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Wavelet-based Core Inflation Measures:

Evidence from Peru

Erick Lahura and Marco Vega∗

Abstract

Under inflation targeting and other related monetary policy regimes, the iden-
tification of non-transitory inflation and forecasts about future inflation constitute
key ingredients for monetary policy decisions. In practice, central banks perform
these tasks using so-called “core inflation measures”. In this paper we construct al-
ternative core inflation measures using wavelet functions and multiresolution anal-
ysis (MRA), and then evaluate their relevance for monetary policy. The construc-
tion of wavelet-based core inflation measures (WIMs) is relatively new in the lit-
erature and their assessment has not been addressed formally, this paper being the
first attempt to perform both tasks for the case of Peru. Another main contribution
of this paper is that it proposes a VAR-based long-run criterion as an alternative
criteria for evaluating core inflation measures. Evidence from Peru shows that
WIMs are superior to official core inflation in terms of both the proposed criterion
and forecast-based criteria.

Key words : Core inflation, wavelets, forecast, structural VAR
JEL Clasification : C45, E31, E37, E52

1 Introduction

Under inflation targeting and other related monetary policy regimes, the
identification of non-transitory inflation and forecasts about future inflation
constitute key ingredients for monetary policy decisions. Thus, when central
bankers look at inflation data they try to convey which part of observed
inflation is not affected by transitory shocks, and thus could help forecast
medium-to-long term level of inflation. Alan Blinder confirms this statement
when he recalls his period at the Federal Reserve Bank (FED):
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The name of the game was distinguishing the signal from the
noise, which was often difficult. What part of each monthly ob-
servation on inflation is durable and which part is fleeting? 1

In practice, central banks perform these tasks using so-called “core in-
flation measures”; however, there is not a single and widely accepted core
inflation measure but a myriad of them. In this paper we construct alter-
native core inflation measures using wavelet functions and multiresolution
analysis (MRA), and then evaluate their relevance for monetary policy. The
construction of wavelet-based core inflation measures (WIMs) is relatively
new in the literature and their assessment has not been addressed formally,
this paper being the first attempt to perform both tasks for the case of Peru.
2 Another main contribution of this paper is that it proposes a VAR-based
long-run criterion as an alternative criteria for evaluating core inflation mea-
sures. Evidence from Peru shows that WIMs are superior to official core
inflation in terms of both the proposed criterion and forecast-based criteria.

Measures of core inflation can be classified into two broad categories:
(i) exclusion-based measures, which are obtained subtracting some specific
prices from the general index of prices, and (ii) statistical-based measures,
which are obtained using statistical methods to extract trend inflation from
headline inflation. Exclusion-based core inflation measures are are generally
preferred by monetary policy makers because (i) they are simple to construct
and thus easier to communicate to both policy makers and the public, and
(ii) they are not revised backwards unless the criteria for exclusion changes,
which occur rarely if at all.

In the particular case of Peru, Valdivia y Vallejos (2000), BCRP (2006)
and Armas et.al (2011) study a number of core inflation measures available
to the central bank. One of the measures studied in this literature is pub-
lished monthly by the Central Bank of Peru and has become the official core
inflation measure. BCRP (2006) and Armas et.al (2011) compare the offi-
cial core inflation with other core inflation indicators. The results obtained
are threefold: (i) the official core inflation behaves as well as a number of
statistical core measures, (ii) the official core inflation is better than other
exclusion-based measures and (iii) the choice of the official core inflation by
the Central Bank of Peru is reasonable given that it is an exclusion-based
method that behaves as well as statistical-based indicators.

This paper explores another set of core inflation measures that can po-
tentially improve the performance of the official core inflation. Using wavelet

1See Blinder (1997), page 157.
2Lahura (2004) is the first attempt to construct wavelet-based core inflation measures;

however, no assessment is performed.
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functions and multiresolution analysis (MRA) - which are well-known, sig-
nal processing tools - we exploit information from both the frequency and
time domain contained in headline inflation and build alternative core infla-
tion measures that capture medium-to-long term movements in inflation, i.e.
movements that occur over long periods of time and contain low frequency
information. The results show that wavelet-based core inflation measures
(WIMs) are superior in terms of a VAR-based long-run criteria, and that
these new measures can be considered as a complement to Peru’s official core
inflation as they improve short-run (up-to-six-months) forecasts.

The paper is organised as follows. Section 2 presents a brief introduction
to wavelets emphasizing its usefulness for time series analysis. Section 3
describes the data and the procedure to construct the alternative measures
of core inflation using wavelets (WIMs). The performance of WIMs and the
official core inflation is analysed in section 4, using the proposed two criteria:
(i) VAR-based long-run behavior , and (ii) ability to forecast future inflation.
Section 5 presents the main conclusions.

2 An introduction to wavelets

Wavelets are mathematical functions that have recently been used to analyze
images and time series. Although wavelet functions appear in Haar (1910), a
formal mathematical theory of wavelets started with Grossmann and Morlet
(1984) and Mallat (1989).3.

A key wavelet-based tool is the Wavelet Transform (WT), which is able
to describe features of the data that are local in time and in frequency; thus
WT has been considered superior to important frequency-domain tools usu-
ally applied to time series analysis, such as the well-known Fourier transform
(FT) - which describes the data as a function of frequency only - and the
Short-Time Fourier transform (STFT) - which is a FT applied to a slid-
ing window across time.4 As stated by Gencay et.al (2002), “the wavelet
transform intelligently adapts itself to capture features across a wide range of
frequencies and thus has the ability to capture events that are local in time.
This makes the wavelet transform and ideal tool for studying non-stationary
or transient time series”. Overall, wavelet-based analysis of a signal can be

3As stated in Misiti et.al (2010), the concept of wavelets -as it is known in the present-
was first proposed by Jean Morlet and the team at the Marseille Theoretical Physics
Center (France) while working under Alex Grossmann. The main algorithm dates back to
Mallat (1998)

4The STFT is also known as the Windowed Fourier Transform. A good reference is
Kaiser (1994).
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compared to a camera with sophisticated lenses: it provides both a panoramic
view of a city (i.e., buildings, avenues), and a detailed view5 (i.e., trees, cars,
windows).

In this paper we use one of the many applications of wavelet functions
documented in the literature,6 the so-called multiresolution analysis (MRA),
which decomposes a time series into components that contain information at
different timescales (where the scale is related to frequency). The next sub-
sections presents the key ingredients of wavelet functions and multiresolution
analysis.

