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Abstract

I introduce habit formation into an otherwise standard overlapping generations econ-

omy with pure exchange populated by three-period-lived agents. Habits are modeled in

such a way that current consumption increases the marginal utility of future consumption.

With logarithmic utility functions, I demonstrate that habit formation may give rise to

stable monetary steady states in economies with hump-shaped endowment pro�les and

reasonably high discount factors. Intuitively, habits imply adjacent complementarity in

consumption, which in turn helps explain why income e¤ects are su¢ ciently strong in spite

of logarithmic utility. The longer horizon further strengthens the income e¤ect. Finally, I

use the bootstrap method to construct stationary sunspot equilibria for those economies

in which the steady state is locally stable.
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paper, and seminar participants at Carnegie Mellon University, the University of Pittsburgh and the Central
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1 Introduction

In textbook models of overlapping generations (OLG), sunspot equilibria have been intimately

related to backward bending o¤er curves and stable monetary steady states (see Blanchard

and Fischer [6]). Theoretically, if income e¤ects are strong enough, then aggregate savings is a

strictly decreasing function of the real return and the monetary steady state is a sink. In two-

period models equipped with power utility, such income e¤ects require arguably unrealistic

paramenter speci�cations (discount factor close to zero, income concentrated in the �rst period

of life and high curvature of utility function), which may explain the apparent reluctance of

the profession to embrace the idea of a sunspot equilibrium.

In this paper I introduce habit formation into an otherwise standard three-period-lived

OLG economy, in an attempt to overcome the legitimate concern discussed above. I show that

the steady state is stable when the discount factor is close to one-half, the endowment pro�le

is hump-shaped and the utility function is logarithmic. Then I use the forward stability of

the steady-state dynamics to construct local sunspot equilibria around the steady state, as in

Spear, Srivastava and Woodford [24].

In light of recent economic developments, the fresh perspective on stability presented in

this paper can also provide an alternative explanation, via the sunspot equilibria, for the excess

volatility that is currently observed, or for the fact that the great moderation in macroeconomic

variability in the U.S. may well be part of an on-going cyclic equilibrium variation1.

I assume that agents derive utility from the gap between current and past consumption.

In presence of subtractive habits not only the elasticity of intertemporal substitution is less

than one at any steady state, but also dated consumption goods are weak gross complements

at yields near the golden rule. I show that the set of economies in which the steady state is a

sink is relatively large when the discount factor is close to zero, but shrinks gradually as the

discount factor approaches one-half. Intuitively, when the discount factor is small enough,

the desire for youth consumption increases, which a¤ects positively the marginal utility of

consumption in the second stage and fosters adult consumption. This in turn increases the

marginal utility of consumption in the third stage and so on. The adjacent complementarity in

consumption helps explain why income e¤ects are su¢ ciently strong in spite of the logarithmic

utility.

On the other hand, the longer horizon further strengthens the income e¤ect and helps

support stable steady states for reasonable values of the discount factor. The intuition is

as follows. When the monetary steady state is stable, the equilibrium sequence of returns

converges to the golden rule via damped oscillations. Note that in the three-period case,

households demand assets when young and middle-aged. If returns are high today, then the

current middle-age agents�wealth is small, since they received low returns on their savings

1 I thank Stephen Spear for this idea.
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yesterday. Consequently, their demand for money is low. This in turn suggests that, even

if the young agents�demand for money is high because of the high returns, the aggregate

demand for savings can be low because the middle-age agents are constrained by their wealth.

Thus, because of the wealth distribution among di¤erent generations, the three-period model

possesses a mechanism for causing aggregate asset demand to decrease with the current rate

of return that is completely absent from the two-period model.

The remainder of the paper is structured as follows. Section 2 introduces the layout of the

model. Section 3 derives the competitive equilibrium. Section 4 deals with the competitive

equilibrium with sunspots. The last section concludes.

Related literature

Under the condition that the monetary steady state is stable, there can be a continuum

of convergent solutions, as well as cyclic solutions. In the former situation, I say that the

competitive equilibrium is indeterminate2. Kehoe and Levine [18] show robust examples of

indeterminacy in three-period-lived OLG economies with outside money if the discount factor

is one-half, income is hump-shaped and the intertemporal elasticity of substitution is one

fourth3.

An important property of an intertemporal elasticity of substitution of one-fourth is that

it allows goods in di¤erent periods to be gross complements at some prices. In situations

where all goods are gross substitutes, Kehoe, Levine, Mas-Colell and Woodford [19] show

that indeterminacy of the type discussed above is impossible.

Theoretical foundations for several versions of intrinsic habit formation have been recently

provided by Rozen [22]. In the OLG framework, habit formation creates room for indetermi-

nacy and is open to a �nite number of di¤erent speci�cations, with diverse implications on

asset prices. To the best of my knowledge, Lahiri and Puhakka [20] �rst incorporate subtrac-

tive habit formation in a two-period OLG model with outside money. They show that cycles

arise when the discount factor is near zero and utility is logarithmic, because generational

o¤er curves must bend backwards (however, later on in this paper I establish that the o¤er

curve does not bend backwards in their model).

The current three-period extension of Lahiri and Puhakka [20] is by no means trivial,

as several authors have demonstrated that an economy in which the life cycle goes to three

2On the other hand, Bhattacharya and Russell [5] show that in three-period OLG economies there exist
two-period cycles if the elasticity of substitution is less than one-fourth and income is positive only in the �rst
period of life, for any value of the discount factor.

