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Abstract

This paper extends the results of Elliott and Jansson (2003) to the con-
text of structural change models. We show that when testing for a unit
root against stationarity with an unknown structural break, substan-
tial power gains can be achieved by incorporating extra information
contained in an arbitrary number of covariates. The power gains are
dependent on the long-run correlation between the shocks of covariates
and quasi-differences of potentially correlated time series to be tested.
The higher correlation between covariates and quasi-differences of time
series, the higher power gains can be realized. A derived feasible sta-
tistic has asymptotic power function tangent to the power envelope.
In finite sample experiments, Monte-Carlo simulation results confirm
large power improvements without size deteriorations.
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1 Introduction

There has been large literature on how to improve the power of unit root

tests. Hansen (1995) showed that it can be costly by ignoring the infor-

mation in related time series by using univariate unit root tests, as power

gains can be achieved by including correlated stationary covariates in the

regression equation. He reconstructed an ADF statistic (Dickey and Fuller,

1979; Said and Dickey, 1984) using multivariate framework. Comparing the

power performance of the CADF (covariate ADF) and the ADF tests, he

found substantial power gains in both large and small samples.

Recently, Elliott and Jansson (EJ 2003, hereafter) generalized the ap-

proach of Hansen (1995) by including different sets of deterministic com-

ponents and an arbitrary number of covariates. They derived a family of

multivariate point optimal tests and a feasible test when nuisance parame-

ters are unknown. Their results have confirmed the importance of covariates

in improving the power of unit root tests. In fact, the limiting distribution of

the feasible point optimal tests depends on the long-run correlation between

the covariates and the quasi-differences of the potentially integrated time

series. The higher the correlation coefficient between the covariates and the

quasi-differences, the larger improvements in the power of unit root tests.

This paper contributes to the existing literature in two ways. First it

borrows the approach of EJ (2003) and applies it to the unknown structural

change models. Two types of models are considered following Perron and

Rodríguez (PR 2003, hereafter). Type I Model only includes a break in the

slope of the trend function, while type II model considers a break in both

intercept and time trend. The date of the break point is treated as unknown

in both models1. Introducing an arbitrary number of covariates to a family of

P-tests derived in PR (2003), this paper will show that the tests of two types

of models will converge to the same limiting distribution. In other words, the

rule that a break in intercept is a slowly evolving deterministic component

still applies even when covariates are present. The limiting distributions of

the P test in PR (2003) are retrieved when the correlation coefficient between

1An ADF in the spirit of Hansen (1995) has been proposed by Shin (2001) but dealing
with known break dates.
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covariates and the quasi-differences of the potentially integrated time series

is zero. When the correlation is between zero and one, asymptotic and finite

sample simulations show that large power gains are achieved when using

covariates.

Second, this experiment allows us to derive a feasible test when nuisance

parameters are unknown. It takes into account one additional nuisance para-

meter compared to that of EJ (2003) since the structural break is unknown.

It will show that, although different from that of EJ (2003), the feasible test

proposed here still achieves the power envelope asymptotically.

The rest of the paper is organized as follows. Section 2 defines the model

and derives the limiting distribution of the test. Section 3 presents the fea-

sible test when all the nuisance parameters are unknown. Section 4 presents

results obtained from simulations and evaluates the test performance in both

large and small samples. Section 5 concludes. Proofs are contained in the

appendix.

2 The Model and Asymptotic Theory

The data generating process (DGP) considered is of the following form:

yt = dyt + uyt, (1)

xt = dxt + uxt, (2)

A (L)

µ
[1− ρL]uy,t

ux,t

¶
≡ A (L)ut(ρ) = et (3)

ρ = 1+ cT−1 (4)

where (4) is the local to unity framework established in Phillips (1987),

Chan and Wei (1987). A(L) is a matrix polynomial of finite order k and L

the lag operator, t = 1, 2, ..., T ; xt, an m× 1 vector, is an arbitrary number
of stationary covariates containing extra information of yt (a scalar), the

variable to be tested. The deterministic component of yt is denoted as dyt.

Two cases are considered following PR (2003). The first case includes an
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intercept, a time trend and a break in slope of the trend function. Hence

dyt = β1+β3t+β5 (t− TB)1 (t > TB) , where 1 (·) is the indicator function
and TB the unknown break date. The second case considers an intercept, a

time trend, and a break in both intercept and the slope. Therefore dyt = β1+

β3t + β5 (t− TB)1 (t > TB) + β61 (t > TB) . The deterministic component

of covariates include an intercept and a time trend in both cases, that is,

dxt = β2+ β4t. Notice that the first case can be obtained by setting β6 = 0

in the second case. Therefore Case 1 and 2 can be simplified using the

restriction [I2(m+2) − Si]βi = 0, where i = 1, 2, S1 =

∙
I2m+3 0
0 0

¸
, and

S2 = I2(m+2).