2.1 Definition of wavelet

A wavelet ψ(t) is a function that satisfies two properties: (1) it integrates
to zero,

∫∞
−∞ ψ(s)ds = 0, and (2) it is square integrable,

∫∞
−∞ ψ

2(s)ds = 1.
Property (2), is usually referred to as unit energy and states that ψ(t) is not
always zero, whereas property (1) tells us that ψ(t) is such that all positive
values are canceled out by negative values. Thus, (1) and (2) describe ψ(t)
as a function that fluctuates around zero but its fluctuation, unlike sine or
cosine functions, is limited to a finite interval7. Therefore, a function ψ(t)
that satisfies (1) and (2) is referred to as a “small wave” or “wavelet”.

The most basic wavelet is the Haar wavelet (Haar, 1910), which is defined
as:

ψH(t) =


− 1√

2
, −1 < t ≤ 0

1√
2

, 0 < t ≤ 1

0 , other

It is easily seen that the function ψH satisfies properties (1) and (2) and
thus it is a wavelet. Other well-known wavelet functions are Morlet and
Mexican Hat, which are shown in Figure 1 together with the Haar wavelet.

2.2 Information content of wavelets

Wavelet functions tell us how weighted averages of a signal change from one
averaging period to the next. Following Percival and Walden (2000), let x(.)

5This analogy follows Schleicher (2010).
6See for example Gencay et.al (2002), Percival and Walden (2000).
7Property (2) implies that for any ε > 0 there exists a finite interval [a, a] such that∫ +a

−a
ψ2(s)ds > 1 − ε. Therefore, when ε is very close to ψ(s) takes non-zero values only

inside the finite interval [a, a]. See Percival and Walden (2000).
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Figure 1. Wavelet Functions

be a real-valued function of time t, usually called the “signal”. The average
value of x(.) over [a, b] is given by:

α(a, b) ≡ 1

b− a

∫ b

a

x(u)du, a < b

This function can be re-written in terms of the length of the interval
λ ≡ b− a and the center time of the interval, t = a+b

2
, as follows:

A(λ, t) ≡ α(t− λ

2
, t+

λ

2
) =

1

λ

∫ t+λ
2

t−λ
2

x(u)du

In wavelets jargon, λ is referred to as the “scale” associated with the
average. Thus, A(λ, t) is called the average value of the signal x(.) over a
scale of λ centered at time t. The change of this average from one period to
another is defined as:

D(λ, t) ≡ A(λ, t+
λ

2
)− A(λ, t− λ

2
) =

1

λ

∫ t+λ

t

x(u)du− 1

λ

∫ t

t−λ
x(u)du
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If, for example x(.) represents monthly inflation, a plot of D(3, t) against
time would tell us how quickly the average inflation over a quarter changes
from one quarter to the next; increasing the scale λ up to a year, a plot of
D(λ, t) would tell us how much the average inflation over a year changes from
one year to the next.

Given that D(λ, t) involves two adjacent non overlapping intervals, [t −
λ, t] and [t, t+ λ], the integrals can be combined into a single one:

D(λ, t) =

∫ ∞
−∞

x(u)Ψ̃λ,t(u)du

where

Ψ̃λ,t(u) ≡


− 1
λ

, t− λ < u ≤ t

1
λ

, t < u ≤ t+ λ

0 , otherwise

When λ = 1 and t = 0, D(1, 0) becomes:

D(1, 0) =

∫ ∞
−∞

x(u)Ψ̃1,0(u)du (1)

with

Ψ̃1,0(u) ≡


−1 , −1 < u ≤ 0

1 , 0 < u ≤ 1

0 , otherwise

(2)

It is straightforward to see that the Haar wavelet ΨH(.) and Ψ̃1,0(u) are
related according to Ψ̃1,0(u) =

√
2ΨH(u) Therefore, looking at differences of

averages on unit scale at time t = 0 is equivalent to

WH(1, 0) =

∫ ∞
−∞

x(u)ΨH(u)du

thus, the Haar wavelet extracts, through this formula, information about
how much difference there is between the two unit scale averages of x(.)
bordering time t = 0. In the same fashion, to extract similar information
about other scales λ and times t the Haar wavelet can be used through the
following formula:

WH
(λ,t) =

∫ ∞
−∞

x(u)ΨH
λ,t(u)du ∝ D(λ, t)
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where,

ΨH
λ,t(u) =

1√
λ
ψH
(
u− t
λ

)
=


− 1√

2λ
, t− λ < u ≤ t

1√
2λ

, t < u ≤ t+ λ

0 , otherwise

By varying λ it can be analyzed how averages of x(.) over many different
scales are changing from one period (of length λ) to the next.

2.3 Continuous and discrete wavelet transforms

The collection of variables
{
WH(λ, t) : λ > 0,−∞ < t <∞

}
is known as the

Haar Continuous Wavelet Transform (Haar CWT) of x(.). The interpretation
of WH

(λ,t) is that it is proportional to the difference between two adjacent
averages of scale λ, the first average beginning at time t and the second,
ending at time t. In general, it is possible to construct a Continuous Wavelet
Transform (CWT) using any wavelet ψ(.) that satisfies properties (1) and
(2). For every particular wavelet a different interpretation will emerge, but
in all cases the idea is the analysis of the difference between averages8.

Formally, the Continuous Wavelet Transform (CWT) can be defined as a
collection of elements W (λ, t) which are obtained as a projection of a signal
or function x(.) onto a particular wavelet function ψ(λ,t)(u):

W (λ, t) =

∫ ∞
−∞

x(u)ψλ,t(u)du (3)

A key feature of the CWT is that every coefficient is obtained dilating and
translating a particular wavelet function ψ(.), called “mother wavelet”, ac-
cording to:

ψλ,t(u) ≡ 1√
λ
ψ

(
u− t
λ

)
(4)

where λ is the dilation parameter, t is the translation parameter, and ψλ,t(u)
is referred to as a family of wavelets. Thus every member of the family ψλ,t(u)
is associated to a specific scale and temporal location, also called timescale.
The scale parameter λ allows to expand the range of a wavelet, so that when
λ is high, ψ(.) completes its movement along a wider range than when λ is

8The Mexican hat W (λ, t) yields a difference between a weighted average on unit scale
and an average of two weighted averages surrounding it.

7



low; on the other hand, the translation parameter t allows moving the range
of ψ(.). Thus, the CWT is a function of a scale λ and a location t even though
the original function only depends on time, and therefore provides a richer
description of x(.) by translating and dilating a mother wavelet function.
In particular, the process of dilating and translating a wavelet in order to
construct the CWT makes wavelets capable of capturing events that are local
in time and in frequency. Figure 2 shows examples of dilating and translating
wavelets: the first row contains wavelets associated to a lower λ compared
to the second and last row, which needs to be translated more often in order
to cover the same range.

