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Abstract

An important aspect of empirical research based on the vector autoregressive (VAR) model is
the choice of the lag order, since all inference in the VAR model depends on the correct model
speci�cation. Literature has shown important studies of how to select the lag order of a nonstation-
ary VAR model subject to cointegration restrictions. In this work, we consider an additional weak
form (WF) restriction of common cyclical features in the model in order to analyze the appropriate
way to select the correct lag order. Two methodologies have been used: the traditional information
criteria (AIC, HQ and SC) and an alternative criterion (IC(p; s)) which select simultaneously the
lag order p and the rank structure s due to the WF restriction. A Monte-Carlo simulation is used
in the analysis. The results indicate that the cost of ignoring additional WF restrictions in vector
autoregressive modelling can be high, especially when SC criterion is used.
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INTRODUCTION

In the modelling of economic and �nancial time series, the vectorial autoregressive (VAR) model
became a standard linear model used in empirical works. An important aspect of empirical research
in the speci�cation of the VAR models is the determination of the lag order of the autoregressive
lag polynomial, since all inference in the VAR model depends on the correct model speci�cation.
In several contributions, the effect of lag length selection has been demonstrated: Lütkepohl (1993)
indicates that selecting a higher order lag length than the true lag length causes an increase in the mean
square forecast errors of the VAR and that under�tting the lag length often generates autocorrelated
errors. Braun and Mittnik (1993) show that impulse response functions and variance decompositions
are inconsistently derived from the estimated VAR when the lag length differs from the true lag length.
When cointegration restrictions are considered in the model, the effect of lag length selection on the
cointegration tests has been demonstrated. For example, Johansen (1991) and Gonzalo (1994) point
out that VAR order selection may affect proper inference on cointegrating vectors and rank.
Recently empirical works have considered another kind of restrictions on the VAR model (e.g.,

Engle and Issler, 1995; Caporale, 1997; Mamingi and Sunday, 2003). Engle and Kozicki (1993)
showed that VAR models can have another type of restrictions, called common cyclical features, which
are restrictions on the short-run dynamics. These restrictions are de�ned in the same way as cointeg-
ration restrictions, while cointegration refers to relations among variables in the long-run, the common
cyclical restrictions refer to relations in the short-run. Vahid and Engle (1993) proposed the Serial Cor-
relation Common Feature (SCCF) as a measure of common cyclical feature. SCCF restrictions might
be imposed in a covariance stationary VAR model or in a cointegrated VAR model. When short-run
restrictions are imposed in cointegrated VAR models it is possible to de�ne a weak version of SCCF
restrictions. Hecq, Palm and Urbain (2006) de�ned a weak version of SCCF restrictions which they
denominated it as weak-form (WF) common cyclical restrictions. A fundamental difference between
SCCF and WF restrictions is in the form which each one imposes restrictions on the Vector Error Cor-
rection Model (VECM) representation1. When SCCF are imposed, all matrices of a VECM have rank
less than the number of variables analyzed. On the other hand with WF restrictions all matrices, except
the long-run matrix, have rank less than a number of variables in analysis. Hence, WF restrictions
impose less restriction on VECM parameters. Some advantages emerge when WF restrictions are con-
sidered. First, due to the fact that WF restrictions does not impose restrictions on the cointegration
space; the rank of common cyclical features is not limited by the choice of cointegrating rank. Another
advantage is that WF restrictions is invariant over reparametrization in VECM representation.

1When a VAR model has cointegration restriction it can be represented as a VECM. This representation is also known as
Granger Representation Theorem (Engle and Granger, 1987).
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The literature has shown how to select an adequate lag order of a covariance stationary VAR model
and an adequate lag order of a VAR model subject to cointegration restrictions. Among the classical
procedures, there are the information criteria such as Akaike (AIC), Schwarz (SC) and Hannan-Quinn
(HQ) (Lütkepohl, 1993). Kilian (2001) study the performance of traditional AIC, SC and HQ criterion
of a covariance stationary VAR model. Vahid and Issler (2002) analyzed the standard information cri-
terion in a covariance stationary VAR model subject to SCCF restriction and more recently Guillén,
Issler and Athanasopoulos (2005) studied the standard information criterion in VAR models with coin-
tegration and SCCF restrictions. However, when cointegrated VAR models contain additional weak
form of common cyclical feature, there are no reported work on how to appropriately determine the
VAR model order.
The objective of this paper is to investigate the performance of information criterion in selecting

