)

1900 1920 1940 1960 1980 2000

P

P

P

T T

T

 

 

Maize

1900 1920 1940 1960 1980 2000
 

 

Sugar
20−year trend
70−year trend
Y&Y (T = 50)

1900 1920 1940 1960 1980 2000

P
P

P

T
T T

 

 

Sugar

1900 1920 1940 1960 1980 2000
 

 

Beef
20−year trend
70−year trend
Y&Y (T = 43)

1900 1920 1940 1960 1980 2000

(P)
P

P

T

T

T

 

 

Beef

continues next page

2



Figure (cont’). Relative commodity prices, piecewise linear trends and super cycles (EGY dataset)
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Figure (cont’). Relative commodity prices, piecewise linear trends and super cycles (EGY dataset)
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Figure (cont’). Relative commodity prices, piecewise linear trends and super cycles (EGY dataset)

1900 1920 1940 1960 1980 2000
 

 

Rubber
20−year trend
70−year trend
Y&Y (T = 40)

1900 1920 1940 1960 1980 2000

P

P

T
T

 

 

Rubber

1900 1920 1940 1960 1980 2000
 

 

Timber
20−year trend
70−year trend
Y&Y (T = 64)

1900 1920 1940 1960 1980 2000

P

P
(P)

T

T

(T) (T)

 

 

Timber

1900 1920 1940 1960 1980 2000
 

 

Copper
20−year trend
70−year trend
Y&Y (T = 42)

1900 1920 1940 1960 1980 2000

P
P

T

T

 

 

Copper

1900 1920 1940 1960 1980 2000
 

 

Aluminum
20−year trend
70−year trend
Y&Y (T = 60)

1900 1920 1940 1960 1980 2000

P

P

T

T

T

 

 

Aluminum

continues next page

5



Figure (cont’). Relative commodity prices, piecewise linear trends and super cycles (EGY dataset)
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Notes: The panels on the first column show 100 times the logarithm of the relative commodity price (as the red, thin line), together
with various estimated `1-trends, using the calibrated the values of λ1 given in Table 1. In the panels on the second column, the thin
and thick lines are, respectively, deviations of the actual data and its 20-year trend from the 70-year trend. Peaks are labeled with
“P” and troughs with “T”, with (P) or (T) indicating turning points that were eliminated due to insignificance or alternation.
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Supplementary material (not intended for publication): HKMW dataset

Figure. Relative commodity prices, piecewise linear trends and super cycles (HKMW dataset)
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Figure (cont’). Relative commodity prices, piecewise linear trends and super cycles (HKMW dataset)
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Figure (cont’). Relative commodity prices, piecewise linear trends and super cycles (HKMW dataset)
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Figure (cont’). Relative commodity prices, piecewise linear trends and super cycles (HKMW dataset)
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Figure (cont’). Relative commodity prices, piecewise linear trends and super cycles (HKMW dataset)
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Figure (cont’). Relative commodity prices, piecewise linear trends and super cycles (HKMW dataset)
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Notes: The panels on the first column show 100 times the logarithm of the relative commodity price (as the red, thin line), together
with various estimated `1-trends, using the calibrated the values of λ1 given in Table 3. In the panels on the second column, the thin
and thick lines are, respectively, deviations of the actual data and its 20-year trend from the 70-year trend. Peaks are labeled with
“P” and troughs with “T”, with (P) or (T) indicating turning points that were eliminated due to insignificance or alternation.
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