Figure 2. Dilation and translation of a wavelet

Usually, it is necessary to impose further conditions on wavelet functions
in addition to properties (1) and (2), so that wavelets are useful in practice.
One important condition is called admissibility condition, which we refer to

as property (3). Let CΨ ≡
∫∞

0
|Ψ(f)|2
f

df , where Ψ(f) denotes the Fourier

transform of a wavelet ψ(.):

Ψ(f)≡
∫ ∞
−∞

ψ(u)e−i2πfudu

where f denotes frequency. Then, the wavelet ψ(.) is admissible if 0 < CΨ <
∞. As stated in several papers related to wavelets9, if a wavelet function
satisfies properties (1), (2) and (3), then the corresponding CWT of x(.)
preserves all the information in x(.). Furthermore, if this function or signal

9Calderón (1964), Grossmann and Morlet (1984), Mallat (1998), among others.
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x(.) is such that
∫∞
−∞ x

2(t)dt <∞, then x(.) can be recovered from its CWT
using:

x(t) =
1

CΨ

∫ ∞
0

[∫ ∞
−∞

W (λ, u)ψλ,t(u)du

]
dλ

λ2

where ∫ ∞
−∞

x2(t)dt =
1

Cψ

∫ ∞
0

[∫ ∞
−∞

W 2(λ, u)dt

]
dλ

λ2

Thus, a signal x(.) and its corresponding CWT are two equivalent represen-
tations of the same mathematical entity.

The analysis of a signal based on CWT yields a lot of information. The
leftmost graph of Figure 3 shows a plot of all the CWT coefficients for a signal
along 512 time periods, considering 32 scales; the darkness (lightness) is as-
sociated to small changes (large changes) in averages. However, it is difficult
to analyze accurately this information, especially because of the redundancy
in CWT as it is a two dimensional representation of a one dimensional signal.

Figure 3. Continuous and Discrete Wavelet Transforms
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In this context, a more simplified version of the CWT can be more infor-
mative, and it is given by the so-called Discrete Wavelet Transform (DWT).
A DWT is obtained using dyadic scales, which are defined by λ′s that take
discrete values in the form of 2j, for j = 1, 2, 3, , J. Thus, a DWT can be
considered as a subsampling of the CWT elements, W (λ, t), in which only
dyadic scales are considered and within a given dyadic scale 2j time points t
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are chosen such that they are separated by multiples10 of 2j−1. A particular
DWT that is obtained by translating and dilating a wavelet function using
t = k2−j and λ = 2−j ,which implies ψλ,t(u) = 2j/2ψ(2ju − k), is called a
critical sampling of the CWT.

In time series analysis, this DWT is still not desirable because time pe-
riods are lost at higher scales. As can be seen in Figure 3, there are only 16
coefficients associated to scale 5 (25 = 32) which are separated by 16 time
periods each (25−1 = 16). Instead, it is more useful to consider subsamples
of the CWT that preserve some of its redundancy (i.e. more coefficients). A
very useful variation of DWT is called the maximal overlap DWT (MODWT).
The MODWT can be thought of as a subsampling of the CWT at dyadic
scales, but, in contrast to the DWT, we now deal with all times t and not just
those that are multiples of 2j. In particular, the MODWT is obtained using
t = k and λ = 2−j. Retaining all possible times can lead to a more appro-
priate summary of the CWT because this can eliminate certain “alignment”
artifacts attributable to the way the DWT subsamples the CWT across time.

2.4 Multiresolution analysis (MRA).

Multiresolution analysis is the mathematical formalization of a simple idea:
to obtain successive approximations of a signal, so that each new approx-
imation is better than the last one. If {· · · , SJ , SJ−1, SJ−2, · · · } represents
a MRA, then SJ−1 is a better approximation than SJ , i.e. with a better
resolution. The differences between the various successive approximations
are called details and can be denoted as DJ ≡ SJ−1 − SJ ; thus, an ap-
proximation can be expressed as the sum of a lower-resolution approxima-
tion plus a detail, SJ−1 = DJ + SJ . In general, if S1 denotes the best
approximation (the one with the highest resolution) of a signal f(t), then
f(t) = S1 + D1. If a MRA for a signal exists, then it is possible to ob-
tain different approximations of the signal expressed as the sum of an ap-
proximation of lower resolution and a detail. In particular, the sequence
S1 = D2 + S2, S2 = D3 + S3, ..., Sj−2 = Dj−1 + Sj−1, Sj−1 = Dj + Sj. In this
way, multiresolution analysis is able to express a signal f(t) as the (orthog-
onal) sum of an approximation Sj and different details Dj :

f(t) = Sj +Dj +DJ−1 + · · ·Dj + · · ·+D1

MRA can be performed using wavelets. One of the most important results of
wavelet theory is the existence of a correspondence between multiresolution

10In general, although DWT can be motivated as a subsampling of the CWT, it can be
justified independently of it.
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analysis of a signal and a wavelet family. In particular, Daubechies (1992)
shows that if there exists a MRA for a signal in the L2(<) space11 (or square
integrable signal), then there exists an associated orthonormal wavelet basis
for L2(<), such that it allows decomposing a signal into orthonormal com-
ponents SJ and Dj given by:

Dj =
∑
t

dj,tψj,t(u) j = 1, 2, 3 · · · , J (5)

Sj =
∑
t

sj,tφJ,t(u) (6)

The details Dj are associated to scales j = 1, 2, 3, · · · , J . Formally, these
details are obtained from discrete wavelet transforms based on a family of
wavelets ψj,t(u), which is generated by translation and dilation of a mother
wavelet ψ, using as the translation factor t = k2j and λ = 2j as the dilation
factor, with j = 1, 2, 3, · · · , J. On the other hand, the approximation SJ is the
component associated to the highest scale J of the signal, which is obtained as
the projection of the signal onto a wavelet family φJ,t(u), which is generated
by the translation of a wavelet φ with scale λ = 2j using the factor t. The
wavelet function φ (given that its integral is equal to one) is called father
wavelet, and is used to capture trend components usually associated to low
frequencies. A mother wavelet is used to capture components associated to
lower scales, which correspond usually to higher frequencies. In other words,
Sj represents the trend components of the signal as long as it is associated to
longer scales, while the details Dj, Dj−1, · · · , Dj, · · · , D1 represent low scale
(high frequency) movements (deviations from Sj). In this way, a signal can
be expressed as:

f(t) =
∑
t

sj,tφJ,t(u)+
∑
t

dj,tψJ,t(u)+
∑
t

dj−1,tψJ−1,t(u)+· · ·+
∑
t

d1,tψ1,t(u)

where J denotes the wavelet scale. The decomposition of the signal f(t)
into different time scales (associated to different frequencies) is referred to
as time scale decomposition, and is represented by SJ , DJ , DJ−1, · · · , D1.
Detail 1 (scale 1) contains information of the signal that take place in the
interval of time [21, 22], which are short term movements that can be linked
to high-frequency movements. In general, detail j contains information of
the signal that corresponds to movements that take place inside the interval

11A function f belongs to the L2(<) space if the integral of |f |2 is finite. For further
details, see for example Kaiser (1994)
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[2j, 2j+1]. In this fashion, higher (lower) details or scales contain information
about long-term (short-term) movements, which are usually associated to
low-frequency (high-frequency) changes.