the lag order of a VAR model when the data are generated from a true VAR with cointegration and WF
restrictions that is referred as the correct model. It will be carried out following two procedures: a) the
use of standard criteria as proposed by Vahid and Engle (1993), referred here as IC (p), and b) the use
of an alternative procedure of model selection criterion (see, Vahid and Issler, 2002; Hecq et al., 2006)
consisting in selecting simultaneously the lag order p and the rank s do to the weak form of common
cyclical feature, which is referred to as IC(p; s)2. The most relevant results can be summarized as
follows. The information criterion that selects simultaneously the pair (p; s) has better performance
than the model chosen by conventional criteria. The cost of ignoring additional WF restrictions in
vector autoregressive modelling can be high specially when SC criterion is used.
The remaining of this work is organized as follows. Section 2 shows the econometric model. In

section 3 the information criteria are mentioned. Monte Carlo simulation is shown in section 4 and the
results in section 5. Finally, the conclusions are shown in section 6.

THE ECONOMETRIC MODEL

We show the VAR model with short-run and long-run restrictions. First, we consider a Gaussian
vector autoregression of �nite order p, so-called VAR(p), such that:

yt =

pX
i=1

Aiyt�i + "t (1)

where, yt is a vector of n �rst order integrated series, I(1), Ai, i = 1; : : : ; p are matrices of dimension
n � n, "t � Normal (0;
) and {
; if t = � and 0n�n; if t 6= � , where 
 is non singular}. The
model (1) could be written equivalently as; �(L) yt = "t where L represents the lag operator and

2This is quite recent in the literature (see, Hecq et al., 2006).
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�(L) = In �
Pp
i=1AiL

i that when L = 1, �(1) = In �
Pp
i=1Ai. If cointegration is considered

in (1) the (n� n) matrix �(�) satis�es two conditions: a) Rank (� (1)) = r, 0 < r < n, such that
�(1) can be expressed as �(1) = ���0, where � and � are (n� r) matrices with full column rank,
r. b) The characteristic equation j�(L)j = 0 has n � r roots equal to 1 and all other are outside the
unit circle. These assumptions imply that yt is cointegrated of order (1; 1). The elements of � are the
adjustment coef�cients and the columns of � span the space of cointegration vectors. We can represent
a VAR model as VECM. Decomposing the polynomial matrix �(L) = � (1)L + �� (L)�, where
� � (1� L) is the difference operator, a Vector Error Correction Model (VECM) is obtained:

�yt = ��
0yt�1 +

p�1X
i=1

�i�yt�i + "t (2)

where: ��0 = ��(1), �j = �
Pp
k=j+1Ak for j = 1; ::::; p � 1 and �0 = In. The VAR(p) model

can include additional short-horizon restrictions as shown by Vahid and Engle (1993). We consider an
interestingWF restriction (as de�ned by Hecq, Palm and Urbain, 2006) that does not impose restrictions
over long-run relations.

De�nition 1 Weak Form-WF holds in (2) if, in addition to assumption 1 (cointegration), there exists a
(n�s)matrix ~� of rank s, whose columns span the cofeature space, such that ~�0(�yt����yt�1) = ~�0"t

; where ~�0"t is a s-dimensional vector that constitutes an innovation process with respect to information
prior to period t.

Consequently we considerate WF restrictions in the VECM if there exists a cofeature matrix ~� that
satis�es the following assumption:

Assumption 1 : ~�0 �j = 0s�n for j = 1; ::::; p� 1.