3Unfortunately, it remains di¢ cult to support indeterminate equilibria in multiperiod OLG economies with
pure exchange, outside money and more complex structures. For instance, Azariadis and Lambertini [2] �nd
that indeterminacy arises in three-period economies in the presence of endogenous borrowing constraints,
logarithmic utility functions and hump-shaped endowment pro�les. However, their result is not robust to the
introduction of unproductive assets in positive net supply.
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periods or more may behave di¤erently from the well-known Diamond model (see for example

Azariadis, Lee and Ohanian [3], Kehoe and Levine [18] and Henriksen and Spear [16]).

I use in this paper the bootstrap method studied by Spear, Srivastava and Woodford [24]

to construct stationary rational expectations equilibria with sunspots, which are known to

exist in OLG models according to the Philadelphia Pholk Theorem4. In the derivation of

these equilibria, I �nd that prices depend on lagged endogenous variables, as in Henriksen

and Spear [16]. This result was �rst presented by Spear, Srivastava and Woodford [24] in

a two-period model with n > 1 goods and m > 1 agents. The similarity is not surprising,

because the three-period-lived model may also be interpreted as a two-good, two-consumer,

two-period-lived model (see Balasko, Cass and Shell [4] and Kehoe and Levine [18]). In this

paper I stick to the former speci�cation since it drastically reduces the number of parameters

that are not subject to normalization and therefore the analysis remains as simple as possible.

2 The model

I study a closed, pure-exchange economy of overlapping generations of agents who live for three

periods, labeled as young adulthood, middle age and retirement. There is one individual in

each cohort and no population growth. Time is discrete. In period 1, in addition to the young

consumer, there are two others, an old consumer who lives in period 1 only and a middle-aged

consumer who lives in periods 1 and 2. Agents are allocated exogenous amounts of the unique

consumption good in each period of life. I assume, as in Geanakoplos, Magill and Quinzii

[14], that these endowments are stationary, and the typical young agent�s lifetime endowment

is ! = (!1; !2; 0) 2 R3+, which can be interpreted as the agent�s labor income (income in
retirement is zero).

Agents are allowed to trade a costlessly storable asset called money to redistribute income

over time. In period 1, the initial old and middle-aged receive �xed money endowments �m2;1

and �m3;1, respectively, such that �m2;1 + �m3;1 = �m (young agents receive no endowments of

money). Here, as in the rest of the paper, xi;j denotes the value of x at time j when the agent

is in the i-th stage of life, for i = 1; 2; 3. The initial young will demand m1;t amounts of money

today and m2;t+1 tomorrow and, as time passes by, both adults and old agents have money

endowments in the amounts carried forward from the previous period. In this economy, the

role of government (or central bank) is to keep the aggregate supply of money �xed at �m at

all times.

Lifetime preferences for consumption of a typical young agent are speci�ed by the following

utility function:

U [c1;t; c2;t+1; c3;t+2] = ln (c1;t) + � ln (c2;t+1 � c1;t) + �2 ln (c3;t+2 � c2;t+1) (1)

4 It is also possible to construct sunspot equilibria of the Markovian variety �rst examined by Azariadis [1].
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where c = (c1;t; c2;t+1; c3;t+2) is the consumption over the life cycle, � 2 (0; 1] is the

discount factor and  2 R+ is the habit parameter. As in Lahiri and Puhakka [20], agents
derive utility from the gap between current and past consumption. Note that habits vanish

completely after one period of twenty years.

I work with subtractive habits in (1), because this representation has several advantages

over the multiplicative version also used in the literature (e.g. Bunzel [8])5. For instante, the

properties of the Hessian of U [c] remain qualitatively intact after the introduction of habits

(in particular, the negative semide�niteness of the Hessian of U [c]). However, it may be

necessary to impose certain restrictions on the Jacobian of U [c] to prevent the intertemporal

marginal rates of substitution from being negative, as subtractive habit formation may cause

consumption goods to become consumption bads. Speci�cally, the restrictions needed are as

follows:

�dc2;t+1
dc1;t

=
c�11;t � � (c2;t+1 � c1;t)

�1

� (c2;t+1 � c1;t)�1 � �2 (c3;t+2 � c2;t+1)�1
> 0

(2)

�dc3;t+2
dc2;t+1

=
(c2;t+1 � c1;t)�1 � � (c3;t+2 � c2;t+1)�1

� (c3;t+2 � c2;t+1)�1
> 0

It turns out that these two conditions can be readily disregarded in this paper, since

the homotheticity of preferences (implied by the logarithmic speci�cation) is preserved under

subtractive habits (see Bossi and Gomis-Porqueras [7] for an algebraic proof), and hence all

goods remain normal.

Let pt be the price level of the consumption good (I use the price of money as the

numeraire). If conditions (2) hold, then the agent chooses c and money holdings m =

(m1;t;m2;t+1) so as to maximize (1), subject to the sequential budget constraints:

ptc1;t � pt!1 �m1;t

pt+1c2;t+1 � pt+1!2 +m1;t �m2;t+1 (3)

pt+2c3;t+2 � m2;t+1

plus the usual non-negativity constraints on consumption and consumption services (de-

�ned as ~c2;t+1 = c2;t+1�c1;t and ~c3;t+2 = c3;t+2�c2;t+1). Note that in this modelm2;t+1 > 0,

because middle-age agents must save to �nance consumption when old, but m1;t could be ei-

ther positive (i.e. asset) or negative (i.e. liability). Finally, because U [c] is continuous and

the constrained choice set is compact, the consumer�s problem has a solution by a routine

5 In the subtractive version, the instantaneous utility function depends on the distance between current
consumption and past consumption; in the multiplicative approach, the utility is a function of the ratio of
current consumption to past consumption.
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application of the Weierstrass theorem.

3 Perfect-foresight equilibrium

In order to build the main argument of the paper, I �rst assume that agents have perfect

foresight, which is the rational expectations equilibrium requirement in a deterministic setting.