Following EJ (2003), we have the following assumptions for the model: i)

|A(z)| = 0 has roots outside of the unit circle; ii) Et−1(et) = 0, Et−1(ete0t) =
Σ and suptE||et||2+η <∞ (a.s.) for some η > 0, where Σ is positive definite

and Et−1(·) denotes conditional expectation with respect to {et−1, et−2, ....};
iii) u0, u1, ..., ut−k, are Op(1).

Furthermore, using the same notation as in EJ (2003), the expression

Ω = A(1)−1ΣA(1)−10 =

∙
ωyy ωyx
ω0yx Ωxx

¸
(5)

is defined as the spectral density at the frequency zero (scaled by 2π) of ut(ρ).

Therefore R2 = ω−1yy ωyxΩ
−1
xxω

0
yx is a measure of the long-run correlation

between shocks to xt and quasi-differences of yt at the frequency zero. The

value of R2 represents the contribution of covariates to the explanation of

yt, and the value of R2 ranges from zero to unity. When R2 = 0, covariates

are irrelevant to the potentially integrated series and we have the traditional

case where no covariates are present in testing for unit roots. When R2 = 1,

there is perfect correlation between covariates and quasi-differences of yt,

and the partial sums of xt cointegrates with yt2. In most cases, R2 ranges

from zero to one, and we are concerned with the performance of unit root

tests as R2 increases.
2 If there exists cointegration, the model should be set up using another framework,

unless the coefficients of the cointegrating vector are assumed to be known, which is the
case analyzed by Elliott, Jansson and Pesavento (2005). Therefore, the range of correlation
is 0 ≤ R2 < 1 in this paper.
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To summarize, we study a VAR model including covariates xt and quasi-

differences of yt. Our interest is to test whether the parameter ρ is equal to

unity, or in other words, whether yt has a unit root under the null against

the alternative that yt has a root less than unity. Using an univariate frame-

work, King (1980, 1988) and Dufour and King (1991) showed that the unit

root hypothesis can be examined using Neyman-Pearson tests in a univari-

ate framework. ERS (1996) further developed a family of point optimal

tests using quasi-differenced data without considering structural break. PR

(2003) extended this type of statistics to models with an unknown struc-

tural change. In this paper, we extend them using a multivariate framework

originally proposed by Hansen (1995).

We first derive an optimal statistic (denoted by P test) assuming all

the nuisance parameters are known except the date of structural break.

Accordingly we have the following assumptions: i) A(L) = I, therefore

Ω = Σ; ii) et is normally distributed with uy0 = 0; iii) TB = Tλ for some

λ ∈ (0, 1). Based on these assumptions, we test the null hypothesis of

c = 0 against the local alternative that c = c < 0 where c = T (ρ− 1) and
c = T (ρ−1). PR (2003) showed that when the break point is unknown, the
limiting distribution of the P test can be defined by:

P i(1, ρ) = inf
λ∈[0,1]

TX
t=1

ûit(ρ̄,λ)
0Σ−1ûit(ρ̄,λ)−

inf
λ∈[0,1]

TX
t=1

ûit (1,λ)
0Σ−1ûit (1,λ)− c̄. (6)

where in the present case, ûit (r) = zt(r)−dt (r)0 β̂
i
and r = ρ, 1.When t > 1,

we have:

zt(r) = [(1− rL)yt, x0t]0

dt (r)
0 =

∙
1− r 0 (1− rL) t 0 (1− rL) (t− TB)1 (·) (1− r)1 (·)
0 Im 0 Imt 0 0

¸
while, when t = 1, we have:

z1(r) = [y1, x
0
1]
0

d1 (r)
0 =

∙
1 0 1 0 0 0
0 Im 0 Im 0 0

¸
.
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Furthermore,

β̂
i
= [Si(

TX
t=1

dt (r)Σ
−1dt (r)

0)Si]
−[Si

TX
t=1

dt (r)Σ
−1zt (r)],

where D− is the Moore Penrose inverse of D. The next Theorem establishes

the limiting distribution of the statistic.

Theorem 1 Let {yt} and {xt} be generated by (1) to (4), with A (L) = I,
et ∼ i.i.d. N (0,Σ) , assumptions (i) to (iii) hold. To test the null hypothesis
of ρ = 1 (c = 0) against the alternative hypothesis of ρ = ρ = 1 + c/T with

c = c fixed as T →∞, the P test have the following asymptotic distribution
for Case i = 1 and 2 :

P i(1, ρ)⇒ Λ1(c, c, R2) + Λi2(c, c,λ, R2)− c̄ (7)

where Λ1(c, c, R2) = (c̄2 − 2cc̄)(1 + R2

1−R2 )
R
W 2
1c − 2c̄

R
W1cdW1+

2c̄ R√
1−R2

R
W1cdW2,W1 andW2 are independent univariate standard Brown-

ian motions. W1c is an Ornstein-Uhlenbeck process defined by W1c(s) =

c
R s
0 e

c(s−h)W1(h)dh+W1(s). The expression Λ2(c, c,λ, R2) is defined in the

appendix.