Imposing WF restrictions is convenient because it allows the study of both cointegration and com-
mon cyclical feature without the constraint r+ s � n. We can rewrite the VECM with WF restrictions
as a model of reduced-rank structure. In (2) letXt�1 = [�y0t�1; :::::�y0t�p+1]0 and � = [�1; ::::;�p�1],
therefore we get:

�yt = ���yt�1 +�Xt�1 + "t (3)

If assumption (1) holds matrices �i; i = 1; :::; p are all of rank (n� s) then we can write � = ~�?	 =

~�?[	1; ::::;	p�1], where, ~�? is n � (n � s) full column rank matrix, 	 is of dimension (n � s) �
n(p� 1); the matrices 	i; i = 1; :::; p� 1 all of rank (n� s)� n. Hence, given assumption (1), there
exists ~� of n� s such that ~�0 ~�? = 0. That is, ~�? n� (n� s) is a full column rank orthogonal to the
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complement of ~� with rank( ~�; ~�?) = n. Rewriting model (3) we have:

�yt = ���yt�1 + ~�? (	1;	2; :::;	p�1)Xt�1 + "t (4)

= ���yt�1 + ~�?	Xt�1 + "t (5)

Estimation of (5) is carried out via the switching algorithms (see, Hecq, 2006) that use the proced-
ure in estimating reduced-rank regression models suggested by Anderson (1951). There is a formal
connection between a reduced-rank regression and the canonical analysis as noted by Izenman (1975),
Box and Tiao (1977), Tso (1980) and Veleu et al. (1986). When the multivariate regression has
all of its matrix coef�cients of full rank, it may be estimated by usual Least Square or Maximum-
Likelihood procedures. But when the matrix coef�cients are of reduced-rank they have to be estimated
using the reduced-rank regression models of Anderson (1951). The use of canonical analysis may
be regarded as a special case of reduced-rank regression. More speci�cally, the maximum-likelihood
estimation of the parameters of the reduced-rank regression model may result in solving a problem
of canonical analysis3. Therefore, we can use the expression CanCorrfXt; ZtjWtg that denotes the
partial canonical correlations between Xt and Zt: both sets concentrate out the effect of Wt that al-
lows us to obtain canonical correlation, represented by the eigenvalues �̂1 > �̂2 > �̂3::::::: > �̂n.
The Johansen test statistic is based on canonical correlation. In model (2) we can use the expression
CanCorrf�yt; yt�1jWtg where Wt = [�yt�1;�yt�2; :::::;�yt+p�1] that summarizes the reduced-
rank regression procedure used in the Johansen approach. It means that one extracts the canonical
correlations between �yt and yt�1: both sets concentrated out the effect of lags ofWt. In order to test
for the signi�cance of the r largest eigenvalues, one can rely on Johansen's trace statistic (6):

�r = �T
nX

i=r+1

Ln (1� �̂2i ) i = 1; :::; n (6)

where the eigenvalues 0 < �̂n < ::: < �̂1 are the solution of : j�m11 � m�1
10m00m01j = 0, where

mij ; i; j = 0:1; are the second moment matrices: m00 =
1
T

PT
t=1 ~u0t~u

0
0t, m10 =

1
T

PT
t=1 ~u1t~u

0
0t,

m01 =
1
T

PT
t=1 ~u0t~u

0
1t,m11 =

1
T

PT
t=1 ~u1t~u

0
1t of the residuals ~u0t and ~u1t obtained in the multivariate

least squares regressions �yt = (�yt�1; :::�yt�p+1) + u0t and yt�1 = (�yt�1; :::�yt�p+1) + u1t

respectively (see, Hecq et al., 2006; Johansen, 1995). The result of Johansen test is a superconsistent
estimated �. Moreover, we could also use a canonical correlation approach to determine the rank of the
common features space due to WF restrictions. It is a test for the existence of cofeatures in the form
of linear combinations of the variables in the �rst differences, corrected for long-run effects which
are white noise (i.e., ~�0(�yt � ���yt�1) = ~�0"t where ~�0"t is a white noise). Canonical analysis is

3This estimation is referred as Full Information Maximum Likelihood - FIML
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adopted in the present work in estimating, testing and selecting lag-rank of VAR models as shown in
next sections.

MODEL SELECTION CRITERIA

In model selection we use two procedures to identify the VAR model order. The standard selection
criteria, IC(p) and the modi�ed informational criteria, IC(p; s), novelty in the literature, which consists
on identifying p and s simultaneously.
The model estimation following the standard selection criteria, IC(p), used by Vahid and Engle

(1993) entails the following steps:

1. Estimate p using standard informational criteria: Akaike (AIC), Schwarz (SC) and
Hanna-Quinn (HQ). We choose the lag length of the VAR in levels that minimize the
information criteria.