The MRA can also be performed using the MODWT instead of DWT (see
Gencay et.al, 2002). Two important advantages of using MODWT and not
DWT for MRA are the following: (i) the size of the sample is not restricted
to be a multiple of 2j, and (ii) the details and smooth terms are associated
with zero-phase filters12. An important implication of this association with
zero-phase filters is that any important feature observed in the details or
the smooth terms may be perfectly matched with the original time series
(Percival and Walden (2000), Gencay et.al (2002)).

3 Construction of wavelet-based inflation in-

dicators

The use of wavelets and MRA in the empirical analysis of time series requires
the choice of three important ingredients, which will determine the main fea-
tures of the analysis: (i) a specific wavelet function, which implies the choice
of a wavelet family and the length of the wavelet, (ii) a wavelet transform,
and (iii) the level J for MRA.

The choice of an appropriate wavelet function usually depends on the
nature of the time series. The Haar wavelet would be appropriate to analyze
a series with flat segments, whereas longer wavelets like sym(12) would pro-
vide better results when analyzing smooth series. However, the choice of a
particular wavelet is not so crucial if the MODWT is used, as documented
in Percival and Walden (2000), and Gencay et.al (2002).

The use of the MODWT in time series analysis has several advantages
compared to DWT. First, a main advantage is that sample size is not re-
stricted to being a power of 2; as shown in Percival and Walden (2000),
MRA based on MODWT will not be affected by the use of sample sizes that
are not powers of 2. Second, MRA will be associated with zero-phase fil-
ters (which preserve the phase properties of the series) and thus will allow
the alignment between the signal and its MRA. Third, given that MODWT
oversamples data (i.e. more information is captured) it will provide higher
resolution at lower scales. Finally, the MODWT is not affected by the inclu-
sion of new observations, except on the boundaries (as happens with most
filters); this problem is overcome by the use of standard procedures like the

12A zero-phase filter is a filter that preserves the phase properties of the series being
analysed. See Gencay et.al (2002), p. 36-47 for a discussion about zero-phase filters.
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circularly shifting method as established in Percival and Walden (2000) or
by using fewer scales as in Baqaee (2010).13

In this paper, we choose eighteen wavelets from two wavelet families,
Daubechies (db) and Symmlets (sym), and use them to perform level J = 5
MRA based on MODWT. The specific wavelets (length or vanishing mo-
ments in parenthesis) are: db(4), db(5), db(6), db(7), db(8), db(9) , db(10),
db(11), db(12), sym(4), sym(5), sym(6), sym(7), sym(8), sym(9), sym(10),
sym(11), sym(12). In this context, we construct wavelet-based core inflation
measures by filtering headline inflation using a wavelet function. In partic-
ular, we perform level J = 5 MRA of headline inflation using MODWT;
the corresponding core inflation measure is obtained by subtracting detail 1
(D1), detail 2 (D2), and detail 3 (D3), from headline inflation. The idea is
that leaving out D1, D2 and D3 (which corresponds to movements between
2 and 4 months, between 4 and 8 months, and between 8 and 16 months,
respectively) we are removing most of the transitory component of inflation,
which is a desirable property of a core inflation measure. This procedure can
be repeated using each of the 18 wavelet functions chosen, so that we end up
with 18 alternative measures of core inflation. Appendix A shows an example
of J=5 MRA of headline inflation using sym(12) wavelet and MODWT, and
a resulting wavelet-based core inflation measure.

We use the year-on-year headline inflation rate as the original signal as
Baqaee (2010) and Dowd et.al (2010), which will allow the comparison with
the core inflation measures used for Peru in Armas et.al (2011). When re-
cursive evaluation is performed, the minimum sample size used is N = 72,
which is compatible with a MRA based on 5 levels (this helps in terms of
the boundary problems because the full sample size allows the use of up to
6 levels for MRA).14

In figure 4 we depict the year-on-year headline inflation rate together with
the official core inflation. In figure 5 and 6 we show the sets of WIMs we use
in this paper. Due to sample size restrictions, all WIMs correspond to a level

13As other filtering methods, wavelet filtering suffers from boundary effects which deliver
poor smoothing at the end of the sample. Standard DWT and MODWT treat time series
as if they were circular (periodic). Given a series X, circularity means that XN−1 is useful
for X−1.

14The way we obtain wavelet-based core inflation measures is equivalent to using
“wavelet denoising” techniques using a simple linear thresholding. Furthermore, as shown
in Baqaee (2010), the best performing thresholding algorithms provides similar results to
simple linear thresholding: “Linear thresholding is where we simply discard noisy daughter
wavelets, leaving behind a smoothed trend line. This is justifiable theoretically because
we have defined our noise to be short-term fluctuations in headline inflation that do not
last into the medium term. Since the last two daughter wavelets are picking up exactly
these fluctuations in the data, we can safely discard them.”

13



Figure 4. Headline and Official Core

5 MRA15. We consider two sets of wavelet-based core inflation measures that
can sensibly be constructed with the available data: the first set leave out
details 1 to 3, and the second set discards details 1 to 4. Note that leaving
out more details softens the WIMs.

4 Assessment of core inflation measures

The literature has identified certain desirable features that a core inflation
indicator should possess. Smith (2004), Cogley (2002), Hansson et.al (2008),
among others, illustrate how to assess statistically core inflation measures
in terms of these desirable characteristics. For the case of Peru, previous
work by Armas et.al (2011) finds that the official core inflation, which is
constructed using exclusion methods,16 has good properties in terms of two
criteria suggested by the literature: (i) a good indicator of future inflation,
and (ii) same mean as headline inflation over a large sample. However, some
of the statistical measures of core inflation analysed by Armas et.al (2011)
performed better than other indicators constructed by exclusion methods.

In this paper, we try to establish whether wavelet-based core inflation

15A small sample size limits the number of level of the MRA
16The official core inflation measure is well described in Armas et.al (2011)
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Figure 5. Headline and WIMs at level 5 and up to 3 details to leave out

Daubechies Symlets

Figure 6. Headline and WIMs at level 5 and up to 4 details to leave out

Daubechies Symlets
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measures (WIMs) behave as good as the official core inflation measure and
other existing measures for Peru (both statistical and exclusion-based indi-
cators), using two sets of criteria: (i) desirable long-run properties, and (ii)
the ability to forecast future inflation.