The above limiting distribution has several indications. First, the as-

ymptotic power depends on c̄, which corresponds to one particular point

under the alternative hypothesis. This means that the asymptotic power

functions are tangent to the highest power envelope at point c = c̄. Second,

the limiting distribution is nonstandard. Third, the distribution of the P-

test also depends on the parameter R2. When R2 = 0, there is no covariate

correlated with the quasi-differences of yt and consequently we retrieve the

same asymptotic distribution as that derived in PR (2003). When R2 is

greater than zero, the limiting distribution is a function of R2, indicating

that extra information contained in the covariates may make a difference on

the performance of the test.

Using Theorem 1, T = 1, 000, and 10, 000 replications, the asymptotic

power functions and power envelopes at different R2 can be calculated.

The simulation results for R2 = 0.0, 0.3, 0.5, 0.7, 0.9 are graphed in Fig-

ure 1. We observe that the power envelopes reach their lower bound when
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R2 = 0. When R2 is greater than zero, the power attainable increases

considerably. For example, when c = −10, the maximum power of R2 =

0.0, 0.3, 0.5, 0.7, 0.9 are 10.61%, 21.27%, 35.14%, 55.33%, and 85.95% respec-

tively. That is, the power increases by 100% from R2 = 0.0 to R2 = 0.3;

by 65.2% from R2 = 0.3 to 0.5; by 57.5% from R2 = 0.5 to 0.7; and by

55.3% from R2 = 0.7 to 0.9. These evidence suggests that incorporating the

information in covariates can substantially increase the power of unit root

test in large samples. This result is consistent with what has been found in

Hansen (1995) and EJ (2003).

3 A Feasible Test

In the previous section, we assumed all the nuisance parameters except the

break point are known and the errors are normally distributed. In practice,

R2, the correlation between xt and the variable to be tested is not known,

and it is likely that there is serial correlation in the time series. Therefore it

is necessary to develop a feasible test to estimate all the unknown nuisance

parameters. In this section, we derive this test by adopting the approach of

EJ (2003) in the first three steps when constructing the test, and we modify

the last step in order to estimate the break point. The construction of the

test is as follows:

1. Estimate R2. It is performed by running a VARmodel: A(L)zt(1,λ) =

dt+ et, where λ is the break point, dt is the deterministic components

specified according to the model under analysis. Then we use the resid-

uals generated from the VARmodel to construct bΣ = T−1PT
t=k+1 êt(λ)

êt(λ)
0, Ω̂ = Â(1,λ)−1Σ̂Â(1,λ)−10, and obtain R̂2 = ω̂yxΩ̂

−1
xx ω̂

0
yx/ω̂yy

where bA(1,λ) = I +Pk
t=1Ai is the (i+1)th matrix element of A(L).

2. Estimate the nuisance parameters for quasi-differencing and detrend

the data under the null and alternative hypothesis, respectively. That

is, construct euit(r,λ) = zt(r,λ)− dt(r,λ)0eβi(r,λ) when r = 1, ρ, and
eβi (r,λ) = [ TX

t=1

dt (r,λ) Ω̂
−1dt (r,λ)

0]−[
TX
t=1

dt (r,λ) Ω̂
−1zt (r,λ)].
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3. Run the VAR model Ã (L) ũit (r,λ) = ẽ
i
t (r,λ) , using euit(r,λ) obtained

from the previous step, and construct the variance-covariance matrices

Σ̃i (r,λ) = T−1
TX

t=k+1

ẽit (r,λ) ẽ
i
t (r,λ)

0 .

4. Select the break point and construct the test statistic. The break point

is selected by choosing the variance-covariance matrices eeΣ (1) and eeΣ(ρ̄)
minimizing

PT
t=k+1 ê

i
y,t (r,λ) ê

i
y,t (r,λ)

0 for r = 1, ρ, respectively (see

appendix for proof). Then we can construct the test statistic

eP i(1, ρ̄) = T{tr[eeΣ (1)−1 eeΣ(ρ̄)]− [m+ ρ̄]}. (8a)

This test has the asymptotic power that achieves the power envelope

bound at c under assumptions (i)-(iii). The following Theorem estab-

lishes its limiting distribution.