2. Using the lag length chosen in the previous step, �nd the number of cointegration vector,
r using Johansen cointegration test4.

3. Conditional on the results of cointegration analysis, a �nal VECM is estimated and then
the multi-step ahead forecast is calculated.

The above procedure is followed when there is evidence of cointegration restrictions. We check the
performance of IC(p)whenWF restrictions contain the true model. Additionally we check the perform-
ance of alternative selection criteria IC(p; s). Vahid and Issler (2002) analyzed a covariance-stationary
VAR model with SCCF restrictions. They showed that the use of IC(p; s) has better performance than
IC(p) in VAR model lag order selection. In the present work we analyze cointegrated VAR model with
WF restrictions in order to analyze the performance of IC(p) and IC(p; s) for model selection. The
question investigated is: is the performance of IC(p; s) superior to that of IC(p)? This is an important
question we aim to answer in this work.
The procedure of selecting the lag order and the rank of the structure of short-run is carried out by

minimizing the following modi�ed information criteria (see Hecq, 2006).

AIC (p; s) =

TX
i=n�s+1

ln(1� �2i (p)) +
2

T
� N (7)

HQ(p; s) =
TX

i=n�s+1
ln(1� �2i (p)) +

2 ln(lnT )

T
� N (8)

4Cointegration rank and vectors are estimated using the FIML as shown in Johansen (1991).
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SC(p; s) =

TX
i=n�s+1

ln(1� �2i (p)) +
lnT

T
� N (9)

N = [n� (n� (p� 1)) + n� r]� [s� (n� (p� 1) + (n� s))]

The number of parameters N is obtained by subtracting the total number of mean parameters in
the VECM (i.e., n2 � (p � 1) + nr), for given r and p, from the number of restrictions the common
dynamics imposes from s�(n�(p�1))�s�(n�s). The eigenvalues �i are calculated for each p. To
calculate the pair (p; s) we assume that no restriction of cointegration exists, that is, r = n (see Hecq,
2006). We �x p in model (3) and then �nd �i i = 1; 2:::n using the program cancorr(�yt; Xt�1 j
yt�1). This procedure is followed for every p and in the end we choose the p and s that minimizes the
IC(p; s). After selecting the pair (p; s) we can test the cointegration relation using the procedure of
Johansen. Finally we estimate the model using the switching algorithms as shown in the next chapter.
Notice that in this simultaneous selection, testing the cointegration relation is the last procedure to
follow, so we are inverting the hierarquical procedure followed by Vahid and Engle (1993) where the
�rst step is the selection of the number of cointegration relations. It may be an advantage specially
when r is over-estimated. Few works have been dedicated to analyze the order of the VAR models
considering modi�ed IC(p; s). As mentioned, Vahid and Issler (2002) suggested the use of IC(p; s) to
simultaneously choose the order p and a number of reduced rank structure s on covariance stationary
VAR model subject to SCCF restrictions. However, no work has analyzed the order of the VAR model
with cointegration and WF restrictions using a modi�ed criterion, which is exactly the contribution of
this paper.
To estimate the VAR model considering cointegration and WF restrictions we use the switching

algorithms model as considered by Hecq (2006). Consider the VECM given by:

�yt = ��
0yt�1 + ~�?	Xt�1 + "t (10)

A full description of switching algorithms is presented below in four steps:

Step1 : Estimation of the cointegration vectors �.

Using the optimal pair (�p; �s) chosen by information criteria (7), (8) or (9), we estimate �
(and so its rank, r = �r) using Johansen cointegration test.

Step2 : Estimation of ~�? and 	.

Taking �̂ estimated in step one, we proceed to estimate ~�? and	. Hence, we run a regres-
sion of �yt and of Xt�1on �̂0yt�1. We labeled the residuals as u0 and u1, respectively.
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Therefore, we obtain a reduced rank regression:

u0 = ~�?	u1 + "t (11)

where	 can be written as	 =
�
C1; :::; C(�p�1)

�
of (n��s)�n(�p�1) and ~�? of n�(n��s).