4.1 Criterion 1: Long-run properties

This criterion relies on the dynamic behavior of core inflation measures, which
is analysed using vector autoregression (VAR) models. In particular, using
impulse response functions and variance decomposition it is possible to eval-
uate empirically to which extent a core inflation measure reflects medium-
to-long term movements inflation.17

Let P denote the price index, πt ≡ log(Pt)− log(Pt−1) the inflation rate
and πct a core inflation measure. Under the assumption that πc is stationary,
log(Pt) is non-stationary, and π is stationary, the vector moving average
(VMA) representation for π and πc in terms of fundamental innovations is
given by: [

πt
πct

]
=

[
π
πc

]
+
∞∑
i=0

[
φ11(i) φ12(i)
φ21(i) φ22(i)

] [
εTt−i
εPt−i

]
where εTt and εPt represent two disturbances affecting core inflation and the
price index. Given that both core inflation and headline inflation are assumed
to be stationary, then none of these disturbances will have permanent or long-
run effects on them. However, given that the price index is non stationary,
then these disturbances might have long-run effects on it.18

In order to identify this VAR model, we follow the strategy suggested
by Blanchard and Quah (1989) which is based on a long-run restriction. In
particular, we assume that the disturbance term εTt has no long-run effect on
the price index, which requires that

∑∞
i=0 φ11(i) = 0. The impulse response

functions (IRFs) and variance decomposition (VD) analysis from this identi-
fied VAR model can be helpful to assess alternative core inflation measures,
using the idea that a policy maker expects to observe medium-to-long run
movements rather than transitory ones when looking at core inflation indica-
tor. In terms of the identified VAR model, this is equivalent to say that: (i)
the response of core inflation to εTt shocks - measured by cumulative impulse

17Ribba (2003) is one example, but the assumptions that underlie the analysis are
different to the ones in this paper.

18If inflation were integrated of order 1, then the VAR model must be written using the
first-difference of headline and core inflation.
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response functions - is small, and (ii) the contribution of εTt shocks to fluc-
tuations in core inflation is small. Thus, we can say that core inflation A is
better than B if (i) {

∑∞
i=0 φ21(i)} |A < {

∑∞
i=0 φ21(i)} |B, i.e. A’s accumulated

response to a εTt shocks is smaller than B’s accumulated response, and (ii)
the portion of core inflation A’s fluctuations explained by εTt shocks is smaller
than the portion of core inflation B’s explained by the same shocks. Up to
now, it should be clear for the reader that, in contrast to Quah and Vahey
(1995), we do not use Blanchard and Quah (1989) approach to construct core
inflation measures but to assess them.

We estimate several structural VAR (SVAR) models, each containing both
headline inflation and a measure of core inflation. Table 1 shows the estimates
of the term

∑∞
i=0 φ̂21(i) for each SVAR model. We consider 6 exclusion-based

indicators (including the official core inflation measure), and 22 statistical
measures grouped into three sets: (i) standard measures, and (ii) wavelet-
based measures (Daubechies and Symmetric wavelets). For the case of the
official core inflation, the term

∑∞
i=0 φ̂21(i) is equal to 3.46 and it is statisti-

cally significant, meaning that a 1 percent shock to εTt will increase official
core CPI permanently by 3.7. However, all wavelet-based core inflation mea-
sures show a much lower sensibility to εTt shocks; in particular, a 1 percent
shock to εTt will increase any implicit wavelet-based core CPI by 0.02 percent
on average. Thus, wavelet-based core inflation measures are superior to the
official core inflation because they react relatively much less than the official
indicator.

Table 1. Estimated long-run effect of a transitory shock over core inflation
measures.

Exclusion Measures Statistical measures

Standard measures Daubechies wavelet Symmetric wavelet

Official Core 3.7 Coretrim50 2.0 db4 0.03 sym4 0.03
Coresa 3.7 Kernel 0.4 db5 0.02 sym5 0.02
Coresab 4.7 Mean 1.9 db6 0.02 sym6 0.02
Coresace 4.4 Perc63 2.8 db7 0.02 sym7 0.02
Coresaceh 3.2 Repond 2.7 db8 0.02 sym8 0.02

db9 0.02 sym9 0.02
db10 0.02 sym10 0.02
db11 0.02 sym11 0.02
db12 0.02 sym12 0.02

Note: All estimates are statistically different from zero at 1% level of significance.

Tables 2 and 3 show the corresponding variance decompositions for each
model, which confirms that wavelet-based core inflation measures are superior
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Table 2. Variance Decomposition of Core inflation Measures: Contribution
of Transitory Shocks(in percentage terms).

Exclusion Measures
Quarters Official Coresa Coresab Coresace Coresaceh

1 38.3 35.9 45.7 64.5 49.6
2 29.1 29.6 44.3 52.6 36.1
4 15.6 15.5 31.0 29.6 18.0
8 10.2 9.2 16.7 18.6 10.6
15 10.0 11.2 13.7 15.4 9.4
40 10.0 11.2 13.8 15.1 9.3
80 10.0 11.2 14.0 15.1 9.3

150 10.0 11.3 14.0 15.1 9.3

to both exclusion-based and statistical core inflation indicators. As it is
evident from the tables, the contribution of transitory shocks to the variation
of wavelet-based core inflation is almost null compared at all horizons to the
case of the official core inflation measure. In particular, after one quarter
38.3 percent of the variation in official core inflation is initially explained by
shocks to εTt , diminishing to 15.6 percent after one year (4 quarters), to 10.2
percent after 2 years (8 quarters) and reaching a long-run level of 10 percent,
whereas for db12 the proportion goes from 2.4 percent (after one quarter)
to 0.23 percent (after one year), reaching a long-run level of 0.3 percent.
Furthermore, all the 18 WIMs considered are such that shocks to εTt explain
less than 4 percent of their variances, less than a half of the proportion of
the official indicator that is explained by the same shocks. Following the
same reasoning, Tables 2 and 3 show that all WIMs are superior to both
exclusion-based and statistical indicators of core inflation.

It is interesting to note that -according to the proposed criterion- some
exclusion-based indicators and all statistical indicators seem superior to the
official core inflation measure. In terms of the variance decomposition analy-
sis, one exclusion-based indicator (“Coresaceh”) and all the statistical mea-
sures with the exception of one (“kernel”) are superior to the official indicator
when comparing the corresponding long-run variance. In terms of the ac-
cumulated impulse-response functions, one exclusion-based indicator (again
“Coresaceh”) and all the statistical indicators are superior to the official
indicator when comparing the long-run effects of a transitory shock.