Theorem 2 Let {yt} and {xt} be generated by (1) to (4), assumptions
(i) to (iii) hold, also assuming deterministic components are correctly

specified for i = 1, 2. To test the null hypothesis of ρ = 1 (c = 0)

against the alternative hypothesis of ρ = ρ = 1 + c/T with c = c fixed

as T → ∞, the limiting distribution of the test defined in (8a) has
asymptotic distribution:

eP i(1, ρ̄)⇒ Λ1(c, c, R2) +Λi2(c, c,λ, R2)− c̄. (9)

As what we have observed before, the limiting distributions of the fea-

sible test and hence the asymptotic results depend on the selection of c

for detrending and R2. We have shown that the feasible test asymptoti-

cally achieves the highest possible power at c. Ideally we should calculate

a power envelope corresponding to each R2 and our choice of c for quasi-

differencing should be dependent on R2. However, in practice we may use

c = −22.5, which is the same value selected by PR (2003) when R2 = 0, for
GLS detrending. Because as R2 increases, the power of the test increases

dramatically and the choice of c becomes less important; see EJ, 2003.
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We present the asymptotic critical values in Table 1. The simulations

of the limiting distribution are done by using 1,000 steps to approximate

the Wiener process on [0, 1] as the partial sums of i.i.d. N(0, 1) random

variables. As a comparison, we also present finite sample critical values

for both cases analyzed in the paper. We use T = 100 and 200 with data

generated by a random walk with zero initial value and i.i.d. N(0, 1) errors.

The lag length is set to zero in the estimation of the VAR model in step one.

4 Evaluation of the Test

Figure 2 graphs the asymptotic power of the feasible test for both cases and

R2 = 0.0, 0.3, 0.5, 0.7, 0.9. We first observe that the feasible test has power

tangent to the power envelope at one point and never falls far below it. This

suggests that very little asymptotic power is lost at points away from the

tangent point, especially for lower values of R2. Overall, substantial power

gains are realized due to covariates. Consider the asymptotic power gains

from using covariates when R2 = 0.5 and the local alternative c = −10.
The asymptotic power rises by 217% (power is 34.52% when R2 = 0.5, and

10.86% when R2 = 0.0). Using the local alternative c = −4, power gains are
smaller, but still an increase of approximately 87% (power is 8.98% when

R2 = 0.5, while it is 4.8% when R2 = 0.0).

The test is also evaluated using small sample Monte Carlo analysis. To

simulate the critical values, power and size, {yt} and {xt} are generated using
(1) to (4) with normal errors and known variance-covariance matrix, whose

variances equal to one and covariances equal to 0.3, 0.5, 0.7, 0.9 respectively.

Using 10,000 replications, T = 100, 200, finite sample critical values are

calculated and tabulated in Table 1 along with the asymptotic critical values.

Power and size are presented in Table 2 (Case 1) and Table 3 (Case 2). There

are two factors that influence the finite sample power performance. One is

the number of observations, power increases as T increases. For example,

when ρ = 0.90, R2 = 0.81, the power increases 15% when T increases from

100 to 200 for Case 1 and 26% for Case 2. Another factor is the increase

of correlation between the covariate and the variable to be tested. As R

(or R2) is closer to 1, power increases dramatically. For example, power
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increases 19% as R increases from 0.3 to 0.5 in Table 2 when ρ = 0.90.

In terms of the overall power gains in finite sample, we have the following

observations. For Case 1, when T = 100 and ρ = 0.96, the test has a power

of 7.36% without covariates, while power increases to 11.57% when R2 =

0.49, approximately a 57.2% power gain; while for Case 2, approximately

a 52.4% power gain. For Case 1, when T = 200, ρ = 0.96, the power is

11.87% without covariates, while it increases to 29.19% when R2 = 0.49,

approximately a 146% power gain; while for Case 2, approximately a 120%

power gain.

5 Conclusions

Following previous research (Hansen 1995; EJ 2003; Shin 2001; PR 2003), we

introduce an arbitrary number of covariates to unknown structural change

models. We have derived the test statistic that has asymptotic power func-

tion tangent to the power envelope at one point under the alternative hy-

pothesis. We have found that the proposed test is a function of both c̄ and

R2 (the correlation of covariates and quasi-differences of yt). Large sample

simulations have shown substantial power gains when R2 is greater than

zero, especially when R2 is close to 1. Monte Carlo simulations have also

shown dramatic power improvements in finite samples without size deteri-

oration. To be of more empirical relevance, we have developed a feasible

test when there are serial correlations, and when R2 and break point are

unknown. Our study has shown that this test achieves the power envelope

when T →∞.
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Appendix

Proof of Theorem 1. We derive the limiting distribution of the P-test for
Case i = 1, 2. The P-test statistic is given by

P i(1, ρ̄) = inf
TX
t=1

ûit(ρ̄)
0Σ−1ûit(ρ̄)− inf

TX
t=1

ûit (1)
0Σ−1ûit (1)− c̄,

where ûit (r) = zt (r)− dt (r)0 β̂
i
for r = ρ̄, 1.

When t > 1,

zt (r) =

∙
(1− rL) yt

xt

¸
,

dt (r)
0 =

µ
1− r 0 (1− rL) t 0 (1− rL) (t− TB)1 (·) (1− r)1 (·)
0 Im 0 Imt 0 0

¶
;

while when t = 1,

z1 (r) =

∙
y1
x1

¸
,

d1 (r)
0 =

µ
1 0 1 0 0 0
0 Im 0 Im 0 0

¶
,

where 1(·) is the indicator function. Using OLS,

β̂
i
= [Si(

TX
t=1

dt (r)Σ
−1dt (r)

0)Si]
−[Si

TX
t=1

dt (r)Σ
−1zt (r)].