We estimate (11) by FIML. Thus, we can obtain ~�? and 	̂.

Step3 : Estimate of the Maximum Likelihood (ML) function.

Given the parameters estimated in steps 1 and 2 we use a recursive algorithm to estimate
the Maximum Likelihood (ML) function. We calculate the eigenvalues associated with 	̂,
�̂2i i = 1; :::; �s and the matrix of residuals

Pmax
�r; s=�s. Hence, we compute the ML function:

L0max; �r<n; s=�s = �
T

2

"
ln

�����
maxX

�r<n; s=�s

������
�sX
i=1

ln
�
1� �̂2i

�#
(12)

If �r = n, we use instead of (12) the derived log-likelihood: Lmax; r=n; s=�s = �T
2 ln

���Pmax
�r=n; s=�s

���.
The determinant of the covariance matrix for �r = n cointegration vector is calculated by

ln

�����
maxX

�r=n; s=�s

����� = ln ��m00 �m01m
�1
11m10

��� �sX
i=1

ln
�
1� �̂2i

�
(13)

where mij refers to cross moment matrices obtained in multivariate least square regres-
sions from �yt and Xt�1 on yt�1. In this case, estimation does not imply an iterative
algorithm yet because the cointegrating space spans Rn:

Step4 : Reestimation of �:

We reestimate � to obtain a more appropriated value for the parameters. In order to rees-
timate � we use the program CanCorr

h
�yt; yt�1 j 	̂Xt�1

i
and thus using the new �̂

we can repeat step 2 to reestimate ~�? and 	. Then, we can calculate the new value of the
ML function in the step 3. Henceforth, we obtain L1max; r=�r; s=�s for calculating �L =�
L1max; r=�r; s=�s - L0max; r=�r; s=�s

�
:

We repeat steps 1 to 4 to choose ~�?and 	 until convergence is reached ( i.e., �L < 10�7): In the
end, optimal parameters �p, �r and �s are obtained and it can be used for estimation and forecasting of a
VECM with WF restrictions.
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MONTE-CARLO DESIGN

One of the critical issues regarding Monte-Carlo experiments is the data generating processes. To
build the data generating processes we consider a VAR model with three variables, one cointegration
vector, and two cofeatures vectors (i.e., n = 3, r = 1 and s = 2, respectively). � and ~� satisfy:

� =

2664
1:0

0:2

�1:0

3775 ; ~� =
2664
1:0 0:1

0:0 1:0

0:5 �0:5

3775
2664
"1t

"2t

"3t

3775 s N
0BB@
2664
0

0

0

3775 ;
2664
1:0 0:6 0:6

0:6 1:0 0:6

0:6 0:6 1:0

3775
1CCA

Consider the VAR(3) model: yt = A1yt�1 + A2yt�2 + A3yt�3 + "t. The VECM respresentation as a
function of the VAR level parameters can be written as:

�yt = (A1 +A2 +A3 � I3)yt�1 � (A2 +A3)�yt�1 �A3�yt�2 + "t (14)

The VAR coef�cients must simultaneously obey the restrictions: a) The cointegration restrictions:
��0 = (A1 +A2 +A3 � I3) ; b) WF restrictions: ~�0A3 = 0 (iii) ~�0(A2 +A3) = 0 and c) covariance-
stationary condition. Considering the cointegration restrictions we can rewrite (14) as the following
VAR(1):

�t = F �t�1 + vt (15)

�t =

2664
4yt
4yt�1
�0yt

3775 ; F =
2664
�(A2 +A3) �A3 �

I3 0 0

��(A2 +A3) ��0A3 �0�+ 1

3775 and vt =
2664

"t

0

�0"t

3775
Thus, the equation (15) will be covariance-stationary if all eigenvalues of matrixF lie inside the unit

circle. An initial idea to design the Monte-Carlo experiment may consist of constructing the companion
matrix (F ) and verify whether the eigenvalues of the companion matrix all lie inside the unit circle. This
may be carried out by selecting their values from a uniform distribution, and then verifying whether or
not the eigenvalues of the companion matrix all lie inside the unit circle. However, this strategy could
lead to a wide spectrum of search for adequate values for the companion matrix. Hence, we follow
an alternative procedure. We propose an analytical solution to generate a covariance-stationary VAR,
based on the choice of the eigenvalues, and then on the generation of the respective companion matrix.
In the appendix we present a detailed discussion of the �nal choice of these free parameters, including
analytical solutions. In our simulation, we constructed 100 data generating processes and for each of
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these we generate 1000 samples containing 1000 observations. In order to reduce the impact of initial
values, we consider only the last 100 and 200 observations. All the experiments were conducted in the
MatLab environment.