18



Table 3. Variance Decomposition of Core inflation Measures: Contribution
of Transitory Shocks(in percentage terms).

Statistical Measures

Quarters Coretrim50 Kernel Mean38 Per63 Repond
1 19.2 6.0 16.2 24.3 8.9
2 15.1 8.9 14.2 18.7 7.5
4 8.6 13.7 8.3 9.5 7.5
8 6.6 12.8 6.6 7.2 8.7
15 7.1 17.0 7.0 7.6 8.3
40 7.2 17.2 7.0 7.6 8.3
80 7.2 17.2 7.0 7.6 8.3

150 7.2 17.2 7.0 7.6 8.3

Quarters db4 db5 db6 db7 db8 db9 db10 db11 db12

1 2.7 2.7 0.8 1.9 0.7 0.4 0.4 0.1 0.6
2 1.9 0.9 2.2 1.0 0.7 0.1 0.3 0.1 0.2
4 1.8 0.2 1.2 0.3 0.2 0.0 0.0 0.1 0.0
8 3.3 0.3 2.4 0.3 0.7 0.1 0.1 0.3 0.1
15 3.6 0.3 2.8 0.3 0.9 0.3 0.1 0.9 0.1
40 3.7 0.3 3.0 0.3 0.9 0.3 0.2 0.9 0.1
80 3.8 0.3 3.1 0.3 1.0 0.3 0.2 0.9 0.1

150 3.8 0.3 3.1 0.3 1.0 0.3 0.2 0.9 0.1

Quarters sym4 sym5 sym6 sym7 sym8 sym9 sym10 sym11 sym12

1 7.3 9.4 0.0 0.1 1.4 0.1 0.0 1.1 2.4
2 2.8 3.6 0.2 0.0 1.3 0.1 0.0 0.5 1.5
4 0.9 1.0 0.1 0.0 0.4 0.0 0.1 0.0 0.3
8 1.0 1.3 0.1 0.3 1.4 0.1 0.7 0.0 0.2
15 1.0 1.4 0.1 0.6 2.1 0.1 1.5 0.1 0.3
40 1.0 1.4 0.1 0.6 2.1 0.2 1.5 0.1 0.3
80 1.0 1.4 0.1 0.6 2.1 0.2 1.5 0.1 0.3

150 1.0 1.4 0.1 0.6 2.1 0.2 1.5 0.1 0.3

4.2 Criterion 2: Core inflation as an indicator of future
inflation

Core inflation indicators may contain systematic signals about future in-
flationary pressures. Therefore, we can think of the various core inflation
measures as forecasts of headline inflation h-periods ahead. Under this view
we can resort to the forecast evaluation literature to test if a certain group
of indicators is systematically better than the official core inflation indicator
(OCI) to forecast headline inflation over various time horizons. We measure
two statistics, the Diebold-Mariano test outlined in Diebold and Mariano
(1995) and the success ratio statistic described in Pesaran and Timmermann
(1992).
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In order to compute the Diebold-Mariano (DM henceforth) statistic, we
use the mean squared projection error

mspeh =
1

T

∑
t

(
πcpit+h − π

core
t

)2
(7)

and the absolute-valued projector error as loss criteria

mapeh =
1

T

∑
t

|πcpit+h − π
core
t | (8)

where πcpit+h is year-on-year headline inflation in period t+h, h is the forecast
horizon which takes values h = 1, 2, ...36, πcoret is any relevant year-on-year
core inflation measured at month t.

To perform this exercise we use monthly data between January 1996
and December 2010 (180 data points). We use the first 132 points as a
starting sample to produce out-of-sample forecasts and compare them to the
forecasts produced by the official core inflation. We compute the overall
DM statistic as well as its dynamic updating as we increase the sample size.
The DM statistic is calculated for both quadratic and absolute-value losses
based on equations (7) and (8). Tables B-1 to B-7 in Appendix B show the
DM statistic for various horizons for both the quadratic (MSPE) and mean
absolute-value (MAPE) losses. MSPE stands for the difference between the
mspe of the official core inflation and the mspe of the WIMs so that positive
values of MSPE mean that the WIMs perform better than the official core.
The column to the right of MSPE refers to the corresponding DM statistic.
Likewise we report the MAPE values and their DM statistic, as well as the
forecast bias of each WIM and their success ratio statistic.

We observe that up to forecast horizon h = 3, the WIMs perform better
than the official core in terms of forecast ability. For slightly longer horizons,
there is no strong evidence of superiority of WIMs over core inflation and
viceversa. It is only for horizons of more than a year that the official core
inflation becomes significantly better than the WIMs.

In terms of forecasting the direction of change, WIMs also perform better
for short horizons whereas the official core is superior for horizons of h=18
or more.

These results point to the fact that WIMS should be followed closely to
asses short-term inflationary forecasts while the official core remains a valid
measure for long horizons.

We also compute the stability of the DM statistics as calculated over a
window that covers the last two years of the data. We depict this behaviour
in figures C-5 to C-8. We can see that the Daubechies family has db4 and
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db6 as the best performers whereas the Symlet family has sym4 and sym5
as the indicators with better predictive ability.

Another way to assess a core inflation measure in terms of its ability to
forecast future inflation is proposed by Cogley (2002). This test is based on
the value of the β parameter in the following regression equation:

πcpit+h − π
cpi
t = αH + βH

(
πcpit − πcoret

)
(9)

When current headline inflation is high relative to core inflation
(
πcpit − πcoret

〉
0)

and if current core inflation represents true inflationary pressures, then we
should expect future headline inflation to revert to its core, namely πcpit+h −
πcpit < 0. Equation (9) tests the ability of any measure of core inflation
to induce future inflationary reversals at horizon h. The closer the βH pa-
rameter is to −1, the more useful core inflation is for respective horizon h.
Figures C-9 and C-10 in Appendix C provide an overview of the behaviour
of β over different horizons. We observe that the βH ’s associated with the
WIMs quickly move from cero to below −1 whereas the official core takes
time to achieve this if at all. This means that the information content of the
gap between headline inflation and the WIMs supports the idea we found
in the previous exercise: WIMs behave better than the official core inflation
over shorter horizons.