Therefore the P-test has the following form:

P i(1, ρ̄) =
TX
t=1

et(ρ̄)
0Σ−1et(ρ̄)−

TX
t=1

et (1)
0Σ−1et (1)− c̄

inf [SiNT (1)]
0[SiDT (1)Si)]

−[SiNT (1)]−
inf [SiNT (ρ̄)]

0[SiDT (ρ̄)Si]
−[SiNT (ρ̄)]

whereDT (r) =
PT
t=1[Ψ

−1
T dt(r)Σ

−1dt(r)0Ψ
−1
T ], NT (r) =

PT
t=1[Ψ

−1
T dt(r)Σ

−1et(r)],

ΨT is a scaling matrix. Because s1Σ−1s01 = (1 + δ̄
0
δ̄)ω−1yy and s1Σ

−1/20 =
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ω
−1/2
yy [ 1 −δ̄0 ]0 (s1 =

£
1 0

¤
1×(m+1) is a selection matrix, see EJ 2003)

still hold, we have

TX
t=1

et(ρ̄)
0Σ−1et(ρ̄)−

TX
t=1

et(1)
0Σ−1et(1)

=
TX
t=2

{−2c̄
T
Σ−1/2s01uy,t−1²t +

c̄2

T 2
s1Σ

−1s01u
2
y,t−1 −

2cc̄

T 2
s1Σ

−1s01u
2
y,t−1}

=
TX
t=2

(c̄2 − 2cc̄)(1 + δ̄
0
δ̄)ω−1yy T

−2u2y,t−1 − 2c̄T−1
TX
t=2

uy,t−1ω
−1/2
yy [1 − δ̄

0
]Σ−1/2et

⇒ (c̄2 − 2cc̄)(1 + R2

1−R2 )
Z
W 2
1c − 2c̄

Z
W1cdW1 + 2c̄

R√
1−R2

Z
W1cdW2

≡ Λ1(c, c, R
2).

For Case 2, the scaling matrix is

ΨT =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

ω
−1/2
yy

T 1/2Ω
−1/20
x.y

T 1/2ω
−1/2
yy

T 3/2Ω
−1/20
x.y

T 1/2ω
−1/2
yy

ω
−1/2
yy

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

When t = 1, we have:

lim
T→∞

¯̄̄
Ψ−1T d1(r)Σ

−1/20
¯̄̄
⇒

⎛⎜⎜⎜⎜⎜⎜⎝
1 −δ̄0
0 0
0 0
0 0
0 0
0 0

⎞⎟⎟⎟⎟⎟⎟⎠ , (A.10)

while when t > 1, we have:
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lim
T→∞

[ sup
2
T
≤s≤1

T 1/2Ψ−1T d[Ts] (r)Σ
−1/20 ]⇒

⎛⎜⎜⎜⎜⎜⎜⎝

0 0
0 Im

1− crs −(1− crs)δ̄0
0 sIm

1− cr(s− λ) −δ̄0[1− cr(s− λ)]
0 0

⎞⎟⎟⎟⎟⎟⎟⎠ ,
(A.11)

where λ = TB/T is the break point. Combining the above results (A.10) and

(A.11) we have

DT (r) =
TX
t=1

[Ψ−1T dt (r)Σ
−1dt (r)

0Ψ−1T ]

= Ψ−1T d1(r)Σ
−1d1(r)

0Ψ−1T +
TX
t=2

[Ψ−1T dt(r)Σ
−1dt(r)

0Ψ−1T ]

⇒ [

1 + δ̄
0
δ̄ 0 0

0 Im −(1− cr/2)δ̄
0 −(1− cr/2)δ̄0 (1 + c2r/3− cr)(1 + δ̄

0
δ̄)

0 Im/2 −(1/2− cr/3)δ̄
0 δ̄

0
a (1 + δ̄

0
δ̄)v

0 0 0

0 0 0
Im/2 δ̄a 0

−(1/2− cr/3)δ̄ (1 + δ̄
0
δ̄)v 0

Im/3 δ̄b 0

δ̄
0
b (1 + δ̄

0
δ̄)d 0

0 0 0

], (A.12)

where

a = 1− λ− crλ+ crλ2/2,

b = −1− λ2

2
+
cr
3
+
crλ

3

6
− crλ

2
,

v = 1− λ− cr + crλ− c2rλ/2 + c2rλ3/2 + c2r(1− λ3)/3,

d = 1− λ− cr − crλ2 + 2crλ+ c2r/3− c2rλ3/3− c2rλ+ c2rλ2.
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Similarly, we can calculate the limiting distribution forNT (r) =
PT
t=1[Ψ

−1
T dt(r)

Σ−1et(r)],

NT (r) =
TX
t=1

[Ψ−1T dt(r)Σ
−1et(r)]