RESULTS

Values in Table I represent the percentage of time that the model selection criterion, IC(p), chooses
that cell corresponding to the lag and number of cointegration vectors in 100000 realizations. The
true lag-cointegrating vectors are identi�ed by bold numbers and the selected lag-cointegration vectors
chosen more times by the criterion are underlined. The results show that, in general, the AIC criterion
choose more frequently the correct lag length for 100 and 200 observations. For example, for 100
observations, the AIC, HQ and SC criteria chose the true lag, p, 54.08%, 35.62% and 17.49% of the
times respectively. Note that all three criteria chose more frequently the correct rank of cointegration
(r = 1). When 200 observations are considered, the correct lag length was chosen 74.72%, 57.75%
and 35.28% of the time for AIC, HQ and SC respectively. Again all three criteria selected the true
cointegrated rank r = 1. Tables II contains the percentage of time that the simultaneous model selection
criterion, IC(p; s), chooses that cell, corresponding to the lag-rank and number of cointegrating vectors
in 100,000 realizations. The true lag-rank-cointegration vectors are identi�ed by bold numbers and
the best lag-rank combination chosen more times by each criterion are underlined. The results show
that, in general, the AIC criterion chooses more frequently lag-rank for 100 and 200 observations.
For instance, for 100 observations, the AIC, HQ and SC criteria choose more frequently the true pair
(p; s) = (3; 1), 56.34%, 40.85% and 25.20% of the times respectively. For 200 observations, AIC, HQ
and SC criteria choose more frequently the true pair (p; s) = (3; 1), 77.07%, 62.58% and 45.03% of the
times respectively. Note that all three criteria choose more frequently the correct rank of cointegration
(r = 1) in both samples.

The most relevant results can be summarized as follows:

� All criteria (AIC, HQ and SC) choose the correct parameters more often when using
IC(p; s).

� The AIC criterion has better performance in selecting the true model more frequently
for both the IC(p; s) and the IC(p) criteria.

�When the size of the sample decreases the true value p is less frequently selected by all
the traditional criteria.

� Table I shows that ignoring WF restrictions the standard SC has the worst performance
in choosing the true value of p:
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It is known that literature suggests the use of the traditional SC and HQ criteria in VAR model
selection. The results of this work indicate that if additional WF restrictions are ignored, the standard
SC and HQ criteria select few times the true value of p. That is, there is a cost of ignoring additional
WF restrictions in the model specially when SC criterion is used. In general, the standard Schwarz
or Hannan-Quinn selection criteria should not be used for this purpose in small samples due to the
tendency of identifying an underparameterized model. In general, the use of these alternative criteria
of selection, IC(p; s) has better performance than the usual criteria, IC(p), when the cointegrated VAR
model has additional WF restriction.

CONCLUSIONS

In this work, we considered an additional weak form restriction of common cyclical features in a
cointegrated VAR model in order to analyze the appropriate way for selecting the correct lag order.
These additional WF restrictions are de�ned in the same way as cointegration restrictions, while coin-
tegration refers to relations among variables in the long-run, the common cyclical restrictions refer to
relations in the short-run. Two methodologies have been used for selecting lag length; the traditional
information criterion, IC(p), and an alternative criterion (IC(p; s)) that selects simultaneously the lag
order p and the rank structure s due to the WF restriction.
The results indicate that information criterion that selects the lag length and the rank order sim-

ultaneously has better performance than the model chosen by conventional criteria. When the WF
restrictions are ignored there is a non trivial cost in selecting the true model with standard information
criteria. In general, the standard Schwarz or Hannan-Quinn criteria selection criteria should not be used
for this purpose in small samples due to the tendency of identifying an under-parameterized model.
In applied work, when the VAR model contains WF and cointegration restrictions, we suggest the

use of AIC(p; s) criteria for simultaneously choosing the lag-rank, since it provides considerable gains
in selecting the correct VAR model. Since no work in the literature has been dedicated to analyze a
VAR model with WF common cyclical restrictions, the results of this work provide new insights and
incentives to proceed with this kind of empirical work.
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APPENDIX A : TABLES