5 Conclusions

The main purpose of this paper was the construction of alternative measures
of core inflation that could improve the performance of the official core infla-
tion in Peru. Using wavelet functions and multiresolution analysis (MRA),
we constructed core inflation measures that capture medium-to-long term
movements in inflation, i.e. movements that occur over longer periods of
time and contain low frequency information. The construction of WIMs is
relatively new in the literature and their assessment has not been addressed
formally, this paper being the first attempt to perform both tasks. Another
main contribution of the paper is that it proposes a VAR-based long-run cri-
terion as an alternative criteria for evaluating core inflation measures. The
results show that wavelet-based core inflation measures (WIMs) are superior
to Peru’s official core inflation and other existing measures (both exclusion-
based and statistical indicators). In particular, compared to the official core
inflation, WIMs react much less to transitory shocks. Finally, the results
also show that WIMs could improve short-term (up-to-6-months)inflation
forecasts.
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APPENDICES

A An example of MRA of headline inflation

Figure A-1. Multiresolution Analysis of Headline Inflation using Wavelets
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B Tables with results

Table B-1. One-month horizon

Indicator MSPE DM MAPE DM Bias Success Ratio
db4 1.96 3.20 0.75 4.12 3.20 0.92 (0.00)
db5 1.96 3.23 0.75 4.16 3.23 0.90 (0.00)
db6 1.93 3.16 0.72 4.01 3.16 0.90 (0.00)
db7 1.92 3.13 0.72 3.95 3.13 0.89 (0.00)
db8 1.90 3.15 0.71 3.99 3.15 0.90 (0.00)
db9 1.88 3.11 0.67 3.80 3.11 0.89 (0.00)
db10 1.86 3.04 0.67 3.69 3.04 0.88 (0.00)
db11 1.86 3.08 0.68 3.78 3.08 0.89 (0.00)
db12 1.85 3.08 0.66 3.69 3.08 0.88 (0.00)
sym4 1.82 2.99 0.67 3.66 2.99 0.92 (0.00)
sym5 1.91 3.13 0.72 3.89 3.13 0.92 (0.00)
sym6 1.91 3.15 0.70 3.87 3.15 0.89 (0.00)
sym7 1.89 3.10 0.69 3.86 3.10 0.90 (0.00)
sym8 1.87 3.04 0.69 3.74 3.04 0.90 (0.00)
sym9 1.90 3.10 0.70 3.82 3.10 0.89 (0.00)
sym10 1.92 3.17 0.70 3.89 3.17 0.89 (0.00)
sym11 1.90 3.14 0.69 3.88 3.14 0.89 (0.00)
sym12 1.88 3.06 0.69 3.79 3.06 0.90 (0.00)
CORE -3.37 0.45 (0.88)

Table B-2. Two-month horizon

Indicator MSPE DM MAPE DM Bias Success Ratio

db4 1.89 2.77 0.59 3.02 2.77 0.86 (0.00)
db5 1.87 2.80 0.59 3.03 2.80 0.84 (0.00)
db6 1.85 2.77 0.56 2.92 2.77 0.84 (0.00)
db7 1.83 2.70 0.56 2.86 2.70 0.83 (0.00)
db8 1.81 2.70 0.55 2.85 2.70 0.84 (0.00)
db9 1.78 2.68 0.53 2.77 2.68 0.83 (0.00)
db10 1.75 2.59 0.52 2.63 2.59 0.82 (0.00)
db11 1.75 2.62 0.52 2.68 2.62 0.83 (0.00)
db12 1.74 2.63 0.52 2.68 2.63 0.82 (0.00)
sym4 1.72 2.56 0.49 2.55 2.56 0.86 (0.00)
sym5 1.81 2.67 0.54 2.79 2.67 0.86 (0.00)
sym6 1.83 2.71 0.56 2.84 2.71 0.83 (0.00)
sym7 1.81 2.68 0.54 2.75 2.68 0.84 (0.00)
sym8 1.78 2.61 0.53 2.66 2.61 0.84 (0.00)
sym9 1.80 2.65 0.54 2.74 2.65 0.83 (0.00)
sym10 1.84 2.73 0.56 2.85 2.73 0.83 (0.00)
sym11 1.83 2.72 0.55 2.82 2.72 0.83 (0.00)
sym12 1.79 2.64 0.53 2.71 2.64 0.84 (0.00)
CORE -3.03 0.46 (0.76)
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Table B-3. Three-month horizon

Indicator MSPE DM MAPE DM Bias Success Ratio

db4 1.74 2.30 0.43 2.03 2.30 0.82 (0.00)
db5 1.70 2.29 0.43 2.04 2.29 0.80 (0.00)
db6 1.69 2.27 0.43 2.02 2.27 0.80 (0.00)
db7 1.66 2.21 0.41 1.92 2.21 0.79 (0.00)
db8 1.63 2.20 0.40 1.89 2.20 0.80 (0.00)
db9 1.60 2.18 0.40 1.87 2.18 0.79 (0.00)
db10 1.57 2.10 0.38 1.78 2.10 0.78 (0.00)
db11 1.57 2.12 0.37 1.77 2.12 0.79 (0.00)
db12 1.56 2.12 0.38 1.77 2.12 0.78 (0.00)
sym4 1.57 2.10 0.36 1.76 2.10 0.82 (0.00)
sym5 1.65 2.19 0.40 1.88 2.19 0.82 (0.00)
sym6 1.66 2.19 0.41 1.91 2.19 0.79 (0.00)
sym7 1.66 2.18 0.41 1.92 2.18 0.80 (0.00)
sym8 1.63 2.15 0.39 1.82 2.15 0.80 (0.00)
sym9 1.65 2.17 0.40 1.85 2.17 0.79 (0.00)
sym10 1.67 2.21 0.42 1.94 2.21 0.79 (0.00)
sym11 1.67 2.22 0.41 1.95 2.22 0.79 (0.00)
sym12 1.65 2.17 0.40 1.88 2.17 0.80 (0.00)
CORE -2.54 0.52 (0.31)

Table B-4. Four-month horizon

Indicator MSPE DM MAPE DM Bias Success Ratio

db4 1.58 1.89 0.31 1.36 1.89 0.74 (0.00)
db5 1.54 1.85 0.30 1.30 1.85 0.73 (0.00)
db6 1.50 1.83 0.29 1.27 1.83 0.73 (0.00)
db7 1.48 1.80 0.28 1.24 1.80 0.72 (0.00)
db8 1.45 1.77 0.26 1.17 1.77 0.73 (0.00)
db9 1.40 1.72 0.25 1.13 1.72 0.72 (0.00)
db10 1.38 1.69 0.25 1.09 1.69 0.70 (0.00)
db11 1.38 1.68 0.24 1.07 1.68 0.72 (0.00)
db12 1.35 1.65 0.24 1.06 1.65 0.70 (0.00)
sym4 1.38 1.68 0.24 1.11 1.68 0.74 (0.00)
sym5 1.47 1.77 0.27 1.21 1.77 0.74 (0.00)
sym6 1.45 1.73 0.27 1.17 1.73 0.72 (0.00)
sym7 1.46 1.74 0.27 1.19 1.74 0.73 (0.00)
sym8 1.44 1.71 0.26 1.16 1.71 0.73 (0.00)
sym9 1.46 1.74 0.27 1.18 1.74 0.72 (0.00)
sym10 1.48 1.77 0.28 1.23 1.77 0.72 (0.00)
sym11 1.48 1.77 0.28 1.24 1.77 0.72 (0.00)
sym12 1.47 1.74 0.27 1.22 1.74 0.73 (0.00)
CORE -2.13 0.53 (0.17)
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Table B-5. One-year horizon