To begin with, I de�ne a competitive equilibrium for this economy with outside money. Notice

that in this de�nition the initial generations have been conveniently disregarded.

De�nition 1 A monetary competitive equilibrium in this economy is a sequence of consump-

tion bundles fc1;t; c2;t+1; c3;t+2g1t=1, money claims fm1;t;m2;t+1g1t=1 and prices fptg
1
t=1, such

that: (a) given prices, the agent born at an arbitrary period t maximizes (1) subject to (2)-(3),

plus the usual non-negativity constraints on consumption and consumption services, and (b)

the money market clears 8t, i.e. m1;t +m2;t = �m.

The �rst part of the de�nition can be handled easily by a routine application of the Kuhn-

Tucker theorem under convexity. However, a more direct approach is as follows. I guess that

both ~c2;t+1 > 0 and ~c3;t+2 > 0 hold and solve the problem using the Lagrange Theorem. From

the (necessary and su¢ cient) �rst-order conditions for an interior optimum, it can be shown

that the unique solution is given by:

c1;t [pt+2; pt+1; pt] =
pt!1 + pt+1!2�

1 + � + �2
�
(pt + pt+1 + 2pt+2)

(4)

c2;t+1 [pt+2; pt+1; pt] =

�
(1 + �)  +

�pt
pt+1 + pt+2

�
c1;t (5)

Finally, I verify that (4)-(5) satisfy both (2)-(3), as well as the non-negativity constraints

on consumption and consumption services and hence the initial guess is veri�ed.

With (4)-(5) I write the market-clearing condition as a non-linear function:

F0 [pt+2; pt+1; pt; pt�1] = 0

Because preferences are represented by a logarithmic utility function, it is possible to get

a closed-form expression for pt+2. This is the content of the following proposition:

Proposition 1 The perfect-foresight dynamics of prices are described by a third order non-
linear di¤erence equation of the form:

pt+2 = F1 [pt+1; pt; pt�1] (6)

Proof. See appendix.
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With this equation at hand, it is convenient to reformulate the original de�nition of a

competitive equilibrium as follows:

De�nition 2 A perfect-foresight equilibrium can also be viewed as a forecast function F1

which satis�es the �rst-order conditions (for optimality) and the market-clearing condition.

Now I use (6) to study the existence and uniqueness of a stationary equilibrium, in which

prices (and consumption bundles) remain constant over time. Stationary variables do not

have time subscripts. The results are summarized in the following proposition:

Proposition 2 There exists a unique steady-state price p, which satis�es m1 [p]+m2 [p]� �m =

0 for endowment ! which is a monetary equilibrium.

Proof. See appendix.

As is standard in OLG models with perfect foresight, this proposition does not imply

positive aggregate savings in equilibrium. Since the endowment pro�le attached to each

newborn is ! = (!1; !2; 0), adults must save in equilibrium to �nance consumption when

old. However, young individuals save if !1 is relatively high, otherwise they prefer to transfer

debt from one generation to another so as to smooth consumption. Therefore, I assume from

now on the following constraint on ! in order to guarantee positive aggregate savings in

equilibrium:

Assumption 1 The endowment ! is such that (2� �)!1 + (1� �)!2 > 0, where � =
(1+�)(1++2)+1+2
(1+�+�2)(1++2)(1+)

, and hence the monetary steady state with equilibrium price p > 0

has aggregate savings equal to �m > 0.

Note that the condition on ! is easily ful�lled with a low value of !1 when either the

discount factor or the habit parameter is high enough. Intuitively, if young agents become

more patient, then other things equal they are more willing to save out of their endowment.

Also, young agents save more as the habit e¤ect strengthens, other things equal, as youth

consumption puts a �oor on adult consumption.

Now I convert the third-order di¤erence equation de�ned by (6) into a �rst-order non-linear

system of the form:

qt+2 = F2 [qt+1]

where qt+1 = (pt+1; pt; pt�1)
0 and F2 is given by the equation:0B@pt+2pt+1

pt

1CA =

0B@F1 [pt+1; pt; pt�1]pt+1

pt

1CA
7



At p, the Jacobian matrix associated to this system is given by a 3x3 matrix G of the

form:

G =

0B@@F1 [p] =@pt+1 @F1 [p] =@pt @F1 [p] =@pt�1

1 0 0

0 1 0

1CA
The Hartman-Grobman theorem asserts that if p is a hyperbolic steady state of (6) and

if the Jacobian matrix G is invertible (which is indeed the case since G is full rank), then

there is a neighborhood P of p in which the �rst-order Taylor series expansion with Jacobian

matrix G is topologically equivalent to the original non-linear system.

Generically, there is no need to worry about non-hyperbolic equilibria. Given an arbitrary

system xt = F [xt�1; a] with F [�; a] 2 C1, the moduli of eigenvalues are continuous functions
of the parameters a. If the steady state of F [�; a] is non-hyperbolic at a = a0, then generically

any small change in the value of a yields a hyperbolic equilibrium close to the old one, provided

that the steady state itself does not disappear (see de la Fuente [12]).

Let #e denote the number of eigenvales of G whose moduli lie outside the unit circle.

As there are two non-predetermined variables in (6), namely pt+1 and pt, the Blanchard-

Kahn eigenvalue conditions, which are essential to characterize equilibrium dynamics, are

summarized in the following proposition:

Proposition 3 (Blanchard-Kahn) Let p be a hyperbolic steady state of (6) and let the
Jacobian matrix G be invertible. If the number of eigenvalues of G whose moduli lie outside

the unit circle is

1. equal to two, then the steady state is locally saddle-path stable, i.e. there exists a unique

competitive equilibrium (determinacy).

2. greater than two, then there is no non-explosive solution satisfying (6).