=
TX
t=1

Ψ−1T [dt(r)Σ
−1/20 ][Σ−1/2et(r)]

= Ψ−1T [d1(r)Σ
−1/20 ][Σ−1/2et(r)] +

TX
t=2

Ψ−1T [dt(r)Σ
−1/20 ][Σ−1/2et(r)]

= Ψ−1T [d1(r)Σ
−1/20 ][Σ−1/2et(r)] +

T−1/2
TX
t=2

[T 1/2Ψ−1T dt(r)Σ
−1/20 ][Σ−1/2et(r)] (A.13)

⇒

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

²y,1 − δ̄
0
²x,1

²x,t + (ρ− r)Σ−1/2s01uy,t−1R 1
0 (1− crs)[dW1(s)− δ̄

0
V (s)]+

(c− cr)(1 + δ̄
0
δ̄)
R 1
0 (1− crs)W1c(s)dsR 1

0 sdV (s)− (c− cr)δ̄
R
sW1c(s)ds

G
0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, (A.14)

where

G =

Z 1

λ
(1− crs)[dW1(s)− δ̄

0
V (s)] + (c− cr)(1 + δ̄

0
δ̄)

Z 1

λ
(1− crs)W1cds

+crλ

Z 1

λ
d[W1 (s)− δ̄

0
V (s)] + crλ(c− cr)(1 + δ̄

0
δ̄)

Z 1

λ
W1c(s)ds.

Thus the limiting distribution for Case 2 is:

P i[1, ρ̄]⇒ Λ1
¡
c, c̄, R2

¢
+ Λi2

¡
c, c̄, R2

¢
− c̄

where expression Λi2
¡
c, c̄, R2

¢
is the limiting distribution of inf [SiNT (1)]0

[SiDT (1)Si)]
−[SiNT (1)]− inf [SiNT (ρ̄)]0[SiDT (ρ̄)Si]−[SiNT (ρ̄)], which can

be calculated using (A.12) and (A.14). Proof for Case 2 completes.
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Next we want to show that Case 1 has the same limiting distribution as

Case 2. For Case 1,

DT (r) =
TX
t=1

[Ψ−1T dt (r)Σ
−1dt (r)

0Ψ−1T ]

= Ψ−1T d1(r)Σ
−1d1(r)

0Ψ−1T +
TX
t=2

[Ψ−1T dt(r)Σ
−1dt(r)

0Ψ−1T ]

When t > 1,

dt (r)
0 =

µ
1− r 0 (1− rL) t 0 (1− rL) (t− TB)1 (·) 0
0 Im 0 Imt 0 0

¶
,

and

lim
T→∞

[ sup
2
T
≤s≤1

T 1/2Ψ−1T d[Ts] (r)Σ
−1/20 ]⇒

⎛⎜⎜⎜⎜⎜⎜⎝

0 0
0 Im

1− crs −(1− crs)δ̄0
0 sIm

1− cr(s− λ) −δ̄0[1− cr(s− λ)]
0 0

⎞⎟⎟⎟⎟⎟⎟⎠ .

Therefore, DT (r) and NT (r) have the same asymptotic distributions for

Case 1 and 2, and so is the limiting distribution for P test. Proof completes¥
Proof of Theorem 2. Following EJ (2003),

1.
PT
t=k+1 eeit(ρ̄)eeit(ρ̄)0−PT

t=k+1 eeit(1)eeit(1)0 =PT
t=k+1 ê

i
t(ρ̄)ê

i
t(ρ̄)

0−
PT
t=k+1 ê

i
t(1)ê

i
t(1)

0+

op(1), where êit(r) = A(L)euit(r).
2.
PT
t=k+1 ê

i
t (r)

0Σ−1êit (r)−
PT
t=k+1 et (r)

0Σ−1et (r)⇒ −[SiN
¡
c, c̄, R2

¢
]0[SiD

¡
c̄, R2

¢
Si]
−[SiN

¡
c, c̄, R2

¢
],

3.
PT
t=k+1 et(ρ̄)

0Σ−1et(ρ̄)−
PT
t=k+1 et (1)

0Σ−1et (1)⇒ Λi1(c, c, R2).
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Using the identity tr[S × e× e0] = e0 × S × e, S = Σ−1 = Σ (1)−1 , we can
transform the equation 1:

inf
λ∈[0,1]

[tr[Σ−1
TX

t=k+1

ẽit(ρ̄,λ)ẽ
i
t(ρ̄,λ)

0]]− inf
λ∈[0,1]

[tr[Σ−1
TX

t=k+1

ẽit (1,λ) ẽ
i
t (1,λ)

0]]

= inf
λ∈[0,1]

[tr[Σ−1
TX

t=k+1

êit(ρ̄,λ)ê
i
t(ρ̄,λ)

0]]− inf
λ∈[0,1]

[tr[Σ−1
TX

t=k+1

êit (1,λ) ê
i
t (1,λ)