Indicator MSPE DM MAPE DM Bias Success Ratio

db4 -1.76 -1.59 -0.32 -1.34 -1.59 0.67 (0.01)
db5 -1.77 -1.62 -0.31 -1.29 -1.62 0.63 (0.06)
db6 -1.77 -1.58 -0.31 -1.30 -1.58 0.63 (0.06)
db7 -1.78 -1.63 -0.32 -1.35 -1.63 0.64 (0.03)
db8 -1.82 -1.69 -0.32 -1.36 -1.69 0.63 (0.06)
db9 -1.82 -1.68 -0.31 -1.30 -1.68 0.62 (0.10)
db10 -1.83 -1.70 -0.32 -1.36 -1.70 0.66 (0.02)
db11 -1.86 -1.74 -0.33 -1.39 -1.74 0.64 (0.03)
db12 -1.84 -1.74 -0.30 -1.30 -1.74 0.63 (0.06)
sym4 -1.89 -1.70 -0.34 -1.42 -1.70 0.66 (0.02)
sym5 -1.85 -1.68 -0.33 -1.41 -1.68 0.66 (0.02)
sym6 -1.88 -1.68 -0.33 -1.38 -1.68 0.64 (0.03)
sym7 -1.91 -1.65 -0.34 -1.41 -1.65 0.63 (0.06)
sym8 -1.89 -1.66 -0.34 -1.44 -1.66 0.66 (0.02)
sym9 -1.85 -1.65 -0.33 -1.41 -1.65 0.67 (0.01)
sym10 -1.81 -1.63 -0.32 -1.32 -1.63 0.64 (0.03)
sym11 -1.80 -1.61 -0.32 -1.32 -1.61 0.64 (0.03)
sym12 -1.84 -1.61 -0.33 -1.39 -1.61 0.66 (0.02)
CORE 1.36 0.58 (0.06)

Table B-6. Eighteen-months horizon

Indicator MSPE DM MAPE DM Bias Success Ratio

db4 -2.54 -2.11 -0.35 -1.79 -2.11 0.61 (0.27)
db5 -2.53 -2.14 -0.35 -1.80 -2.14 0.57 (0.62)
db6 -2.57 -2.14 -0.34 -1.72 -2.14 0.57 (0.62)
db7 -2.52 -2.12 -0.35 -1.80 -2.12 0.58 (0.53)
db8 -2.53 -2.17 -0.35 -1.86 -2.17 0.57 (0.62)
db9 -2.54 -2.18 -0.34 -1.80 -2.18 0.55 (0.78)
db10 -2.54 -2.16 -0.35 -1.83 -2.16 0.57 (0.62)
db11 -2.53 -2.20 -0.35 -1.88 -2.20 0.58 (0.53)
db12 -2.51 -2.19 -0.34 -1.83 -2.19 0.57 (0.62)
sym4 -2.61 -2.19 -0.36 -1.90 -2.19 0.60 (0.42)
sym5 -2.58 -2.15 -0.35 -1.81 -2.15 0.60 (0.42)
sym6 -2.63 -2.17 -0.35 -1.77 -2.17 0.58 (0.53)
sym7 -2.70 -2.17 -0.36 -1.78 -2.17 0.57 (0.62)
sym8 -2.65 -2.15 -0.35 -1.76 -2.15 0.60 (0.42)
sym9 -2.59 -2.13 -0.35 -1.78 -2.13 0.58 (0.53)
sym10 -2.56 -2.15 -0.34 -1.73 -2.15 0.58 (0.53)
sym11 -2.56 -2.14 -0.34 -1.71 -2.14 0.58 (0.53)
sym12 -2.61 -2.13 -0.34 -1.71 -2.13 0.60 (0.42)
CORE 2.01 0.66 (0.05)
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Table B-7. Two-years horizon

Indicator MSPE DM MAPE DM Bias Success Ratio

db4 -2.19 -1.63 -0.40 -1.66 -1.63 0.52 (0.98)
db5 -2.17 -1.63 -0.42 -1.71 -1.63 0.49 (0.99)
db6 -2.24 -1.68 -0.44 -1.76 -1.68 0.49 (0.99)
db7 -2.11 -1.59 -0.40 -1.63 -1.59 0.51 (0.99)
db8 -2.10 -1.60 -0.41 -1.64 -1.60 0.49 (0.99)
db9 -2.09 -1.61 -0.42 -1.70 -1.61 0.49 (0.99)
db10 -2.04 -1.56 -0.40 -1.61 -1.56 0.49 (0.99)
db11 -2.05 -1.57 -0.40 -1.59 -1.57 0.51 (0.99)
db12 -1.99 -1.55 -0.41 -1.63 -1.55 0.51 (0.99)
sym4 -2.20 -1.65 -0.40 -1.60 -1.65 0.52 (0.98)
sym5 -2.16 -1.61 -0.41 -1.64 -1.61 0.52 (0.98)
sym6 -2.22 -1.64 -0.43 -1.71 -1.64 0.51 (0.99)
sym7 -2.34 -1.71 -0.45 -1.75 -1.71 0.49 (0.99)
sym8 -2.22 -1.65 -0.41 -1.64 -1.65 0.52 (0.98)
sym9 -2.16 -1.62 -0.41 -1.63 -1.62 0.51 (0.99)
sym10 -2.14 -1.62 -0.42 -1.69 -1.62 0.51 (0.99)
sym11 -2.15 -1.63 -0.42 -1.69 -1.63 0.51 (0.99)
sym12 -2.21 -1.66 -0.42 -1.67 -1.66 0.52 (0.98)
CORE 1.76 0.67 (0.00)
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C Figures with results

Figure C-1. Impulse Response Functions to a transitory shock
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Figure C-2. Impulse Response Functions to a transitory shock
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Figure C-3. Impulse Response Functions to a transitory shock
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Figure C-4. Impulse Response Functions to a transitory shock
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Figure C-5. DM statistics over recent samples
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Figure C-6. DM statistics over recent samples
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Figure C-7. DM statistics over recent samples
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Figure C-8. DM statistics over recent samples
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Figure C-9. Estimation of β parameter: Official core against WIMs based
on Daubechies
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Figure C-10. Estimation of β parameter: Official core against WIMs based
on Symlets
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