3. less than two, then the steady state is locally stable, i.e. there is an in�nity of competitive

equilibria (indeterminacy).

In the presence of habit formation, an economy is completely characterized by the follow-

ing set of parameters (!1; !2; ; �). I assume that  2 [0; 1], because the habit parameter
typically belongs to the unit interval in the calibration exercises performed by Bossi and

Gomis-Porqueras [7]. I further assume that !1 + !2 = 1, without loss of generality, since

homotheticity is preserved under subtractive habit persistence. With these simpli�cations, an

economy can be represented by a triplet (!1; ; �) 2 [0; 1]� [0; 1]� (0; 1].
In Figure 1, I depict the (!1; ) Cartesian plane for four possible values of �, and assess the

stability properties of every hyperbolic equilibrium, following the Blanchard-Kahn eigenvalue
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conditions:
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Figure 1. Stability properties of the monetary steady state for di¤erent parameter

con�gurations (!1; 1� !1; ; �) and � 2 f0:1; 0:2; 0:4; 0:5g. At every steady state,
indeterminacy occurs when there is more than one stable eigenvalue, determinacy occurs

when there is one stable eigenvalue, instability occurs when there is less than one stable

eigenvalue and, �nally, no outside money equilibrium means that Assumption 1 is not

satis�ed.

First of all, the discount factor is smaller than in representative-agent models. These

values are not implausible, however, because each period in OLG models of this sort typically

consists of 20 years. For example, Kehoe and Levine [18] and Geanakoplos, Magill and Quinzii

[14] set the discount factor to 0:5 = (0:96594)20, while Constantinides, Donaldson and Mehra

[11] assume the discount factor is 0:44.

The routine builds G at every possible coordinate pair in the grid, conditional on Assump-

tion 1 being satis�ed, and then calculates #e. Since F1 is provided explicitly in the appendix,

the exact elements of G are computed in each round.

There are four di¤erent colors in each panel of �gure one: light gray, gray, dark gray and

white. It is well known that if the original equilibrium is hyperbolic, then small changes in

 do not take the moduli of eigenvalues across the boundary of the unit circle. However, in
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Figure 1 there are small perturbations of  near certain critical values that change the nature

of the steady state. Then, bifurcations as de�ned by Guckenheimer and Holmes [15] occur at

non-hyperbolic equilibria in this model.

To begin with, notice that all economies located in the light gray area do not admit a

steady state with positive aggregate savings. In these economies, the assumption on the

endowment pro�le ! is not met. As expected, equilibria with outside money are not well

de�ned when the endowment of the young is low enough.

In the gray area, the steady state is unstable as #e = 3. However, this case may be

disregarded because instability requires that !1 > !2, which is at odds with what is observed

in reasonable calibration exercises. Conversely, the stationary economies located in the dark

gray areas are locally saddle-path stable, because #e = 2. Azariadis, Lee and Ohanian [3]

show that if habits are absent in a model like mine, then this is the only possible outcome.

The introduction of habit persistence, nevertheless, makes the steady state locally stable

in all economies located in the white areas, as #e < 2. Indeterminate equilibria are consistent

with hump-shaped endowment pro�les and reasonably high discount factors. In particular, the

economy characterized by � � (!1; !2; !3; ; �) = (0:1; 0:9; 0; 0:5; 0:4) satis�es the eigenvalue
criterion6. Thus I have proved the following proposition:

Proposition 4 For a non-empty, open set of economies satisfying Assumption 1, there exists
a neighborhood P of p such that the map F2 is a contraction on P(p)�P(p)�P(p).

Origins of indeterminacy: Interpretation

First, it is convenient to discuss the behavior of the o¤er curve. Let At = �1;t + �2;t denote

aggregate savings, where (�1;t; �2;t+1) = (m1;t=pt;m2;t+1=pt+1) represent the assets held by

the young and middle-aged at the end of periods t and t+1, respectively. Typically, the o¤er

curve uses the market-clearing condition to relate At+1 to At in the (At; At+1) plane. Now

the asset market clears when At = �m=pt or At+1 = RtAt, where Rt = pt=pt+1 is the gross rate

of return7.

Notice that the set of economies in which the steady state is a sink is relatively large

when the discount factor is close to zero, but disappears gradually as the discount factor

approaches one-half. Intuitively, when the discount factor is small enough, the desire for

youth consumption increases, which a¤ects positively the marginal utility of consumption in

the second stage and fosters adult consumption. This in turn increases the marginal utility

of consumption in the third stage and so on. Put it di¤erently, indeterminacy arises when

6This parameterization suggests that agents get 90 percent of their lifetime income when middle-aged. In
the literature, it is possible to encounter similar speci�cations, for instance, if agents earn labor income only
in the second period of their life, as in Jappelli and Pagano [17].

7As in Blanchard and Fischer [6], a monetary equilibrium could be de�ned, in principle, without direct
reference to the stock of currency.
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agents are impatient and dated consumption goods become weak gross complements at yields

near the golden rule.

The longer horizon adds an additional e¤ect on the aggregate saving function. Because of

Proposition 4, there is an open set of economies in which the o¤er curve crosses the 45-degree

line from below with a slope between �1 and 0, such that At = At+1 = A > 0. This means

that the equilibrium sequences of returns converge to the monetary steady state via damped

oscillations, as the slope of any straight line that goes through the origin equals Rt. That is,

returns switch between high and low and converge to 1.

Now suppose returns are high at t. Hence the current middle-age agents�wealth is small,

as they received low returns on their savings at t� 1. Consequently, their demand for money
is low at time t. Therefore, even if the young agents�s demand for money is high because of

the high returns, the aggregate demand for savings can be low because the middle-aged are

constrained by their wealth. Thus, with longer time horizon, there is more room to derive a

downward sloping aggregate saving function because of the wealth distribution among di¤erent

generations (a comprehensive explanation of this channel can be found in Battacharya and

Russell [5]). This mechanism is completely absent from the two-period model.