0]] + op (1)

= inf
λ∈[0,1]

TX
t=k+1

êit(ρ̄,λ)
0Σ−1êit(ρ̄,λ)− inf

λ∈[0,1]

TX
t=k+1

êit (1,λ)
0Σ−1êit (1,λ) + op (1) . (A.15)

From equation 2 and 3, we have
TX

t=k+1

êit(ρ̄)
0Σ−1êit(ρ̄)−

TX
t=k+1

êit (1)
0Σ−1êit (1)

=
TX
t=1

et(ρ̄)
0Σ−1et(ρ̄)−

TX
t=1

et (1)
0Σ−1et (1)

−[SiN(c, c̄, R2)]0[SiD
¡
c̄, R2

¢
Si]
−[SiN

¡
c, c̄, R2

¢
]

+[SiN(c, 0, R
2)]0[SiD

¡
c̄, R2

¢
Si]
−[SiN

¡
c, 0, R2

¢
] (A.16)

Now, substitute (A.16) into (A.15), we get

inf
λ∈[0,1]

[tr[Σ−1
TX

t=k+1

ẽit(ρ̄,λ)ẽ
i
t(ρ̄,λ)

0]]− inf
λ∈[0,1]

[tr[Σ−1
TX

t=k+1

ẽit (1,λ) ẽ
i
t (1,λ)

0]]

⇒
TX
t=1

et(ρ̄,λ)
0Σ−1et(ρ̄,λ)−

TX
t=1

et (1,λ)
0Σ−1et (1,λ)

− sup
λ∈[0,1]

[SiN(c, c̄, R
2,λ)]0[SiD

¡
c̄, R2

¢
Si]
−[SiN

¡
c, c̄, R2,λ

¢
]

+ sup
λ∈[0,1]

[SiN(c, 0, R
2,λ)]0[SiD

¡
c̄, R2,λ

¢
Si]
−[SiN

¡
c, 0, R2,λ

¢
]

≡ P i(1, ρ̄).

In our model, only yt contains a structural break. Therefore we use
eeΣ (r) =

infλ∈[0,1]
PT
t=k+1 ê

i
y,t (r,λ)

0Σ−1êiy,t (r,λ) to select the break point, and the

feasible test statistic is,eP i(1, ρ̄) = T{tr[eeΣ (1)−1 eeΣ(ρ̄)]− [m+ ρ̄]}¥
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Table 1. Asymptotic and Finite Critical Values for P test choosing TB minimizing the

statistic;

(c̄ = −22.5 when constructing the test)

Size T =∞ T = 100 T = 200
Case 1 Case 2 Case 1 Case 2

R2 = 0.0 .01 6.6206 7.0831 8.2017 6.8656 7.9770

.025 7.7184 8.3496 9.6151 8.2074 9.3505

.05 8.7784 9.6171 10.7726 9.4273 10.4317

.10 10.2240 11.2630 12.2715 11.0206 12.0643

.20 12.4409 13.2986 14.1866 13.0273 14.0473

R2 = 0.1 .01 6.3306 7.1161 7.7447 6.8647 7.4366

.025 7.5704 8.3208 8.9815 8.1843 8.8018

.05 8.8655 9.5971 10.3549 9.3553 10.0709

.10 10.7418 11.1881 12.2124 11.0294 11.8583

.20 13.3284 13.6536 14.7468 13.5258 14.5056

R2 = 0.2 .01 6.3366 7.0755 7.6763 6.7214 7.5043

.025 7.7627 8.5707 9.2372 8.3291 9.0627

.05 9.3670 10.0312 10.9802 9.8132 10.6892

.10 11.5830 11.9907 13.1029 11.8267 12.7795

.20 14.6210 14.8797 16.2305 14.7595 15.9071

R2 = 0.3 .01 6.3418 7.2735 8.1307 6.7738 7.4329

.025 8.1433 9.1303 9.8774 8.7816 9.6521

.05 10.1212 10.9046 11.8302 10.6501 11.5858

.10 12.7136 13.2524 14.4177 12.9126 14.0307

.20 16.2374 16.6372 18.0740 16.4752 17.6493

R2 = 0.4 .01 6.4881 7.8499 8.7390 7.2775 8.2742

.025 8.8891 10.0639 10.9070 9.7519 10.5740

.05 11.3466 12.2461 13.3519 11.8917 12.9659

.10 14.3757 15.0278 16.2870 14.6182 15.8075

.20 18.4936 19.0608 20.5460 18.7793 20.4266
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Table 1 (continues). Asymptotic and Finite Critical Values for P test choosing TB

minimizing the statistic;

(c̄ = −22.5 when constructing the test)