Table I. Performance of information criterion, IC (p) in selecting the lag order p
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Table II. Performance of information criterion, IC(p; s) in selecting p and s simultaneously
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APPENDIX B : VAR RESTRICTIONS FOR THE DGPs

Let's consider the VAR(3) model :

yt = A1yt�1 +A2yt�2 +A3yt�3 + "t (16)

with parameters: A1 =

2664
a111 a112 a112

a121 a122 a122

a131 a132 a132

3775,A2 =
2664
a211 a212 a212

a221 a222 a222

a231 a232 a232

3775 andA3 =
2664
a311 a312 a312

a321 a322 a322

a331 a332 a332

3775
We consider the cointegration vectors � =

2664
�11

�21

�31

3775, the cofeatures vectors ~� =
2664

~�11 ~�12
~�21 ~�22
~�31 ~�32

3775 and

the adjustament matrix � =

2664
�11

�21

�31

3775 : The long-run relation is de�ned by ��0 = (A1+A2+A3�I3):
The VECM respresentation is:

�yt = ��
0yt�1 � (A2 +A3)�yt�1 �A3�yt�2 + "t (17)

Considering the cointegration restrictions we can rewrite (17) as the following VAR(1)

�t = F �t�1 + vt (18)

where �t =

2664
4yt
4yt�1
�0yt

3775 ; F =
2664
�(A2 +A3) �A3 �

I3 0 0

��(A2 +A3) ��0A3 �0�+ 1

3775 and vt =
2664

"t

0

�0"t

3775
1) Short-run restrictions (WF)

Let us, G = �[R21K + R31], K = [(R32 � R31)=(R21 � R22)], Rj1 = ~�j1=~�11, Rj2 =
~�j2=~�12 (j = 2; 3) and S = �11G+ �21K + �31

(i) ~�0A3 = 0 ==> A3 =

2664
�Ga331 �Ga332 �Ga333
�Ka331 �Ka332 �Ka333
�a331 �a332 �a333

3775
(ii) ~�0(A2 +A3) = 0 ==> ~�0A2 = 0 ==> A2 =

2664
�Ga231 �Ga232 �Ga233
�Ka231 �Ka232 �Ka233
�a231 �a232 �a233

3775
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2) Long-run restrictions (cointegration)

(iv) �0(A2 +A3) = [�(a231 + a331)S � (a232 + a332)S � (a233 + a333)S] and �0A3 = [�a331S �
a332S � a333S]

(v) �0�+ 1 = � =
h
�11 �21 �31

i 2664
�11

�21

�31

3775+ 1 = �11�11 + �21�21 + �31�31 + 1
Therefore, considering short- and long-run restrictions, the companion matrix F is represented as:

F =

2664
�(A2 +A3) �A3 �

I3 0 0

��(A2 +A3) ��0A3 �0�+ 1

3775

=

26666666666664

�G(a231 + a331) �G(a232 + a332) �G(a233 + a333) �Ga331 �Ga332 �Ga333 �11

�K(a231 + a331) �G(a232 + a332) �G(a233 + a333) �Ka331 �Ka332 �Ka333 �21

�(a231 + a331) �G(a232 + a332) �(a233 + a333) �a331 �a332 �a333 �31

1 0 0 0 0 0 0

0 1 0 0 0 0 0

0 0 1 0 0 0 0

�(a231 + a331)S �(a232 + a332)S �(a233 + a333)S �a331S �a332S �a333S b

37777777777775
with b = �0�+ 1 = �11�11 + �21�21 + �31�31 + 1

3) Restrictions of covariance-stationary in equation (18)

The equation (18) will be covariance-stationary, all eigenvalues of matrix F lie inside the unit
circle. Therefore, the eigenvalues of the matrix F is a number � such that:

jF � �I7j = 0 (19)