Furthermore, this new mechanism supports stable steady states for reasonable values of

the discount factor. When the discount factor is relatively high, young households save almost

all their corresponding endowment regardless of the rate of return, so their demand for savings

becomes more inelastic to the rate of return. But since the new transmission channel is strong,

indeterminacy persists for values of the discount factor of the order of one-half.

As explained above, indeterminacy means that in the neighborhood of a stable steady state

there is an in�nite number of convergent price sequences. This feature of forward stability

will be used to construct stationary sunspot equilibria in the next section.

Two-period economies

In this subsection I revisit brie�y the model originally posed in Lahiri and Puhakka [20],

inhabited by two-period-lived agents. If �t stands for the savings of the young, then in

any competitive equilibrium the asset market clears when �t+1 = Rt�t. Di¤erentiating this

expression I get @�t+1=@�t = Rt (1 + 1=�), where � = (d�=dR)(R=�). For indeterminacy to

occur, I need � < �0:5 at the steady state. As before, an economy can be represented by a
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triplet (!1; ; �) 2 [0; 1]� [0; 1]� (0; 1]. I depict in Figure 2 my results:
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Figure 2. Stability properties of the steady state, for di¤erent parameter con�gurations

(!1; 1� !1; ; �) and � 2 f0:01; 0:02; 0:04; 0:1g. At every steady state, indeterminacy occurs
when the elasticity of savings with respect to the real rate of return, evaluated at the steady

state, is less than minus one-half; determinacy occurs when the elasticity is greater than

minus one-half and, �nally, no outside money equilibrium means that a condition similar to

Assumption 1 is not satis�ed.

Unlike the case with 3 periods, now income should be heavily concentrated in the early

parts of the life cycle and the discount factor should be very low for indeterminacy to occur.

It is also evident that indeterminacy is not monotonic in the habit parameter. In order

to study this phenomenon, I derive the o¤er curve a la Cass, Okuno and Zilcha [9] when

(!1; !2; ; �) = (0:95; 0:05; �; 0:1) and  2 f0:1; 0:4; 0:7g. The o¤er curve can be represented
as �t = g(�t+1), using backward dynamics8.

8See the appendix for details on the derivation of the o¤er curve.
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Figure 3. O¤er curve associated to OLG economies with two-period-lived agents

when (!1; !2; �) = (0:95; 0:05; 0:1). The habit parameter  takes three di¤erent

values, and m stands for the value of the slope of the o¤er curve when it crosses

the 45-degree line.

As shown in Figure 3, the o¤er curve is surjective (there are two values of �t consistent

with �t+1 = 0), and hence discontinuous. The o¤er curve is negatively sloped and, most

importantly, the slope of the curve at the steady state is less than one in absolute value when

 = 0:4, but greater than one when  is either 0:1 or 0:7. Unlike the standard case with power

utility and low elasticity of substitution, the steady state is stable even though the o¤er curve

does not bend backwards (as stated incorrectly in Lahiri and Puhakka [20]). Since the higher

the habit parameter, the �atter the o¤er curve, it is clear that indeterminacy may not be

monotonic in the habit parameter.

With two periods, households only accumulate savings when young (if any). When the

discount factor is low, they desire to consume in the �rst period of life. But in presence of

habit formation, consumption when young increases the marginal utility of consumption when

old. Consequently, their initial willingness to save is high, so an increase in the rate of return

produces a non-negligible raise in the level of savings. However, the income e¤ect acts in the

opposite direction. If the net e¤ect of these two forces is strong enough to produce a decrease

in the level of savings, and the o¤er curve intersects the 45-degree line with a slope less than

one in absolute value, then there is indeterminacy.
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4 Rational expectations equilibrium

An alternative interpretation of Proposition 4 is that there is a set of economies in which

neither preferences nor endowments may help determine the actual outcome at any period t.

Unfortunately, habit formation may undermine the concept of perfect foresight equilibrium

and in this scenario, agents rely on an extrinsic random variable, or sunspot variable, which

conveys useful information for forecasting equilibrium prices.

To construct an equilibrium, following Spear, Srivastava and Woodford [24], I �rst study

the problem faced by the agent in the last period of life (i.e. backward dynamic programming).

I consider stochastic economies close to a deterministic economy satisfying Proposition 4.

Loosely speaking, I will be looking for a stationary forecast process satisfying some optimality

conditions, together with an invariant measure for the process de�ned by the forecast function,

that is, the stochastic counterpart of De�nition 2 (a formal de�nition is provided in De�nition

3).

Let c3;t+2[m2;t+1; c1;t; c2;t+1; pt+2] be the third period demand function obtained from:

max
c3;t+2

U [c1;t; c2;t+1; c3;t+2]

subject to

pt+2c3;t+2 � pt+2!3 +m2;t+1

Let �2[m2;t+1; c1;t; c2;t+1; pt+2] be the associated multiplier. Now, in the second period of

life, the agent thinks of future prices as functions of f"tg, a sequence of bounded, independent
and identically distributed random variables, with distribution given by the measure �. The

agent also knows that  is the induced probability measure of period t + 2 prices. When

middle-aged, the expected utility maximization problem is as follows:

max
c2;t+1;m2;t+1

R
U [c1;t; c2;t+1; c3;t+2[m2;t+1; c1;t; c2;t+1; pt+2]] d [pt+2]

subject to

pt+1c2;t+1 � pt+1!2 �m2;t+1 +m1;t

The �rst-order conditions for this problem are:

R
D2U [c1;t; c2;t+1; c3;t+2[m2;t+1; c1;t; c2;t+1; pt+2]] d [pt+2]� �1pt+1 = 0

�1 �
R
�2[m2;t+1; c1;t; c2;t+1; pt+2]d [pt+2] = 0 (7)

pt+1z2;t+1 +m2:t+1 �m1;t = 0

where z2;t+1 = c2;t+1 � !2. The implementation of a stationary sunspot equilibrium

makes use of the bootstrapping method, which consists of replacing the stochastic �rst order
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conditions with equations in which there is one deterministic component and one random

component. Hence I rewrite the conditions as:

D2U [c1;t; c2;t+1; c3;t+2[m2;t+1; c1;t; c2;t+1; pt+2]]� �1pt+1 � "c;t+2 = 0

�1 � �2[m2;t+1; c1;t; c2;t+1; pt+2]� "�;t+2 = 0 (8)

pt+1z2;t+1 +m2;t+1 �m1;t = 0

where "t+2 = ("c;t+2; "�;t+2) is an R2-valued random variable drawn independently each

period from a distribution � such that
R
"d� ["] = 0. Equations (8) imply (7). Now I substitute

from the budget constraint for c2;t+1 in the �rst two equations. Then I substitute from the

multiplier equations for �1 in the �rst equation. This yields:

D2U [c1;t;m2;t+1; c3;t+2[m1;t; c1;t;m2;t+1; pt+1; pt+2]]

��2[m1;t; c1;t;m2;t+1; pt+1; pt+2]pt+1 � "�;t+2pt+1 � "c;t+2 = 0 (9)

Note that with m1;t and c1;t given, pt+1 = pt+2 = p, and "t+2 = 0, this equation will have a

solutionm2. Now I wish to solve this equation for pt+2 as a function of (m1;t; c1;t;m2;t+1; pt+1; "t+2)

on a neighborhood of (m1;t; c1;t;m2; p; 0). In order to apply the implicit function theorem, I

need the derivative:

J = D23UDpt+2c3;t+2 � pt+1Dpt+2�2

to be non-zero. For generic utility functions, Spear, Srivastava and Woodford [24] argue

that this is the case.

Proposition 5 For an open and dense set of utility functions satisfying the maintained as-
sumptions, J is non-zero at (m1;t; c1;t;m2; p; 0).

Proof. See Spear, Srivastava and Woodford [24, Lemma 4.1].

Given this result, it is possible to write:

pt+2 = H1 [m1;t; c1;t;m2;t+1; pt+1; "t+2] (10)

such thatH1, D3H1 and D4H1 are all continuous functions of (m1;t; c1;t;m2;t+1; pt+1; "t+2).

As in Spear [23], I assume that the realization of "t+2 and determination of pt+2 during period

t+2 are simultaneous. Now the agent takes this forecast function as given, together with the

distribution � for " and generate demands c2;t+1 [m1;t; c1;t;m2;t+1; pt+1;�] and shadow prices

�1 [m1;t; c1;t;m2;t+1; pt+1;�].

In the �rst period of life, the agent considers the following expected utility maximization
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problem:

max
c1;t;m1;t

R
U [c1;t; c2;t+1 [m1;t; c1;t;m2;t+1; pt+1;�] ; c3;t+2[m1;t; c1;t;m2;t+1; pt+1;H1;�]] d [pt+1]

subject to

ptc1;t +m1;t � pt!1

The �rst-order conditions for this problem are:

R
D1U [c1;t; c2;t+1 [�] ; c3;t+2[�]] d [pt+1]� �0pt = 0

�0 �
R
�1 [�] d [pt+1] = 0 (11)

ptz1;t +m1;t = 0

where z1;t = c1;t�!1; (�) = (m1;t; c1;t;m2;t+1; pt+1;�) and (�) = (m1;t; c1;t;m2;t+1; pt+1;H1;�).

It is worth mentioning that H1 does not depend on "t+2, as it has been integrated out. Now

I replace the above equations by:

D1U [c1;t; c2;t+1 [�] ; c3;t+2[�]]� �0pt � "c;t+1 = 0

�0 � �1 [�]� "�;t+1 = 0 (12)

ptz1;t +m1;t = 0

Equations (12) imply (11). As before, I substitute from the budget constraint for c1;t in

the �rst two equations. Next I substitute from the multiplier equations for �0 in the �rst

equation. This yields:

D1U [m1;t; c2;t+1 [m1;t;m2;t+1; pt; pt+1;�] ; c3;t+2[m1;t;m2;t+1; pt; pt+1;H1 [m1;t;m2;t+1; pt; pt+1] ;�]]

��1 [m1;t;m2;t+1; pt; pt+1;�] pt � "�;t+1pt � "c;t+1 = 0(13)

Note that at pt = pt+1 = p, and "t+1 = 0, this equation will have a solution m1. Now I

wish to solve this equation for pt+1 as a function of (m1;t;m2;t+1; pt; "t+1) on a neighborhood

of (m1;m2; p; 0). Let �t+1 = (m1;t;m2;t+1). As in the previous case, in order to apply the

implicit function theorem I need the derivative:

J 0 = D12UDpt+1c2;t+1 +D13U
�
Dpt+1c3;t+2 +Dpt+2c3;t+2Dpt+1H1

�
�t+1; pt; pt+1

��
� ptDpt+1�1

to be non-zero. Hence by an argument similar to that used above, it can be shown that J 0

is also non-zero generically. Then this equation can be solved for pt+1 on a neighborhood of

the non-stochastic steady state values p, �, and "t+1 = 0. Let the one-period-ahead forecast
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be given by:

pt+1 = H10
�
�t+1; pt; "t+1

�
(14)

When I plug (14) into (10), and incorporate the relevant budget constraint, I get the

two-period-ahead forecast, which is the relevant forecast function:

pt+2 = H2
�
�t+1; pt; "t+1; "t+2

�
(15)

Given this result, there exist neighborhoods M1 of �, P0, P1 of p, and N1 of 0 such that

(15) has a unique solution pt+2 2 P0 for each choice of �t+1 2M1, pt 2 P1, as well as "t+1 and
"t+2 2 N1. Now let agents take this forecast function as given, together with the distribution

� for " and generate demands c1;t
�
�t+1; pt;�

�
and shadow prices �0

�
�t+1; pt;�

�
.