Size T =∞ T = 100 T = 200
Case 1 Case 2 Case 1 Case 2

R2 = 0.5 .01 7.1952 9.1102 9.6599 8.4968 9.2217

.025 10.0659 11.7718 12.8048 11.3839 12.3373

.05 13.0346 14.3242 15.6562 13.9767 14.9083

.10 16.7505 17.6416 19.1295 17.1750 18.7120

.20 21.5898 22.5719 24.3645 22.2750 23.9609

R2 = 0.6 .01 8.3182 11.2399 12.0004 10.8230 12.0457

.025 12.1112 14.5488 15.8906 14.0533 15.1350

.05 15.7378 17.7247 19.2281 17.3959 18.5054

.10 20.2065 21.9735 23.5982 21.3516 23.1323

.20 26.1940 28.0226 30.1219 27.5030 29.5977

R2 = 0.7 .01 10.0794 15.3051 16.5035 15.1582 16.4011

.025 15.6598 19.7340 21.1399 19.2412 20.3855

.05 20.0063 24.0217 25.8066 23.3866 24.6636

.10 26.0101 29.2556 31.4516 28.7144 30.6317

.20 33.8148 37.2448 40.0105 36.5297 39.0657

R2 = 0.8 .01 13.9343 24.6019 26.0516 24.7058 26.6857

.025 22.0148 30.7935 32.8000 30.3721 32.2811

.05 28.8717 36.7978 39.1595 36.0741 38.1094

.10 37.6966 44.5746 47.0921 43.7420 46.6231

.20 48.6718 55.6362 59.6670 54.7744 58.7771

R2 = 0.9 .01 25.6335 54.3674 56.9218 55.6351 58.4940

.025 43.7594 64.9650 69.1188 65.2765 68.7000

.05 55.7402 76.4949 80.8711 75.554 80.1414

.10 72.5938 90.7439 95.3365 89.8564 95.8853

.20 92.7436 111.4939 119.3781 110.4932 118.0968
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Table 2. Finite Sample Size and Power; Case 1

(c̄ = −22.5 when constructing the test)

T = 100 T = 200
R = 0.0 0.30 0.50 0.70 0.90 0.0 0.30 0.50 0.70 0.90

R2 = 0.0 0.09 0.25 0.49 0.81 0.0 0.09 0.25 0.49 0.81

ρ
1.00 0.0501 0.0501 0.0501 0.0501 0.0501 0.0501 0.0501 0.0500 0.0500 0.0500

0.98 0.0565 0.0567 0.0610 0.0755 0.1033 0.0733 0.0752 0.0873 0.1206 0.2121

0.96 0.0736 0.0750 0.0795 0.1157 0.2082 0.1187 0.1378 0.1679 0.2919 0.6508

0.94 0.0896 0.0967 0.1127 0.1838 0.3956 0.2029 0.252 0.3214 0.5796 0.9661

0.92 0.1344 0.1462 0.1634 0.2894 0.6482 0.3455 0.3555 0.5306 0.8325 0.9997

0.90 0.1839 0.1948 0.2312 0.4284 0.8633 0.5218 0.5409 0.7441 0.9525 1.0000

0.88 0.2390 0.2592 0.3252 0.5825 0.9685 0.6796 0.7223 0.8821 0.9902 1.0000

0.86 0.3156 0.3777 0.4226 0.7150 0.9942 0.8030 0.8511 0.9498 0.9986 1.0000

Number of lags in VAR is zero; 10,000 replications.

Table 3. Finite Sample Size and Power; Case 2

(c̄ = −22.5 when constructing the test)

T = 100 T = 200
R = 0.0 0.30 0.50 0.70 0.90 0.0 0.30 0.50 0.70 0.90

R2 = 0.0 0.09 0.25 0.49 0.81 0.0 0.09 0.25 0.49 0.81

ρ
1.00 0.0500 0.0501 0.0501 0.0500 0.0501 0.0501 0.0501 0.0500 0.0501 0.0501

0.98 0.0585 0.0595 0.0615 0.0775 0.0952 0.0628 0.0674 0.0832 0.1078 0.1882

0.96 0.0765 0.0775 0.0798 0.1166 0.1886 0.1239 0.1323 0.1706 0.2726 0.5875

0.94 0.0965 0.0978 0.1136 0.1788 0.3513 0.2269 0.2588 0.3209 0.5329 0.8996

0.92 0.1427 0.1440 0.1613 0.2738 0.5768 0.3646 0.4100 0.5417 0.7947 0.9726

0.90 0.1921 0.1954 0.2262 0.4048 0.7867 0.5269 0.6557 0.7408 0.9251 0.9914

0.88 0.2529 0.2616 0.3216 0.5549 0.9114 0.6597 0.7198 0.8669 0.9735 0.9961

0.86 0.3277 0.3519 0.4168 0.6798 0.9550 0.7750 0.8580 0.9473 0.9892 0.9992

Number of lags in VAR is zero; 10,000 replications.
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Figure 1. Power Envelopes for R2 = 0.0, 0.3, 0.5, 0.7, 0.9.
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Figure 2. Power Envelopes and Asymptotic Power Functions of the Feasible Point

Optimal Test
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