The solution of (19) is:
�7 +
�6 +��5 +	�4 = 0 (20)

where the parameters 
, �, and 	 are: 
 = G(a231 + a
3
31) + K(a

2
32 + a

3
32) + a

2
33 + a

3
33 � b, � =

Ga331 +Ka
3
32 � (a233 + a333)b � Gb(a231 + a331) �Kb(a232 + a332) + �31S(a233 + a333) + S�21(a232 +

a332) + S�11(a
2
31 + a

3
31) + a

3
33 and 	 = �a333b�Ga331b�Ka332b+ �31a333S + a332S�21 + a331S�11,
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and the �rst four roots are �1 = �2 = �3 = �4 = 0:We calculated the parameters of matrices A1, A2
and A3 as function of roots (�5; �6 and �7) and free parameters. Hence we have three roots satisfying
equation (20)

�3 +
�2 +��+	 = 0 (21)

for �5, we have: �35 +
�25 +��5 +	 = 0 ::::::::::::::::::::::::::::::::::Eq1

for �6, we have: �36 +
�26 +��6 +	 = 0 ::::::::::::::::::::::::::::::::::Eq2

for �7, we have: �37 +
�27 +��7 +	 = 0 ::::::::::::::::::::::::::::::::::Eq3

Solving Eq1; Eq2 and Eq3 we have: 
 = ��7 � �6 � �5, � = �6�7 + �6�5 + �5�7 and
	 = ��5�6�7. Equaling these parameters with relations above we have:

a231 = �(�Ka232 �Ka232b+ �31Sa233 � �6�7 � �6 � �7 � a233b� �5�6�7 + b� �5�7 � �5�6 �
a233 + Sa

2
32�21 � �5)=(S�11 �G�Gb)

a332 = (�S2�7�11�31 � b2�7G � �6Gb2 + b�7S�11 + �6S�11b � a331S�11G + a331S2�211 �
Ga331bS�11 � �5Gb2 + �5S�11b � �7�6�31SG � �7�5�31SG � S2�11�

5�31 � S2�11�
6�31 +

S�5Gb�31 + S�31�
6Gb � �5�7�6G + �6�7Gb + �5�7Gb + �5�6Gb � SGb2�31 + S2�11b�31 �

S2�11�31a
2
33+S

2�231a
2
33G+SG

2a331�31+S�11a
2
33b+Gb

3�S�11b2�S2�11Ka232�31�S2�11�31Ga331+
S2a232�21G�31�Sa232�21Gb+S�31G2a331b�S�31a233Gb+S�11Ka232b+S�7Gb�31��5�6�31SG�
�5�7�6�31SG+ �

5�7�6S�11)=(S�11K�31 �KG�31 + bG�21 �K�31Gb� S�11�21 +G�21)=S

a333 = �(Kb3G��5Gb2K+S�11�6K�7�5+Kb�7S�11�Kb2�7G�S2�21�7�11+�6GbS�21+
S�21�

7Gb � �6Gb2K + �6S�11Kb � �6S2�11�21 + �5GbS�21 + �5S�11Kb � �5S2�11�21 �
�7�6S�21G+Kb�

7�6G+Kb�7�5G+Kb�5�6G� �7�6KG�5 � S2�11�21Ka232 + S2�11�21b�
S2�11�21a

2
33+S

2�221a
2
32G�S�11Kb2+S�21G2a331�S�21Gb2+S2a331K�211�S2�11�21Ga331+

S2�21a
2
33G�31 + S�11K^2ba

2
32 + S�11Kba

2
33 � S�11a331KG � S�11KbGa331 � SKba233G�31 +

S�21G
2a331b�S�21�5�6G�S�21�5�7�6G�S�21Ka232Gb�S�21�7�5G)=(S�11K�31�KG�31+

bG�21 �K�31Gb� S�11�21 +G�21)=S

We can calculate a231, a332and a333 �xing the set �1 = �2 = �3 = �4 = 0 and sort independently
from uniform distributions (�0:9; 0:9) the values of a331; a232; a233; �5; �6 and �7. Hencefore, each
parameter of the matrices A1, A2 and A3 are de�ned and so we can generate the DGPs of VAR(3)
model with cointegration and WF restrictions.
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