Finally, since m1;t = �ptz1;t and m2;t+1 = �pt+1z2;t+1� ptz1;t, the market-clearing condi-
tion at t+ 1 reads:

m1;t+1

�
�t+1; �t+2; pt; "t+1; "t+2

�
+m2;t+1

�
�t+1; pt; "t+1; "t+2

�
� �m = 0 (16)

Hence by an argument similar to that used before to establish that J and J 0 are gener-

ically non-zero, it can be shown that this equation can be solved generically for �t+2 on a

neighborhood of the non-stochastic steady state values p, �, " = 0 and � = ��. Formally I

obtain the following result:

Proposition 6 For an open and dense set of utility functions, equations (9), (13) and (16)
can be solved for �t+2. Speci�cally for any function in that set, there exist neighborhoods

P2 � P1 of p, M0 and M2 � M1 of �, and N2 � N1 of 0, and an � > 0, such that (9),

(13) and (16) have a unique solution �t+2 2M0, for each choice of pt 2 P2, "t+1, "t+2 2 N2,

�t+1 2M2, and for any choice of � such that k"k < � with probability one. Furthermore, the

solution

�t+2 = G1
�
�t+1; pt; "t+1; "t+2

�
is such that G1, D1G1 and D2G1 are all continuous functions of �t+1, p, "t+1 and "t+2.

Proof. See Spear, Srivastava and Woodford [24, Lemma 4.2].

In order to complete the characterization of the equilibrium, I consider again the forecast

and allocations functions. Clearly there are lagged allocations (allocation state variables) in

the right hand side of both functions:

pt+2 = H2
�
�t+1; pt; "t+1; "t+2

�
�t+2 = G1

�
�t+1; pt; "t+1; "t+2

�
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In what follows, I will show that it is convenient to express the forecast function solely in

terms of lagged prices and random variables. As in Spear, Srivastava and Woodford [24], I

invert the forecast function and solve for a function:

�t+1 = H3 [pt+2; pt; "t+1; "t+2]

When I substitute this expression into the expression for �t+2 (the allocation function) I

get:

�t+2 = G2 [pt+2; pt; "t+1; "t+2]

Lagging this one period gives:

�t+1 = G2 [pt+1; pt�1; "t; "t+1]

Substituting for �t+1 in the forecast function H2 then yields:

pt+2 = H4 [pt+1; pt; pt�1; "t; "t+1; "t+2] (17)

which is a continuous function in the �rst �ve arguments and a measurable function of

the �fth argument. Proposition 4 implies that in the case of "t = "t+1 = "t+2 = 0, � = ��

(the measure that puts all mass on "t = "t+1 = "t+2 = 0), the non-stochastic dynamics are

contracting in a neighborhood of the steady state p. By continuity, H4 is a contraction for "t,

"t+1 and "t+2 su¢ ciently close to zero and � su¢ ciently close to ��.

At this point it is useful to de�ne the rational expectations equilibrium.

De�nition 3 A stationary rational expectations equilibrium is a pair (H4; �) such that H4 is

a stationary forecast process satisfying the stochastic �rst-order conditions and the market-

clearing condition and � is an invariant measure for the Markov process de�ned by H4. The

rational expectations equilibrium is non-trivially stochastic if the function H4 depends non-

trivially on the random variable "t+2.

As before, the third-order di¤erence equation de�ned by H4 is converted into a �rst-order

system of the form:

0B@pt+2pt+1

pt

1CA =

0B@H4 [pt+1; pt; pt�1; "t; "t+1; "t+2]pt+1

pt

1CA = Ĥ4 [pt+1; pt; pt�1; "t; "t+1; "t+2]

or, alternatively, qt+2 = Ĥ4 [qt+1; "t; "t+1; "t+2], where qt+1 = (pt+1; pt; pt�1)
0. Then, Ĥ4

together with the measure � describe a stationary Markov process for (qt+1; "t; "t+1) with
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support P3(p)3 �N3(0)
2, with P3 � P2 \ P0 and N3 � N2. Since Ĥ4 is a contraction, it

may well be assumed that this support is compact. Now it is left to show that there is an

invariant measure � for this process.

As in Spear, Srivastava andWoodford [24], I consider any continuous functionQ [qt+2; "t+1; "t+2]

and de�ne the transition probability operator T associated with the measure on �:

(TQ) [qt+1; "t; "t+1] =

Z
N3(0)

Q
h
Ĥ4 [qt+1; "t; "t+1; "t+2] ; "t+1; "t+2

i
d� ["t+2]

As Ĥ4 is continuous in its �rst three arguments, the transition operator T (which is applied

on the function Q) plainly takes continuous functions into continuous functions. Hence, by

Rosenblatt [21, Theorem IV.3.1], there exists an invariant measure for the stationary Markov

process de�ned by Ĥ4 and the measure �.

It turns out that the pair (H4; �) stands for a rational expectations equilibrium. Since the

random variable "t+2 is non-degenerate by assumption, the agents�forecasts are non-trivially

stochastic. Thus I have proved the following proposition:

Proposition 7 Under Proposition 4, there exists a non-empty, open set of economies exhibit-
ing non-trivial stationary rational expectations equilibria (H4; �) in state variables (pt+1; pt; pt�1; "t; "t+1)

for � su¢ ciently close to ��.

Therefore, in principle there is no causal connection between the sunspots and prices,

except through agents�forecasts, an argument originally put forward by Spear [23].

Two-period economies revisited

In the general multiple commodity model or in three-period-lived models, the allocation vari-

ables cannot be eliminated through the budget constraints and hence play a non-trivial role in

determining the form of the equilibrium. However, in two-period-lived models it is possible to

eliminate the allocations from the equilibrium price function via the money market clearing

and the two budget constraints.

The proof is straightforward. First of all, the money market clearing condition requires

mt = �m for all t, and thus the sequential budget constraints may be rewritten as:

c1;t � !1 �
�m

pt
, and c2;t+1 � !2 +

�m

pt+1

The �rst-order condition which de�ne the equilibrium in this model then takes the form:

� 1
pt
D1U

�
!1 �

�m

pt
; !2 +

�m

pt+1

�
+

1

pt+1
D2U

�
!1 �

�m

pt
; !2 +

�m

pt+1

�
� "t+1 = 0

19



This equation can be readily solved for pt+1 = F (pt; "t+1). Under conditions similar to

Proposition 4, the forecast function is consistent with stationary sunspot equilibria.

5 Concluding remarks

I show that indeterminacy may arise in three-period-lived OLG economies with reasonable

values of the discount factor and hump-shaped endowment pro�les even if the utility function

is logarithmic, provided that subtractive habit formation is allowed for. When the steady

state becomes locally stable, it is possible to construct sunspot equilibria.

It would be straightforward to assume that !3 is positive (but relatively small), in which

case the results presented in this paper would hold by means of a continuity argument. Fur-

thermore, if I relied on more general power utility functions beyond the logarithmic case, I

would obtain local stability with a higher elasticity of substitution than what is needed in

traditional models (see Grandmont [13]). A larger number of periods would just reinforce the

income e¤ect.

The approach presented in this paper complements the huge literature on general equilib-

rium that argues that indeterminacy helps arbitrary self-ful�lling beliefs become a source of

volatility, even when preferences or endowments are not random. Even though the literature

on extrinsic uncertainty has always highlighted the role of sunspot variables as coordination

devices, the theory developed here is unable to identify the way in which market participants

coordinate their expectations and consequent decisions. In other settings, however, it is possi-

ble to grasp such relationship, for example, Du¤y and Fisher [10] present direct evidence from

a controlled experiment on how buyers and sellers in a double action use a sunspot variable

as a coordination mechanism. I believe this is a promising direction of research.
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Appendix

A Proofs

Proof of proposition 1. Note thatm1;t [pt+2; pt+1; pt] = pt!1�ptc1;t, andm2;t [pt+1; pt; pt�1] =

pt�1!1 + pt!2 � (pt�1c1;t�1 + ptc2;t), where c1;t and c2;t+1 are de�ned as (4) and (5), respec-
tively.

The market-clearing condition can be written as:

m1;t [pt+2; pt+1; pt] = �m�m2;t [pt+1; pt; pt�1]

pt!1 �
pt (pt!1 + pt+1!2)�

1 + � + �2
�
(pt + pt+1 + 2pt+2)

= �m�m2;t [pt+1; pt; pt�1]

Or, alternatively:

pt+2 =
1

2

�
�pt (pt!1 + pt+1!2)

pt!1 +m2;t [pt+1; pt; pt�1]� �m
� (pt + pt+1)

�

where � =
�
1 + � + �2

��1
. Clearly, this last expression can be written as pt+2 = F1 [pt+1; pt; pt�1].

Proof of proposition 2. At any stationary equilibrium, pt = p. Then,

m1 [p] = p (!1 � c1)

where c1 = (!1 + !2)
��
1 + � + �2

� �
1 +  + 2

���1
. In the same fashion,

m2 [p] = p ((!1 + !2)� (1 + (1 + �) + �= (1 + )) c1)

The market clearing condition is m1 [p] +m2 [p] = �m, or:

p (!1 (2� �) + !2 (1� �)) = �m

where � =
(1+�)(1++2)+1+2
(1+�+�2)(1++2)(1+)

.

Solving out for p yields:

p = (!1 (2� �) + !2 (1� �))�1 �m

Clearly, the steady-state price is positive if either �m > 0 and (!1 (2� �) + !2 (1� �)) > 0,
or �m < 0 and (!1 (2� �) + !2 (1� �)) < 0.
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B Derivation of o¤er curve

Let Rt = pt=pt+1. The excess demand function when old is:

�t+1 = c2;t+1 � !2
= !1Rt � c1;tRt

= !1Rt �
!1R

2
t + !2Rt

(1 + �) (Rt + )

=
Rt [!1 � !2 + �!1 (Rt + )]

(1 + �) (Rt + )

where the second and third lines use �t+1 = Rt�t and c1;t = (!1Rt + !2) (1 + �)
�1 (Rt + )

�1,

respectively. The last expression can be written as:

0 = �2R
2
t + �1Rt + �0

where �2 = �!1, �1 = (1 + �) !1 � !2 � (1 + �)�t+1, and �0 = � (1 + �) �t+1. From
this quadratic form I get:

~R =
��1 �

�
�21 � 4�2�0

� 1
2

2�2

By Descarte�s rule of signs, there is only one positive root ~R+ (because �2 > 0, �0 < 0

and �1 6= 0). Finally, the level of savings is given by:

�t =
!1

h
 + �

�
~R+ + 

�i
� !2

(1 + �)
�
~R+ + 

�
The o¤er curve is the locus of points (�t; �t+